Firebird 2.0 Release Notes

Helen Borrie (Collator/Editor)
2 February 2006 - Document version 0200_52 - for Firebird 2.0 Beta 2 Release

Firebird 2.0 Release Notes

2 February 2006 - Document version 0200 _52 - for Firebird 2.0 Beta 2 Release
Helen Borrie (Collator/Editor)

Table of Contents

I 7= 01 I N o (- PR 1
THESEINOLESeeiiiiiii ettt e e st e e e e e e e e e neees 1
N I 1 USROS 1
Bug Reporting and SUPPOIToouveiieiiiiiiee ettt 1

A N[A T = o 1 o 2 SRR 3
Derived TaDIES ..o e e e e e e 3
PSQL Now SupportS Named CUFSOISoocuvviiieeieeeesiciitiieee e e e e e e ssevnrreeeee e e e e e ennes 3
Reimplemented ProtocolS 0N WINCOWSoeviiiiiiiieiiiiiee e 3
LOCal ProtoCOI--XNETciuiiiiiiiiiiee ettt e e siba e e e anes 3
Changeto WNET (NetBEUI) Protocolcccooovviviiiii, 4
Reworking of Garbage CollECHIONeeeiiiiiiiieiiiii e 4
Storing Databases on Raw Devices (POSIX ONlY)eevvveeeiiiiiiiiiieciee e, 4
Porting of the Services API to ClassiCis COMPIELEccevveeiiiiiiiiiiiiiee e 5
Reworking of Constraint Checkingooocciiiieiiie e 5
Lock Timeout for WAIT TranSaCtioNSccvueeierireeeiiiiiiieeee e e e e e eeeiiiiieeeaee e 5
New Implementation of String Search OPEratorsccccveerviieeeeiiiieeeeiniieeeennes 5
Reworking of Updatable VIEWSuuuiiiiiiiiiiiiiiiiiiiiiiiiinirneeenneeenenrernr. 5
Additional Database Shutdown Modes INtroducedcceeevriiiiieiiiiieeeiiieeeee 6
UDFsImproved re NULL Handlingcooooiiiiiieiieeeiicciiee e 6
SIgNaliNg SQL NULL ..oeeieiiiiee et 6
Run-time Checking for Concatenation OVErflowccccovvveveeeiiiiiciiienee e, 6
Changesto Synchronisation LOGICccoovvviiiviiii, 7
Support for 64-bit PIatfOrmsocueiiiiiiiie e 7
Record Enumeration LimitS INCreasedccuevveiiiieieiiiiiiee e 7
Debugging IMPrOVEMENLScoiiiiiieiiiiiiee it 7
Improved Reporting from BUgChECKSccuviiiiiiiic e 7
Updated Internal Structure REPOIMINGcccorvriieiiiieieeeiiiiee e 7
New Debug Logging FaCilitieScoooueiiiiiiiiiieiic e 8
Improved Connection Handling on POSIX SUPErSEIVEreuvevveiiieiminmnnmmnmnnnnnnnn. 8
PSQL Invariant Tracking REWOrKedccceviiiiiiiiiiiiicc e 8
ROLLBACK RETAIN SyntaX SUPPOITccoivvreeeiiiieeeeiiieieessiieeeessnneeessnseneeesanes 8
No More Registry Search 0N WiN32 SEIVEIScccoouiiiiiiiiiiee e 8
More Optimizer IMPrOVEMENLSeviiieeiiiiiiiieiereee e e s s st e e e e e e e s ssanrreereeeeeseannes 9
ODS ChangES ...cceee e, 9

3. Changesto the Firebird APl @and ODScuiiiiiiiiiie i 10
API (Application Programming INterface)cccccceeiiiiiiiieieiie e 10
Cleanup Of TDASENcoii 10
Lock Timeout for WAIT TranSaCtioNScc.eeveeviieeeeiiiieeeesiiieeessiieeessnineeeennes 10
isc_dsgl_info() Now Includes Relation AlESESc.oevveiiiiiieiiiiieie e 10
Enhancement to isc_blob_[00KUP_dESC()cvvvvveiiiiiiieiiiiiee e 10
AP 1dentifieS CHENt VEISIONuueiiiiieee e e e e e 11
IMProved SErVICES AP ... 11
New Function for Delivering Error TEXEvvveiieeeeiiiiiiiee e e 11
ODS (On-Disk SIructure) ChangeScoouveeeeiiiieieeaiiee et 11
NEW ODS NUMDEN ...ttt e s nabaee e e e 11
Size limit for exception Messagesincreasedc..vveeeveeeieiiiciiiiee e 11
New Description Field for GENEratorsc.eueoiiiereeiiiiiie e 12
New Description Field for SQL ROIESc.cuvvieieiieiiiiiiee e 12
ODS TYPE RECOGNITIONevieiiiiiieeiiiiie ettt 12
Smarter DSQL Error REPOIINGcoocvviiiiiiee et e e 12
New Column in RDB$INAEX_SegMENtSccceeiiiiiiiiieiiiee e 12
L1 PSSP 12

Firebird 2.0 Release Notes

4. Data Definition Language (DDL)eieiiiiiiieiiiiee ittt 13
New and ENhanced SYNLAXESceeiieeiiiiiiiiiieiee e ettt e e e e s sinrrre e e e e e eanes 13
CREATE SEQUENCE ... 13
REVOKE ADMIN OPTION FROMcooiiiiiiiiieiiiiiee i sinee e 14
SET/DROP DEFAULT Clausesfor ALTER TABLEcooiiiiiiiiiiiee e 14
New Syntaxes for Changing EXCEPLIONScooiiiiiiiiiiiieeiiieee e 14
ALTER EXTERNAL FUNCTIONciiiiiiiiiiiee e iiee e siee e sneeee e 15
COMMENT Statement Implementedooooiiiiiiiiii e 15
Extensionsto CREATE VIEW Specificationcccocviiieiiee e 15
RECREATE TRIGGER Statement Implementedccccoeviiiieeiiiineee e 16
USage ENNBNCEMENLSovviiiiiei it e e et e e e e 16

5. DataManipulation Language (DIML)cooiiieiiiieie et 18
New and Extended DSQL SYNEAXESceeiiuriieiiiiiiee e e aieee e s sineee e 18
EXECUTE BLOCK SEAEMENLeeeiiiiiieeeiiiiieeeiiieeeesiieeeessieeeeesnieeesssneeeeeeanes 18
Derived TaDIES ..o a e e e 19
ROLLBACK RETAIN SYNLEX ..uvviieiiiiiiieiiiiieeesiieeeessiieeeeasineeeessnseeesssnsneessanes 21
ROWS SYNEBX ..ttt ettt sttt e ene e b e e b e be e e s ennes 21
Enhancementsto UNTON Handlingccooooviiiiiiiieeiiiiiee e 22
[F Expression Syntax Addedueuiuiiiiieiiiiiiiiiiiiir.. 23
CAST() Behaviour IMProvedeeeeiiiiiieeiiiiee e 23
Built-in Function SUBSTRING() Enhancedcooooviiiieiiee e 24
EnhancementSto NULL LOGICcooiiiiiiiiieiiiiie et 24
CROSS JOIN iSNOW SUPPOIEAoeviiiiiiiee et e e e 26
Subqueries and INSERT Statements Can Now Accept UNION Sets ..., 27
New Extensionsto UPDATE and DELETE SyntaXescc.ccccveeviireeenniinieennnns 27
New Context VariabIeSooooiiiiiiiiiiii e 27
Improvements in Handling User-specified Query Plansccccccoviivveeiniiieennns 31
IMProvementSin SOMINGccoiiiiiiiiiee e e e e e e e e e e eanes 33
NEXT VALUE FOR EXPreSSiON SYNEaXevveeiiirrreeriiieeeeiineeessirneesssnneeesanes 34
RETURNING Clause for Insert Statementsceeeeeeeeeciiieieeeeeeesiiiinieeeeeeeseenns 34
DSQL parsing of table aliaseS IS SIIICLENuvviuiiiiiiiiiiiiiriiiiiiinieerrererernnnre. 35
SELECT Statement & EXPression SYNEAXceeeeerivereeeriieeeesniieeeesnieeee s 37

6. New Reserved Words and ChangeS™ooooiiiiiiiiiiii ettt 39
NEWIY RESEIVEA WOITSoeeeeiiiiiie ettt 39
Changed from Non-reserved to RESEIVEdcccvvvvveveee i, 39
Keywords Added as NON-reESENVEXuuuiriiiuiiiiiiinininiriienrneriennre.. 39
KeywordS NO LONGEr RESEIVEDccoiiuiiiiiiiiiiie et 40
No Longer Reserved as KEYWOIASooocuiiiiiiiii ettt e e 40

7. Stored Procedure Language (PSQL)vveeeoiiiieeeiiiiiee et 411
PSQL ENNBNCEMENTSvvvvviiiiiiriririrsrirsrersrerrrrrererrserrsrrerrererr rr..........—————————————. 41
EXPlICIT CUISOTS ...ttt e e e 411
Defaults for Stored Procedure ArguMENEScooviveeeeiiiiiieeisieeee e e sneee e 42
LEAVE <label> Syntax SUPPOITueuiuiuiminiiinrinnriininimrrirenenerm.. 44
OLD Context VariablesNow Read-0nlycccoeeiiiiiiiiiiiiiiee e 45
PSQL SEACK TTACE ..vvvvvuvuvururuierurururursressrsrsssrssssessssssssssserserrrrrrrar.srr....—————————. 46
Call aUDF asaVoid Function (Procedure)coccuveveiniieieeiiiiiee e 47

8. ENhancementSto INAEXINGccooeiiiiiiiiieee e 48
252-byteindex length limit iSQONEccooeviiiiiiii 48
EXPreSSion INAEXEScooiiiiiieiiiiiiee ettt 48
Changesto Null keyshandlingcccoueiieiiiiiiii e 49
Improved INAeX COMPIESSIONceeiiirreeeiiiieeeeaitee e e et e e e s e e e e s e e areeeeeanes 49
Selectivity Maintenance Per SEGMENcoeveeii i 49
Firebird Index Structure from ODS11 OnNWardcoccoeeeeiiimeeenniineeesnieeeennes 49
New flag for the New iNdEX SLIUCIUNEcooveiii i 51
100 1= (100 - 51
JUMP NOUES ...ttt et e et e et e e e s e e e enbneeeeanes 51
NULL SEBEE .ttt iiteie ettt ettt ettt e e ettt e e e st e e e s nnraeeeeane 52

Firebird 2.0 Release Notes

O. OPLIMIZBLIONSeeeeiiiiie ettt ettt et e e e ekt e e e e bt e e e e e ssbe e e e e anbb e e e e e nnnneeeeennrees 55
IMProved PLAN ClaAUSEocoeiiiiiieiee ettt e e et rre e e e e e e eanes 55
OptiMIZEr IMPIOVEMENTS ..ottt 55
FOr All DAalaSeScoviiiiiiiee ittt e e 55
For ODS 11 DatabasesS ONlYevvieiiiiiiieeiieee et 56
10. New FeatureS for TEXE DAc..uvvvriiieeeeiiiciiieiee e e e et e e e e e s s e e e e e e e s snnnraaeeeeaeeas 58
NEW SEHNG FUNCLIONSuuiuiiiiiiiiiiiieiiiininrienenrrneeerrrnererrnrrr——.. 58
LOWER() v.voveveeeeteteeseeseseeetetesesseseseeeesessseststesesessseeessasenssssseensenenseseeetasannseenens 58
LI TP PRSPPI 58
NEW String SIZ€ FUNCLIONScoiuiiiiiiiiiiee ettt 59
New INTL Interface for Non-ASCII Character SEtSc.evvviviieeeviiieiee e 59
ATCRITECIUNE .o e e e e e e e e e e 59
ENNBNCEMENLS ... e e e e e s e r e e e e e e e aanes 60
New Character Sets and Collations Implementedccccceeieeiiiiiiiiiieecee e, 63
CharaCter SEt BUQ FIXEScooiuiiiiiiiiiiie ettt 64
12, SeCUrity INFIFEDINA 2 ..vveeeeee e e s e e e e e et ar e e e e e 66
SUMMAY Of CRANGESeveeeeeiiee ettt 66
NEW SECUNtY dataESEveveeiieiee e 66
Better password eNCIYPIONuuieeeuruuiuruerrrirrnerrrrrrnrnrnrrrer——————. 66
Users can modify their OWN PassWordSc.ueveeiiiiiieeiiiiee e 66
Non-server access to security databaseisrgectedcccvvveeveeeiiiiiiiiiieceeee e, 66
Active protection from brute-force attackccooeeriiiiiiiiiiiiie e 66
Vulnerabilitieshave been CloSed ..o 67
Details of the Security Changesin Firebird 2.0cccccvvvvniiviiiiiiiniiiiiinnnn. 67
AULNENEICAIION ... e e e e e e s e re e e e e e e s e annes 67
(1S = O] ol T L o1 o 2SR 68
Some Protection from HaCKiNgooooiiiiiiiiiiccee e 69
ClassiC Server ONPOSIX ..o 69
Dealing with the New Security Databasecoccvveiiiiiiieiiiiieee e 70
Doing the Security Database Upgradec.ecooiiieieiiniiiie e 70
12. Command-liNE ULHITIEScooiieeie e a e 71
BaCKUP TOOIS ...ttt 71
New On-line Incremental BackUpcoooiiiiiiiieiiee e 71
GBak Backup/Porting/Restore Utilityooooiiieiiiiiiiiieeiieceeeee e 73
ISQL QUENY ULHITY ..eveeiieiiee et e e e e s e e e e e e e e eanes 74
NEW SWITCNES ..ot e e e e e e e e e e e e et r e e e e e e e eannes 74
NEW COMMEBNGSevviiiiiiieee s ecce e e e e e s e e e e e s s esat e e e aaeeesassntraeeeeaaeseannnes 76
ISQL BUGS FIXEA ...ttt e e e rre e e e e e e e eanes 78
GSec AUthentiCation ManNAJESeeeeiiiiiieeiiiie e 79
GSEC FBIUM COUReveiiiiiieeeiiieiee ettt et e e st e e e e e e e e e s 79
GFiX SEIVEN ULHITY .oeeeiiiiieeeee et 79
New Shutdown SEAtES (MOOES)coeeiieiiieiiiiiie e 79
13. External FUNCLIONS (UDFS) ...ooiiii it 8l
Ability to Signal SQL NULL viaaNull POINtercoocoiiiiiiiiiieiiie e 81
UDF library diagnostic messages improvedccceeveeeeeiiiciiiieeeee e cceiiiniee e 82
UDFsAdded and Changedc.eeiiiiiiiiieiiiii e 82
IB_UDF _SrANA() ...oocvveeeeiieeee e et e s st e e e e e e et e e e e e e e s s sannrraeeaeaeeeeannes 82
[B_UDF _TOWEK ..ottt e et e e e et e e e et e e e e nnseeeeeanns 82
14. New Configuration Parameters and Changescooouveeeiiiiiiee i 84
EXEErNAIFTIEACCESSveiiiiiiiiie ettt e e e a e e st e e e e enraeeeeanes 84
LEGACYHESN ... 84
REITECHION ... e e s s e e e nnrnee e e e 84
ADOUL MUITIZNOP et 84
GCPOIICY .ttt e e 85
USEPrioritySChedUIETccooeeeieeeeee e 85
TCPNONagle has Changedoooiiiiiiiiiiie e 85
DeadThreadsCollection iSNo 10Nger USEdcoevieiiiiiiiiiiieeiee e 85

Vi

Firebird 2.0 Release Notes

New parameter OldColUMNNGAMINGooviiiiiiieiiiiiee e 85
15. Installation and Compatibility NOLESccuviiiiieieie e 86
Known Compatibility ISSUESceiiiiiiiieiiiiice et 86
Security in Firebird 2 (All Platforms) ... 86
Other Issues (All PIatfOrmS)oooiiiiiiiiiiiicc e 87
WiNAOWS-SPECITIC ISSUESeviiiiiiiieiiiiiie ettt 91
1S = = 1 o SRS 92
WVINOOWS ..ttt e e e e et e e e e e e e s e st eeeaaeeesssnssnsaneeeaeeseannnes 92
POSI X e 92
16. BUGS FIXEU ...ttt e et e e et e e e 93
General ENGINEBUGScvviiieiiee ittt e e e st e e e e e e e s nnnraaneeeaeeas 93
SEIVICES MANAGEY ...ccieiei e 99
GRIX BUGS ...ttt ettt e ettt e e aee s 99
1S I T T 99
PSQL BUGS eeiieeiiiiiiiee ettt e e e e e e e e e s s e e e e e e e e anne 102
Crash CONAITIONScceiiiiiieeiiiiiie ettt et e e e s e e e e nbeeeeaanes 102
RemMOtE INETACE BUGS ...t 104
INdeXing & OPLIMIZALIONeeiiiiiiiieiiiii e 105
VUINEIEDITTIES ... e 106
[SQL BUGS eeiieeiiiiiiiie ettt e e e e e et e e e e e s s annb b e e e e e e e e e anne 106
International CharaCter SEt BUGSoveeeiiiiiiiiiiicee et e e e 107
SQL PrIVIIEOES ...ttt 108
UD F BUGS oottt 108
GBEK ... e 109
GPIE 110
ST AT e 111
COUE ClEBAN-UD .ottt ettt e e e e e e eeeaanes 111
Bugs Introduced iN BELA Lc.cvvviiieeeiiciiiiieiee e e 112
17. Appendix to Firebird 2 REl@ase NOESooeiiiiiiiiiiieeee e 116
SeCUrity UpPGratde SCHPLcooiiierieeiiiiiie ettt eeeee e 116

Vii

List of Figures

8.1. Existing structure (ODS10 and [OWEF)ocuviiiiiiiiiie e 50
8.2. NEW ODSLL SIIUCLUIEeeeeiieeieiiiiieeee e e e e e sttt e e e e e e e s e e e e e e s s 50
8.3. Example data ((X) = SIzeiN X DYLES)oeviiiiiiiiie e 52
8.4, EXAMPIES ..ot a e e e e — e e e e e e e aaarrraaes 53

viii

Chapter 1

General Notes

These Notes

...have gaps, for which we apologise. They will be updated as the beta cycle proceeds.

