The Replication Prototype

Introduction: A replication prototype was developed for customer demonstration purposes. This prototype was substantially enhanced to address many of its prior shortcomings. It has been suggested that this new prototype be distributed as “shareware” as a first step toward an InterBase replication solution. This document provides an overview of the prototype system and describes the architecture, functionality and limitations of this prototype.

Overview: The prototype was developed to demonstrate to customers that InterBase can do replication, and that replication does not have to be rocket science. It is implemented in Delphi because ‘C’ seems to frighten many of our “low-tech” accounts (e.g. “You can do it in Delphi?!? It must be easy!”). Functionally, it implements table-level, one-to-many, row-wise, N-way replication and “pushes” the replicated data over a LAN or WAN(using RAS) automatically. “Table-level, one-to-many” means that a single source table may be replicated to multiple target databases. “Row-wise” means that a row is the unit of data that is replicated. “N-way” means that a table can be either a replication source or replication target. “Pushing over a WAN” means the Server will automatically dial and connect to a remote-site using RAS services.

Architecture: The replication prototype consists of two Delphi programs a “Manager” and a “Replication Server” (see Figure 1). The Manager configures the replication services and the Server performs the replication of data.

�

Figure 1: Prototype Architecture Overview

The replication strategy is straightforward (see Figure 2): when a row in a source table changes, a trigger writes the table name, the key of the row, the change type (insert/update/delete) and the target location identifier to a “changes” table and posts an event alerter. The Replication Server can be configured to propagate the changes upon event-notification, and/or after a specific polling-interval expires, i.e. wake-up every n-minutes and check for changes, and/or it can be manually invoked. Regardless of how the Replication Server is configured, it’s job is to propagate records that are found in the changes table. The information in the “changes” row tells the Replication Server what data to retrieve from the source database and to which target the row is to be written. When the data is successfully replicated to the target database, the corresponding “changes” row is deleted.

		�

Figure 2: Replication Strategy

The manager allows a user to specify the tables, and columns within each table (vertical partitioning) that are to be the source of replication, and the target database(s) to which each table is to be replicated. In addition, the manager allows a user to specify whether the replication will be event-based, and whether or not the target databases will be communicated with via a RAS(WAN) connection. This information is saved to a replication specific database. The manager then the generates the triggers necessary to notify the Replication Server program of changes (insert/update/deletes) that happen within the specified table. The trigger generation is driven by a trigger definition template “meta-file”, and, once generated, they can be saved to an ISQL script or applied directly to the source database.

The Replication Server runs as a daemon process waiting to notified by an event, a specific time-out period, or manually invoked. All the changes for a specific site are bound within a single Two-Phase commit transaction between the source database and the target database.

Functionality: The following lists the “interesting” functionality of the prototype:

Mouse-Driven Setup: The manager program is driven from source database’s metadata so the configuration step is mostly “point and click”.

Automatic Trigger Generation: The manager program automatically generates the triggers required to replicate data from a table. The trigger generation can be customized by editing the trigger definition template meta-file.

Event Driven Replication: Replication is triggered by event alerters. Therefore, it is performed in a timely, efficient manner.

Timer Driver Replication. Replication can be configured to occur after a specific amount time has elapsed.

Manual Replication. A button on the Replication Server GUI is provided for manual invocation.

WAN, LAN, or local database replication. The interesting part of the WAN replication is that the Replication Server will automatically dial the phone number and make a RAS connection before executing the replication strategy.

An Error Log is written to when errors occur and can be viewed through a pull-down menu option from the Replication Server.

Table-Level Replication: All rows from a table specified as a replication source are replicated to all specified target locations.

Vertical Partitioning: A user may specify a subset of a table’s columns to be replicated. However, the key must always be included. Blobs and Nulls are now supported. The only datatype that is not supported is Arrays. (The replication manager prevents you from selecting an Array column as well as any Calculated fields.)

One-to-many: A source table may be replicated to more than one target database.

Row-wise: A row is the smallest unit of data that is replicated. Only the rows that are change are replicated.

N-way: A single Replication Server only pushes data in one direction. However, multiple Replication Servers can be configured so that a table specified as a replication source for one Replication Server can be specified as a replication target for another Replication Server. To eliminate infinite replication loops, the default trigger template ensures that changes performed by Replication Servers are not replicated. Conflicts are resolved via the “last write wins” rule. In such a configuration, it is recommended that disjoint vertical partitions be used.

Dynamically Table Driven: The Replication Server gets all of its replication configuration information from a database. Therefore, changes to the replication configuration (e.g. adding new tables to be replicated, etc.) do not require the Replication Server to be re-compiled.

Limitations: The following lists the “interesting” limitations of the prototype:

No horizontal partitioning: There is no way to specify that only a subset of rows from a table are to be replicated to a specific target location. SQLServer supports this.

Integer Key Required: A table must have a unique integer key to participate in replication. This simplified coding.

No Configuration Verification: Compatibility between source and target tables’ schemas is not verified. That is, it does not check that the data types are compatible between source and target columns.

No su