ALERT

The on-disk structure (ODS) of the beta build is wholly incompatible with the ODS as it was in the
foregoing alphas. This means that any databases created with Alpha 1, 2 or 3 will not be usable under
beta. (Y es, you were warned!)

Note that this a'so means that an attempt to install this beta into a directory that has or had an alphain-
stall, with the security database preserved, will fail with an unreadable security database. (The Win32
uninstall, for example, preserves the security database.)

Back up your Alpha databases before installing beta if you wish to continue using them.

If you unwisely neglected to check these notes before ripping in and over-installing, you will have to
do a"rewind" in order to get back to the state where you can do the backup. That is to say, uninstall
the beta, hunt around for the apha, re-install it, back up and then re-install the beta.

Once again, we remind you that the software in this distribution of Firebird 2 is a beta version. Test it
till it chokes, but do not put it into production use and do not try it out on any databases that you care
about!

All new changes and new features are subject to further change and/or withdrawal in subsequent beta

releases, leading up to final release. Do not assume that databases created by or upgraded to the on-
disk structure of this betawill be upwardly compatible with subsequent test builds/releases.

Bug Reporting and Support

The aim of this betais to find bugs and "gotchas’. Please make a point of reading the instructions for
bug reporting in the article How to Report Bugs Effectively, at the Firebird Project website.

Follow these guidelines as you test this software:

1. Write detailed bug reports, supplying the exact server model and build number of your Firebird
kit. Also provide details of the OS platform. Include reproducible test data in your report and
post it to our Field Test Tracker. Don't post reports to the main Bug Tracker, which is for stable
releases ONLY.

2. If you want to start a discussion thread about a bug or an implementation, do so by subscribing
and posting to the Testers list or directly to the firebird-devel list.

http://firebird.sourceforge.net/index.php?op=devel&sub=qa&id=bugreport_howto
 http://sourceforge.net/tracker/?atid=593943&group_id=9028&func=browse
mailto:firebird-test-request@lists.sourceforge.net?subject=subscribe

General Notes

3. If you are a novice with Firebird and need "newbie" advice, we recommend that you don't start
your experience here. Download the latest stable v.1.5 release kit for self-teaching and use the
Firebird 1.5 Quick Start Guide and the firebird-support list to help you get started.

4. Don't use the regular bug-tracker or the firebird-support list to report bugs in the beta or to ask
for expanded details about how a new feature works.

5. Consider joining up with your regional (language) group of formal field-testers. Details and con-
tacts are in the QA section of the Firebird Developers Corner.

HAPPY TESTING!
--The Firebird Project

http://firebird.sourceforge.net/index.php?op=devel&sub=qa

Chapter 2

New In Firebird 2.0

Derived Tables
A. Brinkman

Implemented support for derived tables in DSQL (subqueries in FROM clause) as defined by
SQL200X. A derived table is a set, derived from a dynamic SELECT statement. Derived tables can be
nested, if required, to build complex queries and they can be involved in joins as though they were
normal tables or views.

More details under Derived Tablesin the DML chapter.

PSQL Now Supports Named Cursors

D. Yemanov

Multiple named (i.e. explicit) cursors are now supported in PSQL and in DSQL EXECUTE BLOCK
statements. More information in the chapter Explicit Cursors.

Reimplemented Protocols on Windows
D. Yemanov

Two significant changes have been made to the Windows-only protocols.-

Local Protocol--XNET

Firebird 2.0 has replaced the former implementation of the local transport protocol (often referred to
as |PC or IPServer) with anew one, named XNET.

It serves exactly the same goal, to provide an efficient way to connect to server located on the same
machine as the connecting client without a remote node name in the connection string. The new im-
plementation is different and addresses the known issues with the old protocol.

Like the old IPServer implementation, the XNET implementation uses shared memory for inter-

process communication. However, XNET eliminates the use of window messages to deliver attach-
ment requests and it also implements a different synchronization logic.

Benefits of the XNET Protocol over IPServer

Besides providing a more robust protocol for local clients, the XNET protocol brings some notable
benefits:

New in Firebird 2.0

e it workswith Classic Server
* it worksfor non-interactive services and terminal sessions

* it eliminates lockups when a number of simultaneous connections are attempted

Performance

The XNET implementation should be similar to the old IPServer implementation, although XNET is
expected to be dlightly faster.

Disadvantages

The one disadvantage is that the XNET and |PServer implementations are not compatible with each
other. This makes it essential that your fbclient.dll version should match the version of the server bin-
ariesyou are using (fbserver.exe or fb_inet_server.exe) exactly. It will not be possible to to establish a
local connection if this detail is overlooked. (A TCP localhost loopback connection via an ill-matched
client will still do thetrick, of course).

Change to WNET (“NetBEUI") Protocol

WNET (a.k.a. NetBEUI) protocol no longer performs client impersonation.

In al previous Firebird versions, remote requests via WNET are performed in the context of the client
security token. Since the server serves every connection according to its client security credentials,
this means that, if the client machine is running some OS user from an NT domain, that user should
have appropriate permissions to access the physical database file, UDF libraries, etc., on the server
filesystem. This situation is contrary to what is generally regarded as proper for a client-server setup
with a protected database.

Such impersonation has been removed in Firebird 2.0. WNET connections are now truly client-server
and behave the same way as TCP ones, i.e., with no presumptions with regard to the rights of OS
Users.

Reworking of Garbage Collection
V. Horsun

New GC thread implementation and combined cooperative + background activity. More information
to come.

Storing Databases on Raw Devices (POSIX Only)
E. Kunze, N. Samofatov

Y ou can now store databases on raw devices under a POSIX OS and refer to the devices using data-
base dliases. More information to come.

New in Firebird 2.0

Porting of the Services API to Classic is Complete
N. Samofatov

Porting of the Services API to Classic architecture is now complete. All Services API functions are
now available on both Linux and Windows Classic servers, with no limitations. Known issues with
GSEC error reporting in previous versions of Firebird are eliminated.

Reworking of Constraint Checking
V. Horsun

More precise checks for PK/UK/FK constraints. More information to come.

Lock Timeout for WAIT Transactions
A. Karyakin, D. Y emanov

All Firebird versions provide two transaction wait modes. NO WAIT and WAIT. NO WAIT mode
means that lock conflicts and deadlocks are reported immediately, while WAIT performs a blocking
wait which times out only when the conflicting concurrent transaction ends by being committed or
rolled back.

The new feature extends the WAIT mode by making provision to set a finite time interval to wait for
the concurrent transactions. If the timeout has passed, an error (isc_lock timeout) is reported.

Timeout intervals are specified per transaction, using the new TPB constant isc_tpb_lock_timeout in
the API or, in DSQL, the LOCK TIMEOUT <value> clause of the SET TRANSACTION statement.

New Implementation of String Search Operators
N. Samofatov

1. Theoperators now work correctly with BLOBs
2. Pattern matching now uses a single-pass Knuth-Morris-Pratt algorithm
3. Theengine no longer crasheswhen NULL is used as ESCAPE character for LIKE

More information to come.

Reworking of Updatable Views
D. Yemanov

A reworking has been done to resolve problems with views that are implicitly updatable, but still have
update triggers. This is an important change that will affect systems written to take advantage of the
undocumented [mis]behaviour in previous versions.

For details, see the notesin SQL Migration Issues in the Installation chapter of these notes.

New in Firebird 2.0

Additional Database Shutdown Modes Introduced
N. Samofatov

Single-user and full shutdown modes are implemented using new [state] parameters for the gf i x -
shut andgfi x -onl i ne commands.

Syntax Pattern

gf i x <comand> [<state>] [<options>]

<command>> ::= {-shut | -online}
<state> ::= {normal | nulti | single | full}
<options> ::= {-force <tinmeout> | -tran | -attach}

« normal state = online database

e multi state = multi-user shutdown mode (the legacy one, unlimited attachments of SY SDBA/owner
are allowed)

» gingle state = single-user shutdown (only one attachment is allowed, used by the restore process)
« full state = full/exclusive shutdown (no attachments are allowed)

For more details, refer to the section on Gfix New Shutdown Modes, in the Utilities chapter.

UDFs Improved re NULL Handling
C. Valderrama

Signalling SQL NULL
» Ability to signal SQL NULL viaaNULL pointer (see Signal SQL NULL in UDFs).

» External function library ib_udf upgraded to allow the string functions ASCII_CHAR, LOWER,
LPAD, LTRIM, RPAD, RTIM, SUBSTR and SUBSTRLEN to return NULL and have it inter-
preted correctly.

The script i b_udf _upgr ade. sgl can be applied to pre-v.2 databases that have these functions
declared, to upgrade them to work with the upgraded library. This script should be used only when
you are using the new ib_udf library with Firebird v2 and operation requests are modified to anti-
cipate nulls. (Coming in Beta 2.)

Run-time Checking for Concatenation Overflow
D. Yemanov

Compile-time checking for concatenation overflow has been replaced by run-time checking.

From Firebird 1.0 onward, concatenation operations have been checked for the possibility that the res-
ulting string might exceed the string length limit of 32,000 bytes, i.e. overflow. This check was per-
formed during the statement prepare, using the declared operand sizes and would throw an error for an
expressions such as:

New in Firebird 2.0

CAST(' que' AS VARCHAR(30000)) || CAST('rty' AS VARCHAR(30000))

From Firebird 2.0 onward, this expression throws only a warning at prepare time and the overflow
check is repeated at runtime, using the sizes of the actual operands. The result is that our example will
be executed without errors being thrown. The isc_concat_overflow exception is now thrown only for
actual overflows, thus bringing the behaviour of overflow detection for concatenation into line with
that for arithmetic operations.

Changes to Synchronisation Logic
N. Samofatov

1. Lock contention in the lock manager and in the SuperServer thread pool manager has been re-
duced significantly

2. A rare race condition was detected and fixed, that could cause Superserver to hang during re-
guest processing until the arrival of the next request

3. Lock manager memory dumps have been made more informative and OWN_hung is detected
correctly

4. Decoupling of lock manager synchronization objects for different engine instances was imple-
mented

Support for 64-bit Platforms
A. Peshkov, N. Samofatov

Firebird 2.0 will support 64-bit platforms.

Record Enumeration Limits Increased
N. Samofatov

40-bit (64-bit internally) record enumerators have been introduced to overcome the ~30GB table size
limit imposed by 32-bit record enumeration.

Debugging Improvements
Various Contributors

Improved Reporting from Bugchecks

BUGCHECK log messages now include file name and line number. (A. Brinkman)

Updated Internal Structure Reporting

New in Firebird 2.0

Routines that print out various internal structures (DSQL node tree, BLR, DY N, etc) have been up-
dated. (N. Samofatov)

New Debug Logging Facilities

Thread-safe and signal-safe debug logging facilities have been implemented. (N. Samofatov)

Improved Connection Handling on POSIX Superserver
A. Peshkov

Posix SS builds now handle SSIGTERM and SIGINT to shutdown all connections gracefully. (A.
Peshkov)

PSQL Invariant Tracking Reworked
N. Samofatov

Invariant tracking in PSQL and request cloning logic were reworked to fix a number of issues with re-
cursive procedures, for example SF bug #627057.

Invariant tracking is the process performed by the BLR compiler and the optimizer to decide whether
an "invariant" (an expression, which might be a nested subquery) is independent from the parent con-
text. It is used to perform one-time eval uations of such expressions and then cache the resuilt.

If some invariant is not determined, we lose in performance. If some variant is wrongly treated as in-
variant, we see wrong results.

Example

select * fromrdb$rel ati ons
where rdb$relation_id <
(select rdb$relation_id fromrdb$dat abase)

This query performs only one fetch from rdb$database instead of evaluating the subquery for every
row of rdb$relations.

ROLLBACK RETAIN Syntax Support

D. Yemanov

Firebird 2.0 adds an optional RETAI N clause to the DSQL ROLLBACK statement to make it consistent
with COMMIT [RETAIN].

See ROLLBACK RETAIN Syntax in the chapter about DML.

No More Registry Search on Win32 Servers
D. Yemanov

New in Firebird 2.0

The root directory lookup path has changed so that processes on the Windows servers no longer use
the Registry.

More Optimizer Improvements
A. Brinkman

Better cost-based calculation has been included in the optimizer routines.

ODS Changes

Various Contributors
The new On-Disk Structure (ODS) is ODS11.

For more information, see the chapter ODS Changes.

Chapter 3

Changes to the Firebird API
and ODS

API (Application Programming Interface)

Some needed changes have been performed in the Firebird API. They include.-

Cleanup of ibase.h
D. Yemanov, A. Peshkov

The API header file, ibase.h has been subjected to a cleanup. with the result that public headers no
longer contain private declarations.

Lock Timeout for WAIT Transactions
A. Karyakin, D. Y emanov

The new feature extends the WAIT mode by making provision to set a finite time interval to wait for
the concurrent transactions. If the timeout has passed, an error (isc_lock timeout) is reported.

Timeout intervals can now be specified per transaction, using the new TPB constant
isc_tpb_lock timeout in the API.

Note

The DSQL equivaent is implemented via the LOCK TIMEOUT <value> clause of the SET
TRANSACTION statement.

isc_dsql_info() Now Includes Relation Aliases
D. Y emanov

The function call isc_dsgl_sgl_info() has been extended to enable relation aliasesto be retrieved, if re-
quired.

Enhancement to isc_blob_lookup_desc()
A. dos Santos Fernandes

isc_blob lookup_desc() now also describes blobs that are outputs of stored procedures

10

Changesto the Firebird APl and ODS

API Identifies Client Version
N. Samofatov

C/C++ client interface version FB_API_VER is defined as 20 for Firebird 2.0 in ibase.h. More in-
formation to come.

Improved Services API

The following improvements have been added to the Services API:

Task Execution Optimized
D. Yemanov

Services are now executed as threads rather than processes on some threadable CS builds.

Brute-force Attack Protection
A. Peshkov

Information still to come.

New Function for Delivering Error Text
C. Valderrama

The new function fb_interpret() replaces the former isc_interprete() for extracting the text
for aFirebird error message from the error status vector to a client buffer.

Important

isc_interprete() is vulnerable to overruns and is deprecated as unsafe. The new function should be
used instead.

ODS (On-Disk Structure) Changes

On-disk structure (ODS) changes include the following:

New ODS Number

Firebird 2 Beta 1 creates databases with an ODS (On-Disk Structure) version of 11.

Size limit for exception messages increased
V. Horsun

Maximum size of exception messages raised from 78 to 1021 bytes.

11

Changesto the Firebird APl and ODS

New Description Field for Generators
C. Vaderrama

Added RDB$DESCRIPTION to RDB$GENERATORS, so now you can include description text
when creating generators.

New Description Field for SQL Roles
C. Vaderrama

Added RDB$DESCRIPTION and RDB$SY STEM_FLAG to RDB$ROLES to alow description text
and to flag user-defined roles, respectively.

“ODS Type” Recognition
N. Samofatov

Introduced a concept of ODS type to distinguish between InterBase and Firebird databases.

Smarter DSQL Error Reporting
C. Vaderrama

The DSQL parser will now try to report the line and column number of an incomplete statement.

New Column in RDB$Index_Segments
D. Yemanov, A. Brinkman

A new column RDBS$STATISTICS has been added to the system table RDBSINDEX_SEGMENTS
to store the per-segment selectivity values for multi-key indexes.

Note

The column of the same name in RDB$INDICES is kept for compatibility and still represents the
total index selectivity, that is used for afull index match.

Other

Thislist isnot complete. To be updated.

12

Data Definition Language
(DDL)

New and Enhanced Syntaxes

The following statement syntaxes and structures have been added to Firebird 2:

CREATE SEQUENCE

D. Yemanov

SEQUENCE has been introduced as a synonym for GENERATOR, in accordance with SQL-99. SE-
QUENCE is a syntax term described in the SQL specification, whereas GENERATOR is alegacy In-
terBase syntax term. Use of the standard SEQUENCE syntax in your applications is recommended.

A sequence generator is a mechanism for generating successive exact numeric values, one at atime. A
sequence generator is a named schema object. In dialect 3 it is a BIGINT, in dialect 1 it is an IN-
TEGER.

Syntax patterns

CREATE { SEQUENCE | GENERATOR } <nane>
DROP { SEQUENCE | GENERATOR } <nane>
SET GENERATOR <nane> TO <start_val ue>
ALTER SEQUENCE <nane> RESTART W TH <start_val ue>
GEN_I D (<name>, <increnent_val ue>)
NEXT VALUE FOR <nane>
Examples

1

CREATE SEQUENCE S_EMPLOYEE;

ALTER SEQUENCE S_EMPLOYEE RESTART W TH 0;

See also the notes about NEXT VALUE FOR.

13

Data Definition Language (DDL)

REVOKE ADMIN OPTION FROM

D. Yemanov

SYSDBA, the database creator or the owner of an object can grant rights on that object to other users.
However, those rights can be made inheritable, too. By using WITH GRANT OPTION, the grantor
gives the grantee the right to become a grantor of the same rightsin turn. This ability can be removed
by the original grantor with REVOKE GRANT OPTION FROM user.

However, there's a second form that involves roles. Instead of specifying the same rights for many
users (soon it becomes a maintenance nightmare) you can create a role, assign a package of rights to
that role and then grant the role to one or more users. Any change to the role's rights affect all those
users.

By using WITH ADMIN OPTION, the grantor (typically the role creator) gives the grantee the right
to become a grantor of the same role in turn. Until FB v2, this ability couldn't be removed unless the
original grantor fiddled with system tables directly. Now, the ability to grant the role can be removed
by the original grantor with REVOKE ADMIN OPTION FROM user.

SET/DROP DEFAULT Clauses for ALTER TABLE
C. Vdderrama

Domains allow their defaults to be changed or dropped. It seems natura that table fields can be ma-
nipulated the same way without going directly to the system tables.

Syntax Pattern

ALTER TABLE t ALTER [COLUWMN] c¢ SET DEFAULT defaul t _val ue;
ALTER TABLE t ALTER [COLUMN] c¢ DROP DEFAULT,;

Note
 Array fields cannot have adefault value.

« |f you change the type of afield, the default may remain in place. This is because afield can be
given the type of a domain with a default but the field itself can override such domain. On the
other hand, the field can be given a type directly in whose case the default belongs logically to
thefield (abeit the information is kept on an implicit domain created behind scenes).

New Syntaxes for Changing Exceptions
D. Yemanov

The DDL statements RECREATE EXCEPTION and CREATE OR ALTER EXCEPTION (feature re-
guest SF #1167973) have been implemented, alowing either creating, recreating or altering an excep-
tion, depending on whether it already exists.

RECREATE EXCEPTION

RECREATE EXCEPTION is exactly like CREATE EXCEPTION if the exception does not already
exist. If it does exist, its definition will be completely replaced, if there are no dependencies on it.

14

Data Definition Language (DDL)

CREATE OR ALTER EXCEPTION

CREATE OR ALTER EXCEPTION will create the exception if it does not already exist, or will ater
the definition if it does, without affecting dependencies.

ALTER EXTERNAL FUNCTION
C. Vaderrama

ALTER EXTERNAL FUNCTION has been implemented, to enable the ent ry_poi nt or the nod-
ul e_nane to be changed when the UDF declaration cannot be dropped due to existing dependencies.

COMMENT Statement Implemented
C. Vaderrama

The COMMENT statement has been implemented for setting metadata descriptions.

Syntax Pattern

COMMENT ON DATABASE IS {'txt"']|NULL};

COMMENT ON <basic_type> nane IS {" txt'|NULL};

COMMVENT ON COLUWN t bl vi ewnane. fieldname 1S {'txt'|NULL};
COMMENT ON PARAMETER procnane. parnane | S {'txt'| NULL};

An empty literal string " will act as NULL since the internal code (DY N in this case) works this way
with blobs.

<basi c_type>:
DOMAI N
TABLE
VI EW
PROCEDURE
TRI GGER
EXTERNAL FUNCTI ON
FI LTER
EXCEPTI ON
GENERATOR
SEQUENCE
| NDEX
ROLE
CHARACTER SET
COLLATI ON
SECURI TY CLASS!

Tnot implemented, because this type is hidden.

Extensions to CREATE VIEW Specification
D. Y emanov

FIRST/SKIP and ROWS syntaxes and PLAN and ORDER BY clauses can now be used in view spe-
cifications.

15

Data Definition Language (DDL)

From Firebird 2.0 onward,, views are treated as fully-featured SELECT expressions. Consequently,
the clauses FIRST/SKIP, ROWS, UNION, ORDER BY and PLAN are now allowed in views and
work as expected.

Syntax
For syntax details, refer to Select Statement & Expression Syntax in the chapter about DML.

RECREATE TRIGGER Statement Implemented

D. Yemanov

The DDL statement RECREATE TRIGGER statement is now available in DDL. Semantics are the
same as for other RECREATE statements.

Usage Enhancements

The following changes will affect usage or existing, pre-Firebird 2 workarounds in existing applica
tions or databases to some degree.

Creating Foreign Key Constraints No Longer Requires Exclusive Access
V. Horsun

Now it is possible to create foreign key constraints without needing to get an exclusive lock on the
whole database.

Changed Logic for View Updates

Apply NOT NULL constraints to base tables only, ignoring the ones inherited by view columns from
domain definitions.

Declare BLOB Subtypes by Known Descriptive Identifiers
A. Peshkov, C. Valderrama

Previously, the only allowed syntax for declaring a blob filter was:

declare filter <nane> input_type <nunmber> out put_type <nunber>
entry_point <function_in_library> nodul e_nane <library_nane>;

The aternative new syntax is:

declare filter <name> input_type <mmenoni ¢c> output type <menoni c>
entry_point <function_in_library> nodul e_nanme <library_nane>;

where <mnemonic> refers to a subtype identifier known to the engine.

Initially they are binary, text and others mostly for internal usage, but an adventurous user could write
anew mnemonic in rdb$types and use it, since it is parsed only at declaration time. The engine keeps

16

Data Definition Language (DDL)

the numerical value. Remember, only negative subtype values are meant to be defined by users.

To get the predefined types, do
sel ect RDB$TYPE, RDB$TYPE NAME, RDB$SYSTEM FLAG

from rdb$t ypes
where rdb$fiel d_name = ' RDB$FI ELD SUB TYPE' ;

RDBSTYPE RDB$TYPE_NAME RDB$SYSTEM FLAG
0 BI NARY 1
1 TEXT 1
2 BLR 1
3 ACL 1
4 RANGES 1
5 SUMVARY 1
6 FORMAT 1
7 TRANSACTI ON_DESCRI PTI ON 1
8 EXTERNAL_FI LE_DESCRI PTI ON 1

Examples

Origina declaration:

declare filter pesh input_type O output _type 3
entry point 'f' nodule_name 'p';

Alternative declaration:

declare filter pesh input_type binary output_type acl
entry_point 'f' nodul e_name 'p';

Declaring aname for a user defined blob subtype (remember to commit after the insertion):

SQ> insert into rdb$types
CON> val ues(' RDB$FI ELD SUB _TYPE' , -100, 'XDR, 'test type', 0);
SQ.> commit;
SQL> declare filter pesh2 input_type xdr output_type text
CON> entry_point 'p2° nodul e_nane 'p';
SQ.> show filter peshz;
BLOB Filter: PESH2
I nput subtype: -100 Qutput subtype: 1
Filter library is p
Entry point is p2

17

Data Manipulation Language
(DML)

New and Extended DSQL Syntaxes

In this section are details of DML language statements or constructs that have been added to the
DSQL language set in Firebird 2.0.

EXECUTE BLOCK Statement

V. Horsun

The SQL language extension EXECUTE BLOCK makes "dynamic PSQL" available to SELECT spe-
cifications. It has the effect of allowing a self-contained block of PSQL code to be executed in dy-
namic SQL asif it were a stored procedure.

Syntax pattern

EXECUTE BLOCK [(param datatype = ?, paramdatatype = ?, ...)]
[RETURNS (param dat at ype, param datatype, ...) }

AS

[DECLARE VARI ABLE var datatype; ...]

BEG N

END

For the client, the call i sc_dsql _sql _i nf o with the parameteri sc_i nfo_sqgl _stm _type re-
turns

* isc_info_sqgl _stnt_sel ect if the block has output parameters. The semantics of a cal is
similar to a SELECT query: the client has a cursor open, can fetch data from it, and must close it
after use.

* isc_info_sqgl _stnt_exec_procedur e if the block has no output parameters. The semantics
of acal issimilar to an EXECUTE query: the client has no cursor and execution continues until it
reaches the end of the block or isterminated by a SUSPEND.

The client should preprocess only the head of the SQL statement or use '? instead of ":' as the paramet-
er indicator because, in the body of the block, there may be references to local variables or arguments
with a colon prefixed.

Example

Theuser SQL is

18

Data Manipulation Language (DML)

EXECUTE BLOCK (X | NTEGER = : X)
RETURNS (Y VARCHAR)

AS
DECLARE V | NTEGER,
BEG N
INSERT INTO T(...) VALUES (... :X ...);
SELECT ... FROM T INTO :Y;
SUSPEND;
END

The preprocessed SQL is

EXECUTE BLOCK (X | NTEGER = ?)
RETURNS (Y VARCHAR)

AS
DECLARE V | NTEGER,
BEG N
INSERT INTO T(...) VALUES (... :X ...);
SELECT ... FROM T INTO :Y;
SUSPEND;
END

Derived Tables
A. Brinkman

Implemented support for derived tables in DSQL (subqueries in FROM clause) as defined by
SQL200X. A derived tableis a set, derived from a dynamic SELECT statement. Derived tables can be
nested, if required, to build complex queries and they can be involved in joins as though they were
normal tables or views.

Syntax Pattern

SELECT
<sel ect |ist>
FROM
<table reference |ist>

<table reference list> ::= <table reference> [{<comma> <table reference>}...

<tabl e reference> :: =
<tabl e primary>
| <joined table>

<table primary> ::=
<table> [[AS] <correlation nane>]
| <derived table>
<derived table> ::=
<query expression> [[AS] <correlation name>]
[<left paren> <derived columm list> <right paren>]

<derived colum list> ::= <col um nanme> [{<comma> <col um name>}...]

Examples

a) Simple derived table:

19

Data Manipulation Language (DML)

SELECT
*

FROM
(SELECT
RDBSRELATI ON_NAVE, RDB$RELATI ON_| D
FROM
RDBSRELATI ONS) AS R (RELATI ON_NAME, RELATI ON_I D)

b) Aggregate on a derived table which also contains an aggregate

SELECT
DT. FI ELDS,
Count (*)
FROM
(SELECT
R. RDBSRELATI ON_NANME,
Count (*)
FROM
RDB$RELATI ONS R
JO N RDBSRELATI ON_FI ELDS RF ON (RF. RDBSRELATI ON_NAME = R RDBSRELATI ON_NAME)
GROUP BY
R RDBSRELATI ON_NAME) AS DT (RELATI ON_NAME, FI ELDS)
GROUP BY
DT. FI ELDS

¢) UNION and ORDER BY example:

SELECT
DT. *
FROM
(SELECT
R RDBSRELATI ON_NANE
R RDB$RELATI ON_| D
FROM
RDB$SRELATI ONS R
UNI ON ALL
SELECT
R RDBSOWNER NAVE
R RDBSRELATI ON | D
FROM
RDB$SRELATI ONS R
ORDER BY
2) AS DT
WWHERE
DT. RDBSRELATI ON_I D <= 4

Pointsto Note

» Every column in the derived table must have a name. Unnamed expressions like constants should
be added with an alias or the column list should be used.

e The number of columns in the column list should be the same as the number of columns from the
query expression.

» The optimizer can handle a derived table very efficiently. However, if the derived tableisinvolved
in an inner join and contains a subquery, then no join order can be made.

20

Data Manipulation Language (DML)

ROLLBACK RETAIN Syntax

D. Yemanov
The ROLLBACK RETAIN statement is now supported in DSQL.

A “rollback retaining” feature was introduced in InterBase 6.0, but this rollback mode could be used
only viaan API call to isc_rollback_retaining(). By contrast, “commit retaining” could be used either
viaan API call toisc_commit_retaining() or by usingaDSQL COVMM T RETAI N statement.

Firebird 2.0 adds an optional RETAI N clause to the DSQL ROLLBACK statement to make it consistent
with COMMIT [RETAIN].

Syntax pattern: follows that of COMMIT RETAIN.

ROWS Syntax
D. Yemanov

ROWS syntax is used to limit the number of rows retrieved from a select expression. For an upper-
most-level select statement, it would specify the number of rows to be returned to the host program. A
more understandable alternative to the FIRST/SKIP clauses, the ROWS syntax accords with the latest
SQL standard and brings some extra benefits. It can be used in unions, any kind of subquery and in
UPDATE or DELETE statements.

It isavailablein both DSQL and PSQL.

Syntax Pattern

SELECT ...
[ORDER BY <expr _|i st>]
ROA5 <expr 1> [TO <expr2>]

Examples

1

SELECT * FROM T1
UNI ON ALL

SELECT * FROM T2
ORDER BY COL
ROANS 10 TO 100

2,
SELECT COL1, COL2,
(SELECT COL3 FROM T3 ORDER BY COL4 DESC RO/S 1)
FROM T4
3.

DELETE FROM T5
ORDER BY COL5

21

Data Manipulation Language (DML)

RONS 1

Pointsto Note

1. When <expr2> is omitted, then ROWS <exprl> is semantically equivalent to FIRST <exprl>.
When both <exprl> and <expr2> are used, then ROWS <exprl> TO <expr2> means the same
as FIRST (<expr2> - <exprl> + 1) SKIP (<exprl> - 1)

2. Thereisnothing that is semantically equivalent to a SKIP clause used without a FIRST clause.

Enhancements to UNION Handling

The rulesfor UNION queries have been improved as follows:

UNION DISTINCT Keyword Implementation
D. Yemanov

UNION DISTINCT is now alowed as a synonym for simple UNION, in accordance with the SQL-99
specification. It is a minor change: DISTINCT is the default mode, according to the standard.
Formerly, Firebird did not support the explicit inclusion of the optional keyword DISTINCT.

Syntax Pattern

UNI ON [{DI STINCT | ALL}]

Improved Type Coercion in UNIONs
A. Brinkman

Automatic type coercion logic between subsets of a union is now more intelligent. Resolution of the
data type of the result of an aggregation over values of compatible data types, such as case expres-
sions and columns at the same position in aunion query expression, now uses smarter rules.
Syntax Rules
Let DTS be the set of data types over which we must determine the final result data type.
1. All of the datatypesin DTS shall be comparable.
2. Cas=
a If any of the datatypesin DTSis character string, then:
i. If any of the data typesin DTS is variable-length character string, then the result data
type is variable-length character string with maximum length in characters equal to the

largest maximum amongst the data typesin DTS.

ii. Otherwise, the result data type is fixed-length character string with length in characters
equal to the maximum of the lengths in characters of the datatypesin DTS.

iii. The characterset/collation is used from the first character string datatypein DTS.

22

Data Manipulation Language (DML)

b. If al of the data typesin DTS are exact numeric, then the result data type is exact numeric
with scale equal to the maximum of the scales of the data types in DTS and the maximum
precision of all datatypesin DTS.

Note

NOTE :: Checking for precision overflows is done at run-time only. The developer
should take measures to avoid the aggregation resolving to a precision overflow.

c. If any datatypein DTS is approximate numeric, then each datatype in DTS shall be numer-
ic else an error isthrown.

d. If some datatype in DTS is a date/time data type, then every data type in DTS shall be a
date/time data type having the same date/time type.

e. |If any datatypein DTS is BLOB, then each data type in DTS shall be BLOB and all with
the same sub-type.

UNIONs Allowed in ANY/ALL/IN Subqueries
D. Yemanov

The subquery element of an ANY, ALL or IN search may now be a UNION query.

IIF Expression Syntax Added
O.Loa

Il F (<search_condition> <valuel> <val ue2>)
isimplemented as a shortcut for

CASE
WHEN <sear ch_condi ti on> THEN <val uel>
ELSE <val ue2>

END

It returns the value of the first sub-expression if the given search condition evaluates to TRUE, other-
wiseit returns a value of the second sub-expression.

Example

SELECT Il F(VAL > 0, VAL, -VAL) FROM OPERATI ON

CAST() Behaviour Improved
D. Yemanov

The infamous “Datatype unknown” error (SF Bug #1371274) when attempting some castings has
been eliminated. It is now possible to use CAST to advise the engine about the data type of a paramet-
er.

23

Data Manipulation Language (DML)

Example

SELECT CAST(? AS INT) FROM RDB$DATABASE

Built-in Function SUBSTRING() Enhanced
O. Loa D. Yemanov

The built-in function SUBSTRING() can now take arbitrary expressionsin its parameters.

Formerly, the inbuilt SUBSTRING() function accepted only constants as its second and third argu-
ments (start position and length, respectively). Now, the arguments can be anything that resolvesto a
value, including host parameters, function results, expressions, subqueries, etc.

Note

The length of the resulting column is the same as the length of the first argument. This means that,
in the following

x = varchar (50);
substring(x from1 for 1);

the new column has alength of 50, not 1. (Thank the SQL standards committee!)

Enhancements to NULL Logic

The following features involving NULL in DSQL have been implemented:

(NULL=NULL) Can Return True for DISTINCT Test
O. Loa D. Yemanov

A new equivalence predicate behaves exactly like the equality/inequality predicates, but tests whether
one value is distinct from the other. Thus, it treats (NULL = NULL) as TRUE. It is available in both
DSQL and PSQL.

Syntax Pattern
<val ue> | S [NOT] DI STI NCT FROM <val ue>

Examples

1

SELECT * FROM T1
JON T2
ON T1. NAME |'S NOT DI STI NCT FROM T2. NAME;

24

Data Manipulation Language (DML)

SELECT *

FROM T

VHERE T. MARK | S DI STI NCT FROM 'test"';

Note

Pointsto note

1

2.

Because the DISTINCT predicate considers that two NULL values are not distinct, it never
evaluates to the truth value UNKNOWN. Like the IS [NOT] NULL predicate, it can only be
True or False.

The NOT DISTINCT predicate can be optimized using anindex, if oneis available.

NULL Comparison Rule Relaxed

D. Yemanov

A NULL literal can now be treated as avalue in al expressions without returning a syntax error. Y ou
may now specify expressions such as

All such expressions evaluate to NULL. The change does not alter nullability-aware semantics of
the engine, it simply relaxes the syntax restrictions alittle.

A = NULL
B > NULL
A + NULL
B || NULL
Note

NULLs Ordering Changed to Comply with Standard

N. Samofatov

Placement of nullsin an ordered set has been changed to accord with the SQL standard that null or-
dering be consistent, i.e. if ASC[ENDING] order puts them at the bottom, then DESC[ENDING] puts
them at the top; or vice-versa. This applies only to databases created under the new on-disk structure,
since it needs to use the index changes in order to work.

Examples

Dat abase: proc.fdb

create table gnull(a int);

insert into gnull values(null);

insert into gnull values(1);

select a fromgnull order by a;
A

sQL>
sQL>
sQL>
sQL>

select a fromgnull order by a asc;

25

Data Manipulation Language (DML)

<nul | >
1

SQL> select a fromgnull order by a desc;

<nul | >

SQL> select a fromgnull order by a asc nulls first;

<nul | >
1

SQ.> select a fromgnull order by a asc nulls |ast;

SQL> select a fromgnull order by a desc nulls |ast;

<nul | >

SQ.> select a fromgnull order by a desc nulls first;

CROSS JOIN is Now Supported

D. Yemanov

CROSS JOIN is now supported. Logicaly, this syntax pattern:
A CROCSS JON B

is equivalent to either of the following:
AINNERJONBON1 =1

or, smply:

FROM A, B

26

Data Manipulation Language (DML)

Subqueries and INSERT Statements Can Now Accept UNION Sets

D. Yemanov

SELECT specifications used in subqueries and in INSERT INTO <insert-specification> SELECT..
statements can now specify a UNION set.

New Extensions to UPDATE and DELETE Syntaxes
O.Loa

ROWS specifications and PLAN and ORDER BY clauses can now be used in UPDATE and DE-
LETE statements.

Users can now specify explicit plans for UPDATE/DELETE statements in order to optimize them
manually. It is also possible to limit the number of affected rows with a ROWS clause, optionally
used in combination with an ORDER BY clause to have a sorted recordset.

Syntax Pattern

UPDATE ... SET ... WHERE ...
[PLAN <pl an itens>]

[ORDER BY <val ue |ist>]

[ROAS <val ue> [TO <val ue>]]

or

DELETE ... FROM ...

[PLAN <pl an itens>]

[ORDER BY <val ue |ist>]

[RONS <val ue> [TO <val ue>]]

New Context Variables

A number of new facilities have been added to extend the context information that can be retrieved:

New Context Variable ROW_COUNT
D. Yemanov

ROW_COUNT can now return the number of rows returned by a SELECT statement. More informa-
tion to come.

Sub-second Values Enabled for Time and DateTime Variables
D. Yemanov

CURRENT_TIMESTAMP, 'NOW' Now Return Milliseconds

The context variable CURRENT_TIMESTAMP and the date/time literal 'NOW' will now return the
sub-second time part in milliseconds.

27

Data Manipulation Language (DML)

Seconds Precision Enabled for CURRENT_TIME and CURRENT_TIMESTAMP
CURRENT_TIME and CURRENT_TIMESTAMP now optionally allow seconds precision
The featureis available in both DSQL and PSQL.

Syntax Pattern

CURRENT_TI ME [(<seconds precision>)]
CURRENT_TI MESTAMP [(<seconds preci si on>)]

Examples

1. SELECT CURRENT_TI ME FROM RDB$DATABASE;
2. SELECT CURRENT_TI ME(3) FROM RDB$DATABASE;
3. SELECT CURRENT_TI MESTAMP(3) FROM RDB$DATABASE;

Note

1. The maximum possible precision is 3 which means accuracy of 1/1000 second (one milli-
second). This accuracy may be improved in the future versions.

2. If no seconds precision is specified, the following values are implicit:
e Ofor CURRENT_TIME

» 3for CURRENT_TIMESTAMP

New System Functions to Retrieve Context Variables
N. Samofatov

Values of context variables can now be obtained using the system functions RDB$GET_CONTEXT
and RDB$SET_CONTEXT. These new built-in functions give access through SQL to some informa-
tion about the current connection and current transaction. They also provide a mechanism to retrieve
user context data and associate it with the transaction or connection.

Syntax Pattern

RDB$SET CONTEXT(<nanespace>, <variabl e>, <val ue>)
RDB$CGET _CONTEXT(<nanespace>, <vari able>)

These functions are really a form of external function that exists inside the database intead of being
called from a dynamically loaded library. The following declarations are made automatically by the
engine at database creation time:

Declaration

DECLARE EXTERNAL FUNCTI ON RDB$GET_CONTEXT
VARCHAR(80) ,
VARCHAR(80)

RETURNS VARCHAR(255) FREE | T;

28

Data Manipulation Language (DML)

DECLARE EXTERNAL FUNCTI ON RDB$SET CONTEXT
VARCHAR(80) ,
VARCHAR(80) ,
VARCHAR(255)

RETURNS | NTEGER BY VALUE;

Usage

RDB$SET_CONTEXT and RDB$GET_CONTEXT set and retrieve the current value of a context
variable. Groups of context variables with similar properties are identified by Namespace identifiers.
The namespace determines the usage rules, such as whether the variables may be read and written to,
and by whom.

Note

Namespace and variable names are case-sensitive.

 RDB$GET_CONTEXT retrieves current value of a variable. If the variable does not exist in
namespace, the function returns NULL.

+ RDBS$SET_CONTEXT sets a vaue for specific variable, if it is writable. The function returns a
value of 1 if the variable existed before the call and O otherwise.

+ Todelete avariable from a context, set itsvalueto NULL.

Pre-defined Namespaces
A fixed number of pre-defined namespacesis available:
USER_SESSION

Offers access to session-specific user-defined variables. You can define and set values for variables
with any name in this context.

USER_TRANSACTION

Offers similar possibilities for individual transactions.
SYSTEM

Provides read-only access to the following variables:

* CLIENT_ADDRESS :: The wire protocol address of the remote client, represented as a string. The
value is an IP address in form "xxx.xxx.xxx.xxx" for TCPv4 protocol; the local process ID for
XNET protocol; and NULL for any other protocol.

 DB_NAME :: Canonical name of the current database. It is either the alias name (if connection via
file names is disallowed DatabaseAccess = NONE) or, otherwise, the fully expanded database file
name.

* ISOLATION_LEVEL :: Theisolation level of the current transaction. The returned value will be
one of "READ COMMITTED", "SNAPSHOT", "CONSISTENCY".

« TRANSACTION_ID :: The numeric ID of the current transaction. The returned value is the same
aswould be returned by the CURRENT_TRANSACTION pseudo-variable.

29

Data Manipulation Language (DML)

» SESSION_ID :: The numeric ID of the current session. The returned value is the same as would be
returned by the CURRENT_CONNECTION pseudo-variable.

* CURRENT_USER :: The current user. The returned value is the same as would be returned by the
CURRENT_USER pseudo-variable or the predefined variable USER.

e CURRENT _ROLE :: Current role for the connection. Returns the same vaue as the CUR-
RENT_ROLE pseudo-variable.

Notes

To avoid DoS attacks against the Firebird Server, the number of variables stored for each transaction
or session context is limited to 1000.

Example of Use

set term?*;
create procedure set_context(User_ID varchar(40), Trn_ID integer) as
begi n
RDB$SET_CONTEXT(' USER_TRANSACTION', 'Trn_ID, Trn_ID);
RDB$SET_CONTEXT(' USER_TRANSACTION', 'User_ID, User_ID);
end *

create table journal (
jrn_id integer not null primry key,
j rn_lastuser varchar(40),
j rn_l astaddr varchar(255),
jrn_lasttransaction integer

)I\

CREATE TRI GGER Ul _JOURNAL FOR JOURNAL AFTER | NSERT OR UPDATE
as
begi n
new. jrn_lastuser = rdb$get context (' USER TRANSACTION , 'User ID);
new. j rn_|l astaddr = rdb$get _context (' SYSTEM, ' CLI ENT_ADDRESS');
new.jrn_lasttransacti on = rdb$get context (' USER TRANSACTION , 'Trn_ID);
end "
comit ~
execute procedure set_context('skidder', 1) ~

insert into journal (jrn_id) values(0) *
set term ;"

Since rdb$set_context returns 1 or zero, it can be made to work with asimple SELECT statement.

Example

SQ > sel ect rdb$set _context (' USER_SESSION, 'Nickolay', 'ru")
CNT> from rdb$dat abase;

0 means not defined already; we have set it to 'ru’

SQL> sel ect rdb$set_context (' USER SESSION , 'N ckolay', 'ca')
CNT> from rdb$dat abase;

30

Data Manipulation Language (DML)

1 means it was defined already; we have changed it to 'ca

SQL> sel ect rdb$set_context (' USER _SESSI ON' , ' N ckol ay', NULL)
CNT> from rdb$dat abase,;

1 saysit existed before; we have changed it to NULL, i.e. undefined it.

SQL> sel ect rdb$set context (' USER SESSI ON', ' N ckolay', NULL)
CNT> from rdb$dat abase;

0, since nothing actually happened this time: it was aready undefined .

Improvements in Handling User-specified Query Plans
D. Y emanov

1. Plan fragments are propagated to nested levels of joins, enabling manual optimization of com-
plex outer joins

2. A user-supplied plan will be checked for correctnessin outer joins

3. Short-circuit optimization for user-supplied plans has been added

4. A user-specified access path can be supplied for any SELECT-based statement or clause
Syntax rules

The following schema describing the syntax rules should be helpful when composing plans.

PLAN ({ <streamretrieval > | <sorted streans> | <joined_ streanms> })

<streamretrieval > ::= { <natural _scan> | <indexed_retrieval>
<navi gati onal _scan> }

<natural scan> ::= <stream alias> NATURAL

<indexed_retrieval > ::= <stream al i as> | NDEX (<i ndex_nane>
[, <index_name> ...])

<navi gational _scan> ::= <stream al i as> ORDER <i ndex_nane>
[NDEX (<index_nane> [, <index_name> ...])]

<sorted_streans> ::= SORT (<streamretrieval >)

31

Data Manipulation Language (DML)

<joined_streans> ::= JON (<streamretrieval > <streamretrieval >
[, <streamretrieval > ...]
| [SORT] MERGE (<sorted_streans>, <sorted_streans>)

Details

Natural scan means that all rows are fetched in their natural storage order. Thus, al pages must be
read before search criteria are validated.

Indexed retrieval uses an index range scan to find row ids that match the given search criteria. The
found matches are combined in a sparse bitmap which is sorted by page numbers, so every data page
will be read only once. After that the table pages are read and required rows are fetched from them.

Navigational scan uses an index to return rows in the given order, if such an operation is appropriate.-

» Theindex b-tree iswalked from the leftmost node to the rightmost one.

» |f any search criterion is used on a column specified in an ORDER BY clause, the navigation is
limited to some subtree path, depending on a predicate.

 If any search criterion is used on other columns which are indexed, then a range index scan is per-
formed in advance and every fetched key has its row id validated against the resulting bitmap.
Then adata page is read and the required row is fetched.

Note

Note that a navigational scan incurs random page 1/0, as reads are not optimized.

A sort operation performs an external sort of the given stream retrieval.

A join can be performed either via the nested loops algorithm (JOIN plan) or via the sort merge al-
gorithm (MERGE plan).-

* Aninner nested loop join may contain as many streams as are required to be joined. All of them
are equivalent.

» An outer nested loops join aways operates with two streams, so you'll see nested JOIN clauses in
the case of 3 or more outer streams joined.

A sort merge operates with two input streams which are sorted beforehand, then merged in a single
run.

Examples

SELECT RDB$RELATI ON_NAME

FROM RDB$RELATI ONS

VWHERE RDB$RELATI ON_NAME LI KE ' RDB$%
PLAN (RDBSRELATI ONS NATURAL)

ORDER BY RDB$RELATI ON_NAME

SELECT R RDB$RELATI ON_NAME, RF. RDB$FI ELD_NANVE
FROM RDB$RELATI ONS R

JO N RDB$RELATI ON_FI ELDS RF

ON R. RDB$SRELATI ON_NAVE = RF. RDBSRELATI ON_NANE
PLAN MERGE (SORT (R NATURAL), SORT (RF NATURAL))

32

Data Manipulation Language (DML)

Notes

1. A PLAN clause may be used in al select expressions, including subqueries, derived tables and
view definitions. It can be also used in UPDATE and DELETE statements, because they're im-
plicitly based on select expressions.

2. If aPLAN clause contains some invalid retrieval description, then either an error will be returned
or this bad clause will be silently ignored, depending on severity of the issue.

3. ORDER <navigationa_index> INDEX (<filter_indices>) kind of plan is reported by the engine
and can be used in the user-supplied plans starting with FB 2.0.

Improvements in Sorting
A. Brinkman

Some useful improvements have been made to SQL sorting operations:

Order By or Group By <alias-name>

Column aliases are now allowed in both these clauses.

Examples:

1. ORDERBY
SELECT RDB$SRELATION ID AS ID
FROM RDB$RELATI ONS
CRDER BY I D

2. GROUPBY

SELECT RDB$RELATI ON_NAVE AS | D, COUNT(*)
FROM RDB$RELATI ON_FT ELDS
GROUP BY ID

GROUP BY Arbitrary Expressions
A GROUP BY condition can how be any valid expression.

Example

" GROUP BY
SUBSTRI NG(CAST((A * B) / 2 AS VARCHAR(15)) FROM 1 FOR 2)

Order SELECT * Sets by Degree Number

Order by degree (ordinal column position) now works on aselect * list.

33

Data Manipulation Language (DML)

Example

SELECT *
FROM RDB$RELATI ONS
ORDER BY 9

NEXT VALUE FOR Expression Syntax

D. Yemanov

Added SQL-99 compliant NEXT VALUE FOR <sequence nhame> expression as a synonym for
GEN_ID(<generator-name>, 1), complementing the introduction of CREATE SEQUENCE syntax as
the SQL standard equivalent of CREATE GENERATOR.

Examples

1

SELECT GEN_|I D(S _EMPLOYEE, 1) FROM RDB$DATABASE;

I NSERT | NTO EMPLOYEE (1 D, NAMNE)
VALUES (NEXT VALUE FOR S_EMPLOYEE, 'John Smith');

Note

1. Currently, increment ("step") values not equal to 1 (one) can be used only by caling the
GEN_ID function. Future versions are expected to provide full support for SQL-99 sequence
generators, which alows the required increment values to be specified at the DDL level. Un-
less there is a vital need to use a step value that is not 1, use of a NEXT VALUE FOR value
expression instead of the GEN_ID function is recommended.

2. GEN_ID(<name>, 0) alows you to retrieve the current sequence value, but it should never be
used in insert/update statements, as it produces a high risk of uniqueness violations in a concur-
rent environment.

RETURNING Clause for Insert Statements
D. Yemanov

The RETURNING clause syntax has been implemented for the INSERT statement, enabling the re-
turn of aresult set from the INSERT statement. The set contains the column values actually stored.

Most common usage would be for retrieving the value of the primary key generated inside a BE-
FORE-trigger.

Availablein DSQL and PSQL.

Syntax Pattern

I NSERT INTO ... VALUES (...) [RETURNI NG <col urm_list> [INTO <variable |ist>]]

34

Data Manipulation Language (DML)

Example(s)

1.

I NSERT INTO T1 (F1, F2)
VALUES (:F1, :F2)
RETURNING F1, F2 INTO :V1, :V2;

I NSERT | NTO T2 (F1, F2)
VALUES (1, 2)
RETURNI NG | D | NTO : PK;

Note

1. ThelINTO part (i.e. the variable list) isalowed in PSQL only (to assign local variables) and re-
jected in DSQL.

2. InDSQL, values are being returned within the same protocol roundtrip as the INSERT itself is
executed.

3. If the RETURNING clause is present, then the statement is described as
isc_info_sgl_stmt_exec procedure by the API (instead of isc_info_sgl_stmt_insert), so the ex-
isting connectivity drivers should support this feature automagically.

4. Any explicit record change (update or delete) performed by AFTER-triggers is ignored by the
RETURNING clause.

5. Cursor based inserts (INSERT INTO ... SELECT ... RETURNING ...) are not supported.

6. Thisclause can return table column values or arbitrary expressions.

DSQL parsing of table aliases is stricter

A. Brinkman

Alias handling and ambiguous field detecting have been improved. In summary:

1. When atable dlias is provided for a table, either that alias, or no aias, must be used. It is no
longer valid to supply only the table name.

2. Ambiguity checking now checks first for ambiguity at the current level of scope, making it valid
in some conditions for columns to be used without qualifiers at a higher scope level.

Examples

1. Whenanaliasis present it must be used; or no diasat all is allowed.

a Thisquery wasalowed in FB1.5 and earlier versions:

SELECT
RDB$RELATI ONS. RDB$RELATI ON_NANME

35

Data Manipulation Language (DML)

FROM
RDBSRELATI ONS R

but will now correctly report an error that the field
"RDB$RELATIONS.RDB$RELATION_NAME" could not be found.

Use this (preferred):

SELECT

R. RDB$SRELATI ON_NAME
FROM

RDBSRELATI ONS R

or this statement:

SELECT

RDB$RELATI ON_NAME
FROM

RDBSRELATI ONS R

The statement below will now correctly use the FieldID from the subquery and from the up-
dating table:

UPDATE
Tabl eA
SET
Fi el dA = (SELECT SUM A. Fi el dB) FROM Tabl eA A
VWHERE A. Fi el dl D = Tabl eA. Fi el dI D)

Note

In Firebird it is possible to provide an alias in an update statement, but many other data-
base vendors do not support it. These SQL statements will improve the interchangeabil-
ity of Firebird's SQL with other SQL database products.

This example did not run correctly in Firebird 1.5 and earlier:

SELECT
RDBSRELATI ONS. RDBSRELATI ON_NANME,
R2. RDBSRELATI ON_NAME
FROM
RDBSRELATI ONS
JO N RDBSRELATI ONS R2 ON
(R2. RDB$SRELATI ON_NAME = RDB$RELATI ONS. RDBSRELATI ON_NANE)

If RDB$RELATIONS contained 90 records, it would return 90 * 90 = 8100 records, but in
Firebird 2 it will correctly return 90 records.

Thisfailed in Firebird 1.5, but is possible in Firebird 2:

SELECT

36

Data Manipulation Language (DML)

(SELECT RDB$RELATI ON_NAME FROM RDB$DATABASE)
FROM
RDBSRELATI ONS

b. Ambiguity checking in subqueries: the query below would run in Firebird 1.5 without re-
porting an ambiguity, but will report it in Firebird 2:

SELECT
(SELECT
FIRST 1 RDB$RELATI ON_NAME
FROM
RDB$RELATI ONS R1
JO N RDB$RELATI ONS R2 ON
(R2. RDB$SRELATI ON_NAVE = R1. RDB$RELATI ON_NAME))
FROM

RDB$DATABASE

SELECT Statement & Expression Syntax

Dmitry Y emanov
About the semantics
* A select statement is used to return data to the caller (PSQL module or the client program)

» Select expressions retrieve parts of data that construct columns that can be in either the final result
set or in any of the intermediate sets. Select expressions are also known as subqueries.

Syntax rules

<sel ect statement> ::=
<sel ect expression> [FOR UPDATE] [W TH LOCK]

<sel ect expression> ::=
<query specification> [UNION [{ALL | DI STINCT}] <query specification>]

<query specification> ::=
SELECT [FI RST <val ue>] [SKIP <val ue>] <select list>
FROM <t abl e expression |ist>
WHERE <search condition>
GROUP BY <group value list>
HAVI NG <group condition>
PLAN <plan itemlist>
ORDER BY <sort value list>
ROAS <val ue> [TO <val ue>]

<tabl e expression> ::=
<tabl e nane> | <joined table> | <derived table>

<joined table> ::=
{<cross join> | <qualified join>}

<Cross join> ::=
<t abl e expressi on> CROSS JAO N <tabl e expressi on>

<qualified join> ::=
<tabl e expression> [{INNER | {LEFT | RIGHT | FULL} [QUTER]}] JO N <table expres:s
ON <join condition>

37

Data Manipulation Language (DML)

<derived table> ::=
"(' <select expression> ')’
Conclusions

» FOR UPDATE mode and row locking can only be performed for afinal dataset, they cannot be ap-
plied to a subquery

» Unionsare alowed inside any subquery
» Clauses FIRST, SKIP, PLAN, ORDER BY, ROWS are alowed for any subquery
Notes

» Either FIRST/SKIP or ROWS is alowed, but a syntax error is thrown if you try to mix the syn-
taxes

* AnINSERT statement accepts a select expression to define a set to be inserted into atable. Its SE-
LECT part supports all the features defined for select statments/expressions

» UPDATE and DELETE statements are always based on an implicit cursor iterating through its tar-
get table and limited with the WHERE clause. Y ou may also specify the final parts of the select ex-
pression syntax to limit the number of affected rows or optimize the statement.

Clauses allowed at the end of UPDATE/DELETE statements are PLAN, ORDER BY and ROWS.

38

Chapter 6

New Reserved Words and
Changes>

The following keywords have been added, or have changed status, since Firebird 1.5. Those marked
with an asterisk (*) are not present in the SQL standard.

Newly Reserved Words

Bl T_LENGTH
BOTH

CHAR LENGTH
CHARACTER _LENGTH
CLOSE

CROSS

FETCH

LEADI NG

LONER
OCTET_LENGTH
OPEN

ROAB

TRAI LI NG

TRI M

Changed from Non-reserved to Reserved

USI NG

Keywords Added as Non-reserved

BACKUP *
BLOCK *
COLLATI ON
COMMENT *

DI FFERENCE *
I1F *

NEXT
SCALAR_ARRAY *
SEQUENCE
RESTART
RETURNI NG *

39

New Reserved Words and Changes>

Keywords No Longer Reserved

ACTI ON
RESTRI CT
W\EEKDAY *
CASCADE
ROLE
YEARDAY *
FREE IT *
TYPE

No Longer Reserved as Keywords

BASENAME *
GROUP_COMWM T_WAI T *
NUM LOG BUFS *
CACFE *

LOGFI LE *

RAW PARTI Tl ONS *
CHECK_POl NT_LEN *
LOG BUF_SI ZE *

40

Chapter 7

Stored Procedure Language

(PSQL)

PSQL Enhancements

The following enhancements have been made to the PSQL language extensions for stored procedures
and triggers:

Explicit Cursors
D. Yemanov

It is now possible to declare and use multiple cursors in PSQL. Explicit cursors are available in a
DSQL EXECUTE BLOCK structure aswell asin stored procedures and triggers.

Syntax pattern

DECLARE [VARI ABLE] <cursor_nane> CURSOR FOR (<sel ect _statenent>);
OPEN <cur sor _nane>;

FETCH <cursor _nanme> | NTO <var_nanme> [, <var_nanme> ...];

CLCSE <cur sor _nane>;

Examples

1

DECLARE RNAME CHAR(31);
DECLARE C CURSOR FOR (SELECT RDB$RELATI ON_NAMVE
FROM RDB$RELATI ONS) ;
BEG N
OPEN C,
WH LE (1 = 1) DO
BEG N
FETCH C | NTO : RNANE;
| F (ROW COUNT = 0) THEN
LEAVE;
SUSPEND,;
END
CLCSE C;
END

DECLARE RNAVE CHAR(31);
DECLARE FNAVE CHAR(31):

41

Stored Procedure Language (PSQL)

DECLARE C CURSOR FOR (SELECT RDB$FI ELD NAME
FROM RDB$RELATI ON_FI ELDS
WHERE RDB$RELATI ON_NAME = : RNAME
ORDER BY RDB$FI ELD_PCSI TI ON) ;
BEG N
FOR
SELECT RDB$RELATI ON_NAME
FROM RDB$RELATI ONS
I NTO : RNAME
DO
BEG N
CPEN C;
FETCH C | NTO : FNAME;
CLCSE C,
SUSPEND;
END
END

Note

e Cursor declaration is alowed only in the declaration section of a PSQL block/procedure/trigger,
as with any regular local variable declaration.

e Cursor names are required to be unique in the given context. They must not conflict with the
name of another cursor that is "announced”, via the AS CURSOR clause, by a FOR SELECT
cursor. However, a cursor can share its name with any other type of variable within the same
context, since the operations available to each are different.

« Positioned updates and deletes with cursors using the WHERE CURRENT OF clause are al-
lowed.

» Attemptsto fetch from or close a FOR SELECT cursor are prohibited.

« Attempts to open a cursor that is already open, or to fetch from or close a cursor that is aready
closed, will fail.

« All cursors which were not explicitly closed will be closed automatically on exit from the current
PSQL block/procedurel/trigger.

e The ROW_COUNT system variable can be used after each FETCH statement to check whether
any row was returned.

Defaults for Stored Procedure Arguments
V. Horsun

Defaults can now be declared for stored procedure arguments.

The syntax is the same as a default value definition for a column or domain, except that you can use
'="in place of 'DEFAULT" keyword.

Arguments with default values must be last in the argument list; that is, you cannot declare an argu-
ment that has no default value after any arguments that have been declared with default values. The
caller must supply the values for al of the arguments preceding any that are to use their defaults.

For example, it isillega to do something like this: supply argl, arg2, niss arg3, set
arg4. ..

Substitution of default values occurs at run-time. If you define a procedure with defaults (say P1), call

42

Stored Procedure Language (PSQL)

it from another procedure (say P2) and skip some final, defaulted arguments, then the default values
for P1 will be substituted by the engine at time execution P1 starts. This means that, if you change the
default values for P1, it is not necessary to recompile P2.

However, it is still necessary to disconnect all client connections, as discussed in the Borland Inter-
Base 6 beta "Data Definition Guide" (DataDef.pdf), in the section "Altering and dropping procedures
inuse".

Examples

CONNECT ... ;
SET TERM *;
CREATE PROCEDURE P1 (X | NTEGER = 123)
RETURNS (Y | NTEGER)
AS
BEG N
Y = X
SUSPEND;
END 2
COWM T ~
SET TERM ; ~

SELECT * FROM P1;

123

SET TERM *;

CREATE PROCEDURE P2

RETURNS (Y | NTEGER)

AS

BEG N
FOR SELECT Y FROM P1 INTO :Y
DO SUSPEND;

END A

COW T A

SET TERM ; ~

SELECT * FROM P2;

123

SET TERM *;
ALTER PROCEDURE P1 (X | NTEGER = CURRENT_TRANSACTI ON)
RETURNS (Y | NTEGER)
AS
BEG N
Y = X
SUSPEND;
END;, ~
COWM T ~
SET TERM ; ~

43

Stored Procedure Language (PSQL)

SELECT * FROM P1,

5875
SELECT * FROM PZ2;

COW T;
CONNECT ... ;
SELECT * FROM P2;

Note

The source and BLR for the argument defaults are stored in RDB$FIELDS.

LEAVE <label> Syntax Support
D. Yemanov

New LEAVE <I abel > syntax now allows PSQL loops to be marked with labels and terminated in
Java style. The purpose is to stop execution of the current block and unwind back to the specified la
bel. After that execution resumes at the statement following the terminated |oop.

Syntax pattern

<| abel nanme>: <l| oop_st at enent >

LEAVE [<l abel name>]

where <loop_statement> is one of: WHILE, FOR SELECT, FOR EXECUTE STATEMENT.
Examples

1

FOR
SELECT COALESCE(RDB$SYSTEM FLAG, 0), RDBSRELATI ON_NANE
FROM RDB$RELATI ONS
ORDER BY 1
| NTO : RTYPE, : RNAME
DO
BEG N

Stored Procedure Language (PSQL)

| E (RTYPE = 0) THEN

SUSPEND;
ELSE
LEAVE; -- exits current |oop
END
2.
CNT = 100;
L1:
VWH LE (CNT >= 0) DO
BEG N
| F (CNT < 50) THEN
LEAVE L1; -- exists WH LE | oop
CNT = CNT - I;
END
3.

STMI1 = ' SELECT RDB$RELATI ON_ NAME FROM RDBSRELATI ONS';
L1:
FOR
EXECUTE STATENMENT : STMI1 | NTO : RNAMVE
DO
BEG N
STMI2 = ' SELECT RDB$FI ELD NAME FROM RDB$RELATI ON_FI ELDS
WHERE RDB$RELATI ON NAME = ';

L2:
FOR
EXECUTE STATEMENT : STMT2 || : RNAME | NTO : FNAMVE
DO
BEG N
| F (RNAME = ' RDBSDATABASE') THEN
LEAVE L1; -- exits the outer |oop
ELSE | F (RNAME = ' RDBSRELATI ONS') THEN
LEAVE L2; -- exits the inner |oop
ELSE
SUSPEND,;
END
END
Note

Note that LEAVE without an explicit label means interrupting the current (most inner) loop.

OLD Context Variables Now Read-only
D. Yemanov

The set of OLD context variables available in trigger modules is now read-only. An attempt to assign
avalue to OLD.something will be rejected.

Note

NEW context variables are now read-only in AFTER-triggers as well.

45

Stored Procedure Language (PSQL)

PSQL Stack Trace

V. Horsun

The API client can now extract a simple stack trace Error Status Vector when an exception occurs
during PSQL execution (stored procedures or triggers). A stack trace is represented by one string
(2048 bytes max.) and consists of al the stored procedure and trigger names, starting from the point
where the exception occurred, out to the outermost caler. If the actual trace is longer than 2Kb, it is
truncated.

Additional items are appended to the status vector as follows:
isc_stack trace, isc_arg_string, <string length> <string>

i sc_stack_traceisanew error code with value of 335544842L .
Examples

M etadata creation

CREATE TABLE ERR (
ID INT NOT NULL PRI MARY KEY,
NAMVE VARCHAR(16)) :

CREATE EXCEPTION EX '!I'";

SET TERM #;
CREATE OR ALTER PROCEDURE ERR 1 AS
BEG N
EXCEPTION EX '"ID = 3';
END ~

CREATE OR ALTER TRI GGER ERR Bl FOR ERR
BEFORE | NSERT AS

BEG N
IF (NEWID = 2)
THEN EXCEPTION EX 'ID = 2';

IF (NEWID = 3)
THEN EXECUTE PROCEDURE ERR 1;

IF (NEWID = 4)
THEN NEWID = 1 / O0;

END ~
CREATE OR ALTER PROCEDURE ERR 2 AS
BEG N

I NSERT | NTO ERR VALUES (3, '333");
END ~

1. User exception from atrigger:

SQL" INSERT I NTO ERR VALUES (2, '2');
Statenment failed, SQLCODE = -836
exception 3

-ID =2

-At trigger 'ERR Bl

46

Stored Procedure Language (PSQL)

2. User exception from a procedure called by atrigger:

SQ" I NSERT I NTO ERR VALUES (3, '3');
Statenment failed, SQLCODE = -836
exception 3

-ID =3

-At procedure 'ERR 1'

At trigger 'ERR BI'

3. Run-time exception occurring in trigger (division by zero):

SQL" I NSERT | NTO ERR VALUES (4, '4');

Statenent failed, SQCODE = -802

arithmetic exception, nuneric overflow, or string truncation
-At trigger 'ERR BI'

4, User exception from procedure;

SQL" EXECUTE PROCEDURE ERR 1;
Statenment failed, SQLCODE = -836
exception 3

-ID =3

-At procedure 'ERR 1'

5. User exception from a procedure with a deeper call stack:

SQ" EXECUTE PROCEDURE ERR 2;
Statenment failed, SQLCODE = -836
exception 3

-ID =3

-At procedure 'ERR 1'

At trigger 'ERR BI'

At procedure 'ERR 2'

Call a UDF as a Void Function (Procedure)
N. Samofatov

In PSQL, supported UDFs, e.g. RDB$SET_CONTEXT, can be called as though they were void func-
tions (a.k.a"procedures’ in Object Pascal). More information to come.

47

Chapter 8

Enhancements to Indexing

252-byte index length limit is gone

A. Brinkman

New and reworked index code is very fast and tolerant of large numbers of duplicates. The old ag-
gregate key length limit of 252 bytesis removed. Now the limit depends on page size. Actual numbers
and more information to come.

Expression Indexes
O. Loa D. Yemanov, A. Karyakin

Arbitrary expressions applied to values in arow in dynamic DDL can now be indexed, alowing in-
dexed access paths to be available for search predicates that are based on expressions.

Syntax Pattern

CREATE [UNI QUE] [ASC[ENDING | DESC] ENDING] | NDEX <i ndex nane>
ON <t abl e name>
COVPUTED BY (<val ue expression>)

Examples

1

CREATE | NDEX | DX1 ON T1
COVPUTED BY (UPPER(COL1 COLLATE PXWCYRL)):
COWM T;
[**]
SELECT * FROM T1
WHERE UPPER(COL1 COLLATE PXWCYRL) = ' GUAA
-- PLAN (T1 I NDEX (1DXL1))

CREATE | NDEX | DX2 ON T2
COVPUTED BY (EXTRACT(YEAR FROM COL2) || EXTRACT(MONTH FROM COL2));
COWM T;
[%]
SELECT * FROM T2
ORDER BY EXTRACT(YEAR FROM COL2) || EXTRACT(MONTH FROM COL2)
-~ PLAN (T2 ORDER | DX2)

48

Enhancements to Indexing

Note

1. The expression used in the predicate must match exactly the expression used in the index de-
claration, in order to allow the engine to choose an indexed access path. The given index will
not be available for any retrieval or sorting operation if the expressions do not match.

2. Expression indices have exactly the same features and limitations as regular indices, except
that, by definition, they cannot be composite (multi-segment).

Changes to Null keys handling

V. Horsun, A. Brinkman
* Null keys are now bypassed for uniqueness checks. (V. Horsun)
* NULLsareignored during the index scan, when it makes sense to ignore them. (A. Brinkman).

More information to come.

Improved Index Compression
A. Brinkman

A full reworking of the index compression algorithm has made a manifold improvement in the per-
formance of many queries.

Selectivity Maintenance per Segment
D. Yemanov, A. Brinkman

Index selectivities are now stored on a per-segment basis. This means that, for a compound index on
columns (A, B, C), three selectivity values will be calculated, reflecting a full index match as well as
all partial matches. That isto say, the selectivity of the multi-segment index involves those of segment
A aone (as it would be if it were a single-segment index), segments A and B combined (as it would
be if it were a double-segment index) and the full three-segment match (A, B, C), i.e., al the ways a
compound index can be used.

This opens more opportunities to the optimizer for clever access path decisionsin cases involving par-
tial index matches.

The per-segment selectivity values are stored in the column RDBS$STATISTICS of table

RDB$INDEX_SEGMENTS. The column of the same name in RDB$INDICES is kept for compatibil-
ity and still represents the total index selectivity, that is used for afull index match.

Firebird Index Structure from ODS11 Onward
© Abvisie 2005, Arno Brinkman

The aims achieved by the new structure were:

* better support for deleting an index-key out of many duplicates (caused slow garbage collection)

49

Enhancements to Indexing

 support for bigger record numbers than 32-bits (40 bits)

 toincrease index-key size (1/4 page-size)

Figure 8.1. Existing structure (ODS10 and lower)

header node node node node node node

end

node node node node node node node
marker

header =

typedef struct btr {
struct pag btr_header;
SLONG btr_si bling;
SLONG btr_left_sibling;
SLONG btr_prefix_total;
USHORT btr _rel ation;
USHORT btr _| engt h;
UCHAR btr _id;
UCHAR btr | evel
struct btn btr_nodes[1];

right sibling page

I eft sibling page

sum of all prefixes on page
relation id for consistency
| ength of data in bucket

i ndex id for consistency

i ndex level (0 = |eaf)

~N N NN YN~
~ NN NN N~

b
node =

struct btn {
UCHAR bt n_prefi x; /1 size of conpressed prefix
UCHAR bt n_I engt h; /1 length of data in node
UCHAR bt n_nunber[4]; // page or record numnber
UCHAR bt n_dat a[1] ;

b
end marker = END BUCKET or END LEVEL
These arein place of record-number for leaf nodes and in place of page-number for non-leaf nodes.

If the node isa END_BUCKET marker then it should contain the same data as the first node on the
next sibling page.

On an END_LEVEL marker prefix and length are zero, thus it contains no data. Also, every first node
on alevel (except leaf pages) contains a degeneration zero-length node.

Figure 8.2. New ODS11 structure

jump jump node
header s gl o node node
end
node node node node node node node S

jump info =

50

Enhancements to Indexing

struct | ndexJunplnfo {
USHORT firstNodeOfset; // offset to first node in page [*]

USHORT j unpAr eaSi ze; /'l size area before a new junpnode is nade
UCHAR j unpers; /1 nr of junp-nodes in page, with a maxi mum of 255
b
jump node =

struct | ndexJunpNode {
UCHAR* nodePol nt er;
USHORT prefi x;
USHORT | engt h;

| ength of prefix against previous junp node

is prefix for pointing node)
of fset to node in page
Data can be read from here

USHORT of f set ;
UCHAR* dat a;

~— e~ ~—
e

New flag for the new index structure
New flags are added to the header - >pag_f | ags.

Theflagbtr _| arge_keys (32) isfor storing compressed length/prefix and record-number. This
meant also that length and prefix can be up to 1/4 of page-size (1024 for 4096 page-size) and is easy
extensible in the future without changing disk-structure again.

Also the record-number can be easy extended to for example 40 bits. Those numbers are stored per
7-bits with 1 bit (highest) as marker (variable length encoding). Every new byte that needs to be
stored is shifted by 7.

Examples

25 isstored as 1 byte 0x19, 130 = 2 bytes 0x82 0x01, 65535 = 3 bytes OxFF OxFF 0x03.

Duplicate nodes

A new flag is also added for storing record-number on every node (non-leaf pages). This speeds up in-
dex-retrieval on many duplicates. Theflagis btr _al | _recor dnunber (16).

With this added information, key-lookup on inserts/deletes with many duplicates (NULLs in foreign
keys, for example) becomes much faster (such as the garbage collection!).

Beside that duplicate nodes (length = 0) don't store their length information, 3 bits from the first
stored byte are used to determine if this nodes is a duplicate.

Beside the ZERO _LENGTH (4) there is also END_LEVEL (1), END_BUCKET (2),

ZERO PREFIX ZERO LENGTH (3) and ONE_LENGTH (5) marker. Number 6 and 7 are reserved
for future use.

Jump nodes

A jump node is areference to a node somewhere in the page.

51

poi nter to where this node can be read fromthe page

| ength of data in junp node (together with prefix this

Enhancements to Indexing

It contains offset information about the specific node and the prefix datafrom the referenced node, but
prefix compression is aso done on the jump-nodes themsel ves.

Idedlly a new jump node is generated after the first node that is found after every j unpAr eaSi ze,
but that's only the case on deactivate/active an index or inserting nodes in the same order as they will
be stored in the index.

If nodes are inserted between two jump node references only the offsets are updated, but only if the
offsets don't exceed a specific threshold (+/-10 %).

When a node is deleted only offsets are updated or a jump node is removed. This means a little hole
can exist between the last jJump node and the first node, so we don't waste time on generating new
jump-nodes.

The prefix and length are also stored by variable length encoding.

Figure 8.3. Example data ((x) = sizein x bytes)

header (34)

32 (2) 236 (Z2) 2 (1) 30 (2) 0 {1}
ALl 260 (2) FI (2) 1 (1) 1 {1}
514 (2} i | 0 (1) 2 e | 0 {1}
2 (1)

ko bl & (1) 21386 (3) REBIRD (&)

2 (1) 2 (1) 1294 (2) EL (2)

Pointer after fixed header = 0x22
Pointer after jump info = 0x29
Pointer to first jump node = 0x29 + 6 (jump node 1) + 5 (jump node 2) = 0x34

Jump node 1 is referencing to the node that represents FIREBIRD as data, because this node has a
prefix of 2 the first 2 characters Fl are stored also on the jump node.

Our next jump node points to a node that represents FUEL with also a prefix of 2. Thus jump node 2

should contain FU, but our previous node already contained the F so, due to prefix compression, this
oneisignored and only U is stored.

NULL state

The data that needs to be stored is determined in the procedure compress() in btr.cpp.

For ASC (ascending) indexes no data will be stored (key is zero length). This will automatically put
them as first entry in the index and thus correct order (For single field index node length and prefix is

Zero).

DESC (descending) indexes will store a single byte with the value OxFF (255). To distinguish

52

Enhancements to Indexing

between a value (empty string can be 255) and an NULL state we insert a byte of OXFE (254) at the
front of the data. Thisis only done for values that begin with OxFF (255) or OxFE (254), so we keep

theright order.

Figure 8.4. Examples

nodes ASC index, 1 segment
prefix length stored data
0 0

0 0
i xB5 (A)
[xB5 (A)

nodes DESC index, 1 segment
prefix length stored data

XFE xFE () x4A (J)

real value/state
NULL

NULL

A

AA

real value/state

OxFE Ox4A

0 2

1 1 xFF () OxFF

0 1 xFF NULL

1 0 xFF NULL

END_LEVEL

nodes ASC index, 3 segment

prefix length stored data real value/state

0 0 NULL, NULL, NULL

0 10 x01(1) x70(F) x73(1) x82(R) x69(E) NULL, NULL,
x01(1) x66(B) x73(l) x82(R) x68(D) FIREBIRD

0 10 x02(2) x70(F) x73(1) x82(R) x69(E) NULL, FIREBIRD,
x02(2) x66(B) x73(l) x82(R) x68(D) NULL

0 10 x03(3) x70(F) x73(1) x82(R) x69(E) FIREBIRD, NULL,
x03(3) x66(B) x73(l) x82(R) x68(D) NULL

3 9 x00(0) x00(0) x02(2) x65(A) x00(0) C1 A B
x00(0) x00(0) x01(1) x66(B) S

53

Enhancements to Indexing

nodes DESC index, 3 segment
prefix length stored data real value/state
*FC xBY9 xB6 xFF xFF xFD xBE

0 12 ,FF xFF xFF xFE xBD Fris b
xAD xBA xFC xBD xB6 xAD xBB

3 17 xFDXFFxFFxFFxFFxFExFF [ReoinD NULL
xFF xFF xFF

xFF xFF xFF xFF xFD xB9 xB6
1 19 xAD xBA xFD xBD xB6 xAD xBB HH& FIREBIRD,
xFE xFF xFF xFF xFF

xFF xFF xFF xFF xFE xB9 xB6 MNULL, NULL,
*xAD xBA xFE xBD xB& xAD xBBE FIREBIRD

11 4 xFF xFF xFF xFF MNULL, NULL, NULL
END_LEVEL

Chapter 9

Optimizations

Improved PLAN Clause

D. Yemanov
A PLAN clause optionally alows you to provide your own instructions to the engine and have it ig-

nore the plan supplied by the optimizer. Firebird 2 enhancements allow you to specify more possible
paths for the engine. For example:

PLAN (A ORDER | DX1 | NDEX (1DX2, |DX3))

For more details, please refer to the topic in the DML section, Query Plans, Improvements in Hand-
ling User-specified Query Plans.

Optimizer Improvements

This chapter represents a collection of changes done in Firebird 2.0 to optimize many aspects of per-
formance.

For All Databases

The following changes affect all databases.

Some General Improvements
O. Loa, D. Yemanov

» Better choice of streams order in joins and better index usage in genera

» Much faster algorithms to process the dirty pagestree
Firebird 2.0 offers a more efficient processing of the list of modified pages, ak.a. the dirty pages
tree. It affects all kinds of batch data modifications performed in a single transaction and elimin-
ates the known issues with performance getting slower when using a buffer cache of >10K pages.
This change aso improves the overall performance of data modifications.

* Increased maximum page cache size to 128K pages (2GB for 16K page size)

More information to come.

Faster Evaluation of IN() and OR

55

Optimizations

O.Loa
Constant IN predicate or multiple OR booleans are now evaluated faster.

Sparse bitmap operations were optimized to handle multiple OR booleans or an IN (<constant list>)
predicate more efficiently, improving performance of these operations.

Improved UNIQUE Retrieval
A. Brinkman

The optimizer will now use a more readlistic cost value for unique retrieval. More information to come.

More Optimization of NOT Conditions
D. Yemanov

NOT conditions are simplified and optimized via an index when possible.

Example

Distribute HAVING Conjunctions to the WHERE Clause

Distribute HAVING clause conjunctions to the WHERE clause when possible. More info to come.

Distribute UNION Conjunctions to the Inner Streams

Distribute UNION conjunctions to the inner streams when possible.

Improved Handling of CROSS JOIN and Merge/SORT

Improved cross join and merge/sort handling

Better Choice of Join Order for Mixed Inner/Outer Joins

Let's choose a reasonable join order for intermixed inner and outer joins

Equality Comparison on Expressions

MERGE PLAN may now be generated for joins using equality comparsion on expressions

For ODS 11 Databases only

Content to come.

56

Optimizations

Segment-level Selectivities are Used

Info to come.

Better Support for IS NULL

Info to come.

Better Support for STARTING WITH

Info to come.

Matching of Both OR and AND Nodes to Indexes

Info to come.

Better JOIN Orders

Cost estimations have been improved in order to improve JOIN orders.

Indexed Order Enabled for Outer Joins

It is now possible for indexed order to be utilised for outer joins, i.e. navigational walk.

57

Chapter 10

New Features for Text Data

New String Functions

Two new string functions were added:

LOWER()
A. dos Santos Fernandes

LOWER() returns the input argument converted to all lower-case characters. Example to come, using
anon-ASClI character set.

TRIM()
A. dos Santos Fernandes

TRIM trims characters (default: blanks) from the left and/or right of a string.

Syntax Pattern

TRIM<left paren> [[<trimspecification>] [<trimcharacter>]
FROM] <val ue expression> <right paren>
<trimspecification> ::= LEADING | TRAILING | BOTH
<trimcharacter> ::= <val ue expressi on>

Rules

1. If <trim specification> is not specified, BOTH is assumed.

2. If <trim character> is not specified, ' ' is assumed.

3. If <trim specification> and/or <trim character> is specified, FROM should be specified.

4. If <trim specification> and <trim character> is not specified, FROM should not be specified.
Examples

A)

sel ect

rdb$rel ati on_nane,

trimleading ' RDB$' from rdb$rel ati on_nane)
fromrdb$rel ati ons

where rdb$rel ati on_nanme starting with ' RDB$';

58

New Features for Text Data

B)

sel ect

trimrdb$relation_nane) || ' is a systemtable'
fromrdb$rel ati ons

where rdb$systemflag = 1;

New String Size Functions
A. dos Santos Fernandes

Three new functions will return information about the size of strings:

1. BIT_LENGTH returnsthe length of astring in bits

2. CHAR_LENGTH/CHARACTER_LENGTH returnsthe length of a string in characters
3. OCTET_LENGTH returns the length of astring in bytes

Syntax Pattern

These three functions share a similar syntax pattern, as follows.-

<length function> ::=
{ BIT_LENGTH | CHAR LENGTH | CHARACTER LENGTH | OCTET_LENGTH } (<val ue expr ession>

Example

sel ect
rdb$rel ati on_nane,
char _l engt h(rdb$rel ati on_nane),
char _length(trim(rdb$rel ati on_nane))
fromrdb$rel ati ons;

New INTL Interface for Non-ASCIl Character Sets
A. dos Santos Fernandes

A feature of Firebird 2 isthe introduction of a new interface for international character sets. Originally
described by N. Samofatov, the new interface features a number of enhancements that have been im-
plemented by me.

Architecture

Firebird allows character sets and collations to be declared in any character field or variable declara-
tion. The default character set can also be specified at database create time, to cause every CHAR/
VARCHAR declaration that doesn't specifically included a CHARACTER SET clause to useit.

At attachment time you can specify the character set that the client is to use to read strings. If no "cli-

59

New Features for Text Data

ent" (or "connection") character set is specified, character set NONE is assumed.

Two specia character sets, NONE and OCTETS, can be used in declarations. However, OCTETS
cannot be used as a connection character set. The two sets are similar, except that the space character
of NONE is ASCII 0x20, whereas the space character OCTETS is 0x00. NONE and OCTETS are
"specia" in the sense that they do not follow the rule that other charsets do regarding conversions.

» With other character sets, conversion is performed as CHARSET1->UNICODE->CHARSET2.

* With NONE/OCTETS the bytes are just copied: NONE/OCTETS->CHARSET2 and CHAR-
SET1->NONE/OCTETS.

Enhancements

Enhancements include:

Well-formedness checks
Some character sets (especially multi-byte) do not accept just any string. Now, the engine verifies that

strings are well-formed when assigning from NONE/OCTETS and when strings sent by the client (the
statement string and parameters).

Uppercasing

In FB 1.5.X only ASCII characters are uppercased in a character set's default (binary) collation order,
whichisused if no collation is specified.

For example,

isql -gq -ch dos850
SQ.> create database 'test.fdb';

SQ.> create table t (c char(1l) character set dos850);
SQ.> insert intot values ('a');
SQ.> insert intot values ('e');
SQL> insert intot values ('a');
SQL> insert intot values ('é');

sQL>

SQL> select c, upper(c) fromt;

C UPPER

60

New Features for Text Data

Maximum string length

In FB 1.5.X the engine does not verify the logical length of multi-byte character set (MBCS) strings.
Hence, a UNICODE_FSS field takes three times as many characters as the declared field size, three
being the maximum length of one UNICODE_FSS character).

This has been retained for compatibility for legacy character sets. However, new character sets
(UTFS8, for example) do not inherit this limitation.

NONE as attachment character set

When NONE is used as the attachment (connection) character set, the sglsubtype member of
XSQLVAR stores the character set number of the read field, instead of always 0 as previously.

Enhancements for BLOBSs

Content

COLLATE clauses for BLOBs
A DML COLLATE clauseis now allowed with BLOBS.

Example

sel ect blob_colum fromtable
where bl ob_col um col |l ate unicode = 'foo';

Full equality comparisons between BLOBs

Comparison can be performed on the entire content of atext BLOB.

Character set conversion for BLOBs

Conversion between character sets is now possible when assigning to a BLOB from a string or anoth-
er BLOB

INTL Plug-ins

Character sets and collations are installed using a manifest file. Server writes to the log when conflicts
exist.

More information and test scenario to come.

New Character Sets/Collations

61

New Features for Text Data

UTF8 character set

The UNICODE_FSS character set has a number of problems: it's an old version of UTFS8 that accepts
malformed strings and does not enforce correct maximum string length. In FB 1.5.X UTF8 isan dlias
to UNICODE_FSS.

Now, UTF8 isanew character set, without the inherent problems of UNICODE_FSS.

UNICODE collations (for UTF8)

UCS BASIC works identically to UTF8 with no collation specified (sorts in UNICODE code-point
order). The UNICODE collation sorts using UCA (Unicode Collation Algorithm).

Sort order sample:

isql -gq -ch dos850
SQ.> create database 'test.fdb';
SQ.> create table t (c char(1l) character set utf8);

SQ.> insert intot values ('a');
SQ.> insert intot values ('A);
SQL> insert intot values ('a');
SQ > insert intot values ('b");
SQL> insert intot values ('B");
SQL> select * fromt order by c collate ucs_basic;
C

A

B

a

b

a

SQL> select * fromt order by c coll ate unicode;

WO >

Brazilian collations

Two case-insensitive/accent-insensitive collations were created for Brazil: WIN_PTBR (for
WIN1252) and PT_BR (for ISO8859 1).

Sort order and equality sample:

isql -gq -ch dos850
SQ.> create database 'test.fdb';
SQ.> create table t (c char(1) character set is08859_1 collate pt_br);

SQ.> insert intot values ("a');
SQ.> insert intot values ('A);
SQL> insert intot values ('a');
SQ.> insert intot values ('b");

62

New Features for Text Data

SQ.> select * fromt order by c;

SQ.> select * fromt where ¢ = '&';

Drivers

New character sets and collations are implemented through dynamic libraries and installed in the serv-
er with amanifest file in the intl subdirectory. For an example, see fhintl.conf.

Not all implemented character sets and collations need to be listed in the manifest file. Only those lis-
ted are available and duplications are not |oaded.

Adding More Character Sets to a Database

For installing additional character sets and collations into a database, the character sets and collations
should be registered in the database's system tables (rdb$character_sets and rdb$collations). The file

misc/intl.sgl, in your Firebird 2 installation, is a script of stored procedures for registering and unre-
gistering them.

New Character Sets and Collations Implemented

KOI8-R
O. Loa A. Karyakin

Russian language character set and dictionary collation.

KOI8-U
O. Loa A. Karyakin

Ukrainian language character set and dictionary collation.

WIN1257 LV
O. Loa, A. Karyakin

Latvian dictionary collation.

WIN1257_LT

63

New Features for Text Data

O. Loa A. Karyakin

Lithuanian dictionary collation.

WIN1257 _EE
O. Loa, A. Karyakin

Estonian dictionary collation.

UTF8
A. dos Santos Fernandes

Unicode 4.0 support with UTF8 character set and collations UCS BASIC and UNICODE.

Brazilian collations
A. dos Santos Fernandes, P. H. Albanez

1. Collation PT_BR for ISO8859 character set

2. Collation WIN_PTBR for WIN1252 character set

Bosnian Collation
F. Hasovic

New Bosnian language collation BS BA was added for WIN1250 character set.

Czech Collations
|. Prenosil, A. dos Santos Fernandes

* WIN_CZ: case-insensitive Czech language collation for WIN1250 character set

* WIN_CZ_CI_AI: case-insensitive, accent-insensitive Czech language collation for WIN1250 char-
acter set

Vietnamese Character Set
Nguyen The Phuong, A. dos Santos Fernandes

Charset WIN1258 for Vietnamese language.

Character Set Bug Fixes
A. dos Santos Fernandes

The following bugs related to character sets and collations were fixed:
SF #1073212 An Order By on abig column with a COLLATE clause would terminate the server.

SF #939844 A query in a UNICODE database would throw a GDS Exception if it was longer than
263 characters.

New Features for Text Data

S #977785 Wrong character lengths were being returned from some multi-byte character sets
(UTF-8, East-Asian charsets).

SF #536243 A correct result is now returned when the UPPER() function is applied to a UNI-
CODE_FSS string.

SF #942726 UPPER did not convert aacute to Aacute for 1SO8859 1

S #544630 Some problems were reported when connecting using UNICODE. (More information to
come.)

SF #540547 Some problems involving concatenation, numeric fields and character set were fixed.

Unregistered bug A query could produce different results, depending on the presence of an index,
when the last character of the string was the first character of a compression pair.

Unregistered bug SUBSTRING did not work correctly with aBLOB in a character set.
Unregistered bug Pattern matching with multi-byte BLOBs was being performed in binary mode.

Unregistered bug Connecting with a multi-byte character set was unsafe if the database had columns
using a different character set.

65

Chapter 11

Security In Firebird 2

Summary of Changes

Improving security has had a lot of focusin Firebird 2.0 development. The following is a summary of
the major changes.

New security database

The new security database is renamed as security?2. f db. Inside, the user authentication table,
where user names and passwords are stored, is now caled RDBSUSERS. There is no longer a table
named “users’ but a new view over RDBSUSERS that is named “USERS’. Through this view, users
can change their passwords.

For details of the new database, see New Security Database in the section about authentication later in
this chapter.

For instructions on updating previous security databases, refer to the section Dealing with the New
Security Database at the end of this chapter.

Better password encryption
A. Peshkov

Password encryption/decryption now uses a more secure password hash calculation algorithm.

Users can modify their own passwords
A. Peshkov

The SY SDBA remains the keeper of the security database. However, users can now madify their own
passwords.

Non-server access to security database is rejected
A. Peshkov

GSEC now uses the Services API. The server will refuse any access to security2.fdb except through
the Services Manager.

Active protection from brute-force attack
A. Peshkov

66

Security in Firebird 2

Attempts to get access to the server using brute-force techniques on accounts and passwords are now
detected and locked out.

» Login with password is required from any remote client
* Clients making too many wrong login attempts are blocked from further attempts for a period

* Redirection of remote requests is controlled by new parameter[s] in firebird.conf. Information still
to come.

Support for brute-force attack protection has been included in the Services API.

Vulnerabilities have been closed
A. Peshkov, C. Valderrama

Severa known vulnerabilitiesin the APl have been closed.

Details of the Security Changes in Firebird 2.0

Security focus was directed at some recognised weaknesses in Firebird's security from malicious at-
tacks:

» thelack of brute-force resistant passwords encryption in the security database

« the ability for any remote user with a valid account to open the security database and read hashes
from it (especialy interesting in combination with the first point)

 theinability for usersto change their own passwords

» thelack of protection against remote brute-forcing of passwords on the server directly

Authentication

Firebird authentication checks a server-wide security database in order to decide whether a database
or server connection request is authorised. The security database stores the user names and passwords
of all authorised login identities.

Firebird 1.5 Authentication

In Firebird 1.5 the DES algorithm is used twice to hash the password: first by the client, then by the
server, before comparing it with the hash stored in security database. However, this sequence becomes
completely broken when the SY SDBA changes a password. The client performs the hash calculation
twice and stores the resulting hash directly in the security database. Therefore, hash management is
completely client-dependent (or, actualy, client-defined).

Firebird 2: Server-side Hashing

To be able to use stronger hashes, another approach was called for. The hash to be stored on the server
should always be calculated on the server side. Such a schema already exists in Firebird -- in the Ser-

67

Security in Firebird 2

vices API. This led to the decision to use the Services API for any client activity related to user man-
agement. Now, gsec and the isc_user_add(modify, delete) API functions all use services to access the
security database. (Embedded access to Classic server on POSIX is the exception --see below).

It became quite easy to make any changes to the way passwords are hashed - it is aways performed
by the server. It is no longer gsec's problem to calculate the hash for the security database: it simply
asks services to do the work!

It is worth noting that the new gsec works successfully with older Firebird versions, as long as the
server's architecture supports services.

The SHA-1 Hashing Algorithm
This method leads to the situation where

1. ahashvalidfor user A isinvalid for user B

2. when a user changes his password -- even to exactly the same string as before -- the data stored
in RDBSUSERS.RDB$PASSWD is new.

Although this situation does not increase resistance to a brute-force attempt to crack the password, it
does make "visual" analysis of a stolen password database much harder.

The New Security Database

The structure of security database was changed. In general, now it contains a patch by Ivan Prenosil,
with some minor differences, enabling any user to change his’/her own password, .

» In firebird 1.5 the table USERS has to be readable by PUBLIC, an engine requirement without
which the password validation process would fail. Ivan's patch solution used a view, with the con-
dition "WHERE USER = "". That worked due to another bug in the engine that left the SQL vari-
able USER empty, not 'authenticator', as it might seem from engine's code.

Once that bug was fixed, it was certainly possible to add the condition "USER = "authenticator™.
For the short term, that was OK, because the username is always converted to upper case.

» A better solution was found, that avoids making user authentication depend on an SQL trick. The
result is that the non-SY SDBA user can see only his own login in any user-management tool (gsec,

or any graphical interface that use the Services API). SYSDBA continues to have full access to
manage users accounts.

New security database structure
The Firebird 2 security database is named securi t y2. f db. For user authentication it has a new ta
ble named RDB$USERS that stores the new hashed passwords. A view over this table replaces the old

USERS table and enables users to change their own passwords.

The DDL for the new structures can be found in the Security Upgrade Script in the Appendix.

GSEC in Firebird 2

Special measures were thus taken to make remote connection to the security database completely im-
possible. Don't be surprised if some old program fails on attempting direct access: this is by design.

68

Security in Firebird 2

Users information may now be accessed only through the Services API and the equivalent internal ac-
cessto services now implemented inthei sc_user _* API functions.

Some Protection from Hacking

Given the 8-byte maximum length of the traditional Firebird password, the hacker had a reasonable
chance to break into the firebird installation by way of a brute-force attack. Version 2.0 has some pro-
tection from this. After too many attempts to access the server using a wrong password, the authentic-
ation process is locked for a period, minimizing the opportunity for a hacker to find the correct pass-
word in time.

Classic Server on POSIX

For reasons both technical and historical, a Classic server on POSIX with embedded clients is espe-
cialy vulnerable to security exposure. Users having embedded access to databases MUST be given at
least read access to the security database.

This is the main reason that made implementing enhanced password hashes an absolute requirement.
A malicious user with user-level access to Firebird could easily steal a copy of the security database,
take it home and quietly brute-force the old DES hashes! Afterwards, he could change datain critical
databases stored on that server. Firebird 2 is much less vulnerable to this kind of compromise.

But the embedded POSIX server had one more problem with security: its implementation of the Ser-
vices APl cals the command-line gsec, as normal users do. Therefore, an embedded user-
maintenance utility must have full accessto security database.

The main reason to restrict direct access to the security database was to protect it from access by old
versions of client software. Fortuitously, it also minimizes the exposure of the embedded Classic on
POSIX at the same time, since it is quite unlikely that the combination of an old client and the new
server would be present on the production box.

Caution

However, the level of Firebird security is still not satisfactory in one serious respect, so please read
this section carefully before opening port 3050 to the Internet.

An important security problem with Firebird still remains unresolved: the transmission of poorly en-
crypted passwords "in clear" across the network. It is not possible to resolve this problem without
breaking old clients.

To put it another way, a user who has set his’her password using a new secure method would be un-
able to use an older client to attach to the server. Taking this into account with plans to upgrade some
aspects of the API in the next version, the decision was made not to change the password transmission
method in Firebird 2.0.

The immediate problem can be solved easily by using any |P-tunneling software (such as ZeBeDeeg)

to move data to and from a Firebird server, for both 1.5 and 2.0. It remains the recommended way to
access your remote Firebird server across the Internet.

Dealing with the New Security Database

69

Security in Firebird 2

A. Peshkov

If you try to put a pre-Firebird 2 security database -- security.fdb or a renamed isc4.gdb -- into Fire-
bird's new home directory and then try to connect to the server, you will get the message "Cannot at-
tach to password database”. It isnot abug: it is by design. A security database from an earlier Firebird
version cannot be used directly in Firebird 2.0 or higher.

The newly structured security database is named security2.fdb.

In order to be able to use an old security database, it is necessary to run the upgrade script secur -
i ty_dat abase. sql , thatisinthe. ./ upgr ade sub-directory of your Firebird server installation.

Note

The upgrade script may be excluded from the Beta 1 distributions due to tagging issues. The script
isasointhe../src/ m sc/upgrade/ v2 directory of the firebird2 CVS tree at Sourceforge, in
the T2 _0_0 Betal tagged branch.

A copy of the script appears in the Appendix to these notes: Security Upgrade Script.

Doing the Security Database Upgrade
To do the upgrade, follow these steps:

1. Put your old security database in some place known to you, but not in Firebird's new home dir-
ectory. Keep acopy available at all times!

2. Start Firebird 2, using its new, native security2.fdb.

Connect to your old security database as SY SDBA and run the script.
Stop the Firebird service.

Copy the upgraded database to the Firebird 2 home directory.

© a > W

Open firebird.conf and set the parameter LegacyHash to 1 (remembering to erase the "#' com-
ment marker). TAKE NOTE OF THE CAUTION BELOW!

7. Restart Firebird.

Now you should be able to connect to the Firebird 2 server using your old logins and passwords.

Caution

As long as you configure LegacyHash = 1 infirebird. conf, Firebird's security does not
work completely. To set thisright, it is necessary to do as follows:

1. Changethe SY SDBA password
2. Havethe users change their passwords (in 2.0 each user can change his or her own password).
3. Set LegacyHash back to default value of 0, or comment it out.

4. Stop and restart Firebird for the configuration change to take effect.

70

Chapter 12

Command-line Utilities

Backup Tools

Firebird 2 brings plenty of enhancements to backing up databases: a new utility for running on-linein-
cremental backups and some improvements to Gbak to avoid some of the traps that sometimes befall
end-users.

New On-line Incremental Backup
N. Samofatov

Fast, on-line, page-level incremental backup facilities have been implemented.
The backup engine comprises two parts:
» NBak, the engine support module

» NBackup, the tool that does the actual backups

Nbak
The functional responsibilities of NBAK are:

1. to redirect writes to difference files when asked (ALTER DATABASE BEGQ N BACKUP state-
ment)

2. toproduce a GUID for the database snapshot and write it into the database header before the AL-
TER DATABASE BEGQ N BACKUP statement returns

3. to merge differences into the database when asked (ALTER DATABASE END BACKUP state-
ment)

4. to mark pages written by the engine with the current SCN [page scan] counter value for the data-
base

5. toincrement SCN on each change of backup state

The backup state cycleis:

nbak_state normal -> nbak_state stalled -> nbak_state merge -> nbak_state normal
» Innormal state writes go directly to the main database files.

» Installed state writes go to the difference file only and the main files are read-only.

* In merge state new pages are not alocated from difference files. Writes go to the main database

71

Command-line Utilities

files. Reads of mapped pages compare both page versions and return the version which is fresher,
because we don't know if it is merged or not.

Note

This merge state logic has one quirky part. Both Microsoft and Linux define the contents of file
growth as "undefined” i.e., garbage, and both zero-initialize them.

This is why we don't read mapped pages beyond the original end of the main database file and
keep them current in difference file until the end of a merge. This is amost half of NBak fetch
and write logic, tested by using modified PIO on existing files containing garbage.

NBackup
The functional responsibilities of NBackup are
1. to provideaconvenient way to issue ALTER DATABASE BEGIN/END BACKUP

2. to fix up the database after filesystem copy (physicaly change nbak_state_diff to
nbak_st at e_nor mal in the database header)

3. tocreate and restore incremental backups.
Incremental backups are multi-level. That means if you do a Level 2 backup every day and a

Level 3 backup every hour, each Level 3 backup contains all pages changed from the beginning
of the day till the hour when the Level 3 backup is made.

Backing Up

Creating incremental backups has the following algorithm:

1. Issue ALTER DATABASE BEGQ N BACKUP to redirect writes to the difference file

2. Look up the SCN and GUID of the most recent backup at the previous level

3. Stream database pages having SCN larger than was found at step 2 to the backup file.

4. Write the GUID of the previous-level backup to the header, to enable the consistency of the
backup chain to be checked during restore.

5. Issue ALTER DATABASE END BACKUP

6. Add arecord of this backup operation to RDB$BACKUP_HI STORY. Record current level, SCN,
snapshot GUID and some miscellaneous stuff for user consumption.

Restoring

Restore is simple: we reconstruct the physical database image for the chain of backup files, checking
that the backup_guid of each file matches prev_guid of the next one, then fix it up (change its state in
header to nbak_state_normal).

Usage

nbackup <options>

72

Command-line Utilities

Valid Options
-L <dat abase> Lock database for fil esystem copy
- U <dat abase> Unl ock previously | ocked database
- F <dat abase> Fi xup database after fil esystem copy
-B <l evel > <dat abase> [<fil ename>] Create increnental backup
-R <dat abase> [<file0> [<filel> ..]] Restore increnental backup

Note
1. <database> may specify adatabase aias
2. incremental backups of multi-file databases are not supported yet

3. "stdout" may be used as avalue of <filename> for the -B option

User Manual
P. Vinkenoog

A user manual for NBak/NBackup has been prepared. It can be downloaded from the documentation
area a the Firebird website: www. firebirdsgl. org/ pdfmanua/ - the file name is Fi r ebi r d-
nbackup. pdf.

GBak Backup/Porting/Restore Utility

Content

New Switches, Changed Behaviours
V. Horsun

The new GBAK switch
- RECREATE_DATABASE [OVERWRI TE]

replaces the old switch, making it harder for the unsuspecting to overwrite a database accidentally, as
could occur with the shortened or long form of the now-defunct old switch:

- R EPLACE_DATABASE]

In summary:
» gbak -RIECREATE_DATABASE] and ghak -C[REATE_DATABASE] are now equival ent

e gbak -R[ECREATE DATABASE] O[VERWRITE] is equivaent to the old gbak -
R[EPLACE_DATABASE]

- Theold gbak -R[EPLACE_DATABASE] is now -REP[LACE_DATABASE]

73

http://www.firebirdsql.org/pdfmanual/

Command-line Utilities

That is to say, now it will be necessary to include the O[VERWRITE] flag in order to have ghak re-
store over an existing database.

ISQL Query Utility

Work on ISQL hasinvolved alot of bug-fixing and the introduction of afew new, useful features.

One trick to note is that CHAR and VARCHAR types defined in character set OCTETS (alias BIN-
ARY) now display in hex format. Currently, this feature cannot be toggled off.

New Switches

The following command-line switches were added:

-b[ail] "Bail out"
D. lvanov, C. Vaderrama

Command line switch -b to instruct isgl to bail out on error when used in non-interactive mode, re-
turning an error code to the operating system.

When using scripts as input in the command line, it may be totally unappropriate to let isgl continue
executing a batch of commands after an error has happened. Therefore, the "-b[ail]" option will cause
script execution to stop at the first error it detects. No further statements in the input script will be ex-
ecuted and isgl will return an error code to the operating system.

Most cases have been covered, but if you find some error that is not recognized by isgl, you should
inform the project, asthisis afeature in progress.

Currently there is no differentiation by error code---any non-zero return code should be interpreted
as failure. Depending on other options (like -0, -m and -m2) , isgl will show the error message on
screen or will send it to afile.

Some Features

Even if isgl is executing nested scripts, it will cease all execution and will return to the operating
system when it detects an error. Nested scripts happen when a script A is used asisgl input but in
turn A contains an INPUT command to load script B an so on. Isgl doesn't check for direct or in-
direct recursion, thus if the programmer makes a mistake and script A loads itself or loads script B
that in turn loads script A again, isgl will run until it exhaust memory or an error is returned from
the database, at whose point -bail if activated will stop al activity.

DML errors will be caught when being prepared or executed, depending on the type of error.

In many cases, isgl will return the line number of a DML statement that fails during execution of a
script. (More about error line numbers ...)

DDL errors will be caught when being prepared or executed by default, sinceisgl uses AUTODDL
ON by default. However, if AUTO DLL is OFF, the server only complains when the script does an
explicit COMMIT and this may involve several SQL statements.

The feature can be enabled/disabled interactively or from a script by means of the command

74

Command-line Utilities

SET BAIL [ON | OFF]
As is the case with other SET commands, simply using SET BAIL will toggle the state between
activated and deactivated. Using SET will display the state of the switch among many others.
» Evenif BAIL is activated, it doesn't mean it will change isgl behavior. An additional requirement
should be met: the session should be non-interactive. A non-interactive session happens when the

user calsisgl in batch mode, giving it ascript asinput.

Example

isql -b -i my _fb.sgl -o results.log -m-n2

Tip

However, if the user loads isgl interactively and later executes a script with the input command,
thisis considered an interactive session even though isgl knowsiit is executing a script.

Example

i sql

Use CONNECT or CREATE DATABASE to specify a database
SQ.> set bail;

SQ.> input ny_fb.sql;

SQ> ~Z

Whatever contents the script has, it will be executed completely, errors and al, even if the BAIL
option is enabled.

-m2 to Output Stats and Plans
C. Vaderrama

Thisis a command-line option -M2 to send the statistics and plans to the same output file as the other
output (viathe -o[utput] switch).

When the user specifies that the output should be sent to a file, two possibilities have existed for
years: either

» at the command line, the switch -o followed by afile nameisused

» the command OUTput followed by afile name is used, either in a batch session or in the interact-
ive isgl shell. (In either case, simply passing the command OUTput is enough to have the output
returned to the console). However, although error messages are shown in the console, they are not
output to thefile.

The -m command line switch was added, to meld (mix) the error messages with the normal output to
wherever the output was being redirected.

This left still another case: statistics about operations (SET STATs command) and SQL plans as the
server returns them. SET PLAN and SET PLANONLY commands have been treated as diagnostic
messages and, as such, were always sent to the console.

75

Command-line Utilities

What the -m2 command line switch does is to ensure that stats and plans information go to the same
file the output has been redirected to.

Note

Neither -m nor -m2 has an interactive counterpart through a SET command. They are for use only as
command-line isgl options.

-r2 to Pass a Case-Sensitive Role Name
C. Vaderrama

The sole abjective of this parameter isto specify a case-sensitive role name.
» Thedefault switch for this parameter is -r. Roles provided in the command line are uppercased

» With-r2, theroleis passed to the engine exactly astyped in the command line.

New Commands

The following commands have been added or enhanced.

SET HEAD[ing] toggle
C. Vaderrama

Some people consider it useful to be able to do a SELECT inside isgl and have the output sent to a
file, for additional processing later, especially if the number of columns makes isgl display impractic-
able. However, isgl by default prints column headers and. in this scenario, they are a nuisance.

Therefore, printing the column headers -- previously a fixed feature -- can now be enabled/disabled
interactively or from a script by means of the

SET HEADi ng [ON | OFF]

command in the isgl shell. Asis the case with other SET commands, simply using SET HEAD will
toggle the state between activated and deactivated.

Note

There is no command line option to toggle headings off.

Using SET will display the state of SET HEAD, along with other switches that can be toggled on/off
intheisgl shell.

SHOW SYSTEM now shows predefined UDFs

The SHOW <object_type> command is meant to show user objects of that type. The SHOW SY S
TEM commmand is meant to show system objects but, until now, it only showed system tables. Now
it lists the predefined system UDFsincorporated into FB 2.

76

Command-line Utilities

It may be enhanced to list system viewsif we create some of them in the future.

SET SQLDA_DISPLAY ON/OFF
A. dos Santos Fernandes

This SQLDA_DISPLAY command shows the input SQLDA parameters of INSERTSs, UPDATES and
DELETEs. It was previously available only in DEBUG builds and has now been promoted to the pub-
lic builds. It shows the information for raw SQLVARs. Each SQLVAR represents a field in the
XSQLDA, the main structure used in the FB AP to talk to clients transferring data into and out of the
server.

Note

The state of this option is not included in the output when you type SET; inisgl to see the cur-
rent settings of most options.

SET TRANSACTION Enhanced
C. Vdderrama

The SET TRANSACTION statement has been enhanced so that, now, all TPB options are supported:
* NOAUTOUNDO

* IGNORELIMBO

¢ LOCK TIMEOUT <number>

Example
SET TRANSACTI ON WAI T SNAPSHOT NO AUTO UNDO LOCK TI MEQUT 10

See also the document doc/sgl.extensions/ README.set_transaction.txt.

SHOW DATABASE now Returns ODS Version Number
C. Vaderrama

ODS (On-Disk Structure) version is now returned in the SHOW DATABASE command (C. Vader-
rama)

Ability to show the line number where an error happened in a script
C. Vaderrama

In previous versions, the only reasonable way to know where a script had caused an error was using
the switch -e for echoing commands, -0 to send the output to afile and -m to merge the error output to
the same file. This way, you could observe the commands isgl executed and the errors if they exist.
The script continued executing to the end. The server only gives a line number related to the single
command (statement) that it's executing, for some DSQL failures. For other errors, you only know the
statement caused problems.

With the addition of -b for bail as described in (1), the user is given the power to tell isql to stop ex-

7

Command-line Utilities

ecuting scripts when an error happens, but you still need to echo the commands to the output file to
discover which statement caused the failure.

Now, the ability to signal the script-related line number of afailure enables the user to go to the script
directly and find the offending statement. When the server provides line and column information, you
will be told the exact line of DML in the script that caused the problem. When the server only indic-
ates a failure, you will be told the starting line of the statement that caused the failure, related to the
whole script.

This feature works even if there are nested scripts, namely, if script SA includes script SB and SB
causes afalure, the line number is related to SB. When SB is read completely, isgl continues execut-
ing SA and then isgl continues counting lines related to SA, since each file gets a separate line
counter. A script SA includes SB when SA usesthe INPUT command to load SB.

Lines are counted according to what the underlying 10 layer considers separate lines. For ports using

EDITLINE, alineiswhat readline() providesin asingle call. The line length limit of 32767 bytes re-
mains unchanged.

ISQL Bugs Fixed

SF #910430 ISQL and database dialect

fixed by C. Valderrama, B. Rodriguez Somoza

What was fixed When 1SQL disconnected from a database, either by dropping it or by trying to

connect to a non-existent database, it remembered the SQL dialect of the previous connection, which
could lead to some inappropriate warning messages.

SF #223126 Misplaced collation when extracting metadadata with | SQL
fixed by B. Rodriguez Somoza

SF #223513 Ambiguity between tables and views

fixed by B. Rodriguez Somoza

SF #518349 ISQL SHOW mangles relationship

fixed by B. Rodriguez Somoza

Unregistered bug Possible crashes with long terminators

fixed by C. Valderrama

Unregistered bug Avoided several SQL> prompts when using the INPUT command interact-
ively.

78

Command-line Utilities

implemented by C. Valderrama

Unregistered bugs Some memory leaks

fixed by C. Valderrama

GSec Authentication Manager

Changes to the gsec utility include:

GSEC return code
C. Vaderrama

GSEC now returns an error code when used as a non-interactive utility. Zero indicates success; any

other code indicates failure.

GFix Server Utility

Changes to the gfix utility include:

New Shutdown States (Modes)
N. Samofatov, D. Y emanov

The options for gf i x -shut [down] have been extended to include two extra states or modes to

govern the shutdown.

New Syntax Pattern

gfi x <command> [<state>] [<options>]

<command> ::= {-shut | -online}
<state> ::= {normal | multi | single | full}
<options> ::= {-force <tinmeout> | -tran | -attach}

- "normal” state = online database

- "multi” state = multi-user shutdown mode (the legacy one, unlimited attachments of SY SDBA/own-
er are alowed)

- "single" state = single-user shutdown (only one attachment is allowed, used by the restore process)

- "full" state = full/exclusive shutdown (no attachments are allowed)

79

Command-line Utilities

Note

"Multi" isthe default state for -shut, "normal" is the default state for -online.

The modes can be switched sequentially:
normal <-> multi <-> single <-> full

Examples

gfix -shut single -force O
gfix -shut full -force O
gfix -online single

gfix -online

Y ou cannot use - shut to bring a database one level more "online" and you cannot use - onl i ne to
make a database more protected (an error will be thrown).

These are prohibited:
gfix -shut single -force O
gfix -shut multi -force O

gfix -online
gfix -online full

gfix -shut -force O
gfix -online single

80

Chapter 13

External Functions (UDFs)

Ability to Signal SQL NULL via a Null Pointer
C. Valderrama

Previous to Firebird 2, UDF authors only could guess that their UDFs might return a null, but they
had no way to ascertain it. This led to several problems with UDFs. It would often be assumed that a
null string would be passed as an empty string, a null numeric would be equivalent to zero and a null
date would mean the base date used by the engine.

For a numeric value, the author could not aways assume null if the UDF was compiled for an envir-
onment where it was known that null was not normally recognized.

Several UDFs, including the ib_udf library distributed with Firebird, assumed that an empty string
was more likely to signal a null parameter than a string of length zero. The trick may work with
CHAR type, since the minimum declared CHAR length is one and would contain a blank character
normally: hence, binary zero in the first position would have the effect of signalling NULL.

However, but it is not applicable to VARCHAR or CSTRING, where alength of zero isvalid.

The other solution was to rely on raw descriptors, but this imposes a lot more things to check than
they would want to tackle. The biggest problem is that the engine won't obey the declared type for a
parameter; it will simply send whatever data it has for that parameter, so the UDF is left to decide
whether to reject the result or to try to convert the parameter to the expected data type.

Since UDFs have no formal mechanism to signal errors, the returned value would have to be used as
an indicator.

The basic problem was to keep the simplicity of the typical declarations (no descriptors) while at the
same time being able to signal null.

The engine normally passed UDF parameters by reference. In practical terms, that means passing a
pointer to the data to tell the UDF that we have SQL NULL. However, we could not impose the risk
of crashing an unknown number of different, existing public and private UDFs that do not expect
NULL. The syntax had to be enhanced to enable NULL handling to be requested explicitly.

The solution, therefore, isto restrict a request for SQL NULL signaling to UDFs that are known to be
capable of dealing with the new scenario. To avoid adding more keywords, the NULL keyword is ap-
pended to the UDF parameter type and no other change is required.

Example

decl are external function sanple
int null
returns int by value...;

If you are aready using functions from i b_udf and want to take advantage of null signaling (and
null recognition) in some functions, you should connect to your desired database, run the script

81

External Functions (UDFs)

../ msc/upgrade/ib_udf _upgrade. sqgl that isin the Firebird directory, and commit after-
wards.

Caution

It is recommended to do this when no other users are connected to the database.

The code in the listed functions in that script has been modified to recognize null only when NULL is
signaled by the engine. Therefore, starting with FB v2, rtrim(), |l tri m() and severa other string
functions no longer assume that an empty string means a NULL string.

The functions won't crash if you don't upgrade: they will simply be unable to detect NULL.

If you have never used ib_udf in your database and want to do so, you should connect to the database,
run the script . . / udf /i b_udf 2. sql , preferably when no other users are connected, and commit
afterwards.

Note
* Notethe"2" at the end of the name.

» Theorigina script for FB v1.5 is still available in the same directory.

UDF library diagnostic messages improved
A. Peshkov

Diagnostics regarding a missing/unusable UDF module have previously made it hard to tell whether a

module was missing or access to it was being denied due to the UDFAccess setting in firebird.conf.
Now we have separate, understandable messages for each case.

UDFs Added and Changed

UDFs added or enhanced in Firebird 2.0's supplied libraries are:

IB_UDF_srand()
F. Schlottmann-Goedde

IB_UDF srand isnow availableinthe IB_UDF library. Description to come.

IB_UDF_lower

The function| B_UDF_| ower () intheIB_UDF library might conflict with the new internal function
I ower (), if you try to declare it in a database using the ib_udf.sgl script from a previous Firebird
version.

/* ib_udf.sql declaration that now causes conflict */
DECLARE EXTERNAL FUNCTI ON | ower

CSTRI NG 255)

RETURNS CSTRI NG 255) FREE_IT

82

External Functions (UDFs)

ENTRY_PO NT ' | B_UDF_| ower' MODULE_NAME 'ib_udf';

The problem will be resolved in the latest version of the new ib_udf2.sgl script, where the old UDF is
declared using a quoted identifier.

/* New declaration in ib_udf2.sql */
DECLARE EXTERNAL FUNCTI ON " LOAER'
CSTRI NG(255) NULL
RETURNS CSTRI NG(255) FREE IT
ENTRY_PO NT ' I B_UDF_| ower' MODULE_NAME 'ib_udf';

Tip

It is preferable to use the interna function LOWER() than to call the UDF.

83

Chapter 14

New Configuration
Parameters and Changes

ExternalFileAccess
A. Peshkov

Modified in Firebird 2, to alow the first path cited in ExternalFilesAccess to be used as the default
when anew external fileis created.

LegacyHash
A. Peshkov

This parameter enables you to temporarily configure Firebird 2's new security to run with your old
passwords in an upgraded security database (security.fdb). Refer to the Security DB Upgrade Security
section for instructions on upgrading your existing Firebird 1.5 security.fdb (or arenamed isc4.gdb) to
the new security database layout.

Redirection
A. Peshkov

Parameter for controlling redirection of remote requests. It controls the multi-hop capability that was
broken in InterBase 6 and is restored in Firebird 2.

About Multi-hop

When you attach to some database using multiple hosts in the connection string, only the last host in
this list is the one that opens the database. The other hosts act as intermediate gateways on port
gds db. Previously, when working, this feature was available unconditionally. Now, it can be con-
figured.

Remote redirection is turned off by default.

Caution

If you are considering enabling multi-hop capability, please study the warning text that accompanies
this parameter in fb.conf.

New Configuration Parameters and Changes

GCPolicy

V. Horsun

Garbage collection policy. It is now possible to choose the policy for garbage collection on Super-
Server. The possible settings are cooperative, background and combined, as explained in the notes for
GPolicyinfirebird. conf.

Not applicable to Classic, which supports only cooperative garbage collection. More detail to come.

UsePriorityScheduler
A. Peshkov

Setting this parameter to zero now disables switching of thread priorities completely. It affects only
the Win32 SuperServer.

TCPNoNagle has changed

K. Kuznetzov

The default value for TcpNoNagleisnow TCP_NODELAY .

DeadThreadsCollection is no longer used
A. Peshkov

The DeadThreadsCollection parameter is no longer used at al. Dead threads are now efficiently re-
leased "on the fly", making configuration unnecessary. Firebird 2.0 silently ignores this parameter.

New parameter OldColumnNaming
P. Reeves

The parameter OldColumnNaming has been ported forward from Firebird 1.5.3. This parameter al-
lows users to revert to pre-V1.5 column naming behaviour in SELECT expressions. The installation
default is O (disabled). If it is enabled, the engine will not attempt to supply run-time identifiers, e.g.
CONCATENATION for derived fields where the developer has neglected to provide identifiers.

Important

This setting affects all databases on the server and will potentially produce exceptions or unpre-
dicted results where mixed applications are implemented.

85

Chapter 15

Installation and
Compatibility Notes

Mostly unwritten so far!

Known Compatibility Issues
D. Yemanov

This section covers the compatibility issues for legacy systems being upgraded to Firebird 2.0.

Security in Firebird 2 (All Platforms)

Be aware of the following changes that introduce incompatibilities with how your existing applica-
tionsinterface with Firebird's security:

Direct connections to the security database are no longer allowed

Apart from the enhancement this offers to server security, it also isolates the mechanisms of au-
thentication from the implementation.

» User accounts can now be configured only by using the Services API or the GSEC utility.

» For backing up the security database, the Services API is now the only route. Y ou can employ
the-se[rvi ce] hostnane: servi ce_nmgr switch when invoking the gbak utility for this
purpose.

Non-SYSDBA users no longer can see other users' accountsin the security database

A non-privileged user can retrieve or modify only its own account and it can change its own pass-
word.

Remote attachments to the server without a login and password are now prohibited

» For attachments to Superserver, even root trying to connect locally without “localhost:” in the
database file string, will be rejected by the remote interface if a correct login is not supplied.

» Embedded access without login/password works fine. On Windows, authentication is bypassed.
On POSI X, the Unix user name is used to validate access to database files.

The security databaseisrenamed to securi ty2. f db

If you upgrade an existing installation, be sure to upgrade the security database using the provided
script in order to keep your existing user logins.

Before you begin the necessary alterations to commission an existing security database on the
Firebird 2.0 server, you should create a gbhak backup of your old security.fdb (from v.1.5) or
isc4.gdb (from v.1.0) using the old server's version of gbak and then restore it using the Firebird

86

Installation and Compatibility Notes

2.0 gbak.

Important

You must make sure that you restore the security database to have a page size of at least 4 Kb.
The new security2.fdb will not work with a smaller page size.

Warning

A smple'cp security.fdb security2.fdb' will make it impossible to attach to the
firebird server !

For more details see the notes in the chapter on security, New Security Features. Also read the file
security_dat abase. t xt inthe upgrade directory beneath the root directory of your installa-
tion.

Password hashes are now generated using the SHA-1 algorithm instead of the old DES one

If you want to preserve your existing security database by using the security_database.sql script to
upgrade it, you'll need to set the LegacyHash parameter in firebird.conf to 1 (TRUE) initialy.
However, it is recommended that you change the users' passwords and then return LegacyHash to
its default value (0) in order to keep your installation safe.

To find out more, read the chapter devoted to the New Security Features.

Other Issues (All Platforms)

When installing and configuring, be aware of the following issues:

Configuration Parameters

Configuration parameter DeadThreadsCollection is deprecated

The parameter DeadThreadsCollection for Superserver in firebird.conf is deprecated and will be
ignored if set. Firebird version 2 efficiently cleans up dead threads straight away.

Change to GBAK -R Semantics

An important change has been done to prevent accidental database overwrites as the result of users
mistakenly treating “-R” as an abbreviation for “restore’.GBAK -R was formerly a shortcut for
“-REPLACE_DATABASE". Now the -R switch no longer restores a database by overwriting an ex-
isting one, but instead reports an error.

If you actually want the former behaviour, you have two alternatives:

» Specify the full syntax GBAK - REPLACE DATABASE. There is a new shortcut for the -
REPLACE_DATABASE switch: GBAK - REP

OR

» Usethe new command - R ECREATE_DATABASE] OVERWRI TE. The - R shortcut now represents
the -RIECREATE_DATABASE] switch and the OVERWRITE keyword must be present in either
the full or the abbreviated form.

87

Installation and Compatibility Notes

Warning

If you use the full syntax, you are expected to know what this restore mode actually means and have
some recovery strategy available if the backup subsequently turns out to be unrestorable.

SQL Migration Issues
The following language changes will affect existing systems:

Views made updatable via triggers no longer perform direct table operations

In former versions, a naturally updatable view with triggers passed the DML operation to the un-
derlying table and executed the triggers as well. The result was that, if you followed the official
documentation and used triggers to perform a table update (inserted to, updated or deleted from
the underlying table), the operation was done twice: once executing the view's trigger code and
again executing the table's trigger code. This situation caused performance problems or excep-
tions, particularly if blobs were involved.

Now, if you define triggers for a naturally updatable view, it becomes effectively like a non-
updatable view that has triggers to make it updatable, in that a DML request has to be defined on
the view to make the operation on the underlying table happen, viz.

1. if the view's triggers define a DML operation on the underlying table, the operation in ques-
tion is executed once and the table triggers will operate on the outcome of the view's triggers

2. if the view's triggers do not define any DML request on the underlying table then no DML
operation will take place in that table

Important

Some existing code may depend on the assumption that requesting a DML operation on an up-
datable view with triggers defined would cause the said operation to occur automatically, as it
does for an updatable view with no triggers. For example, this “feature” might have been used
as a quick way to write records to a log table en route to the “real” update. Now, it will be ne-
cessary to adjust your view trigger code in order to make the update happen at all.

New Reserved Words (Keywords)
A number of new reserved keywords are introduced. The full list is available in the chapter New
Reserved Words and Changes and adso in Firebirds CVS tree in |/
doc/sgl.extentionsy READM E.keywords. Y ou must ensure that your DSQL statements and proced-
ure/trigger sources do not contain those keywords as identifiers.

Note

In a Dialect 3 database, such identifiers can be redefined using the same words, as long as the
identifiers are enclosed in double-quotes. In a Dialect 1 database there is no way to retain them:
they must be redefined with new, legal words.

CHECK Constraint Change

Formerly, CHECK constraints were not SQL standard-compliant in regard to the handling of
NULL. For example, CHECK (DEPTNO IN (10, 20, 30)) should alow NULL in the
DEPTNO column but it did not.

In Firebird 2.0, if you need to make NULL invalid in a CHECK constraint, you must do so expli-
citly by extending the constraint. Using the example above:

88

Installation and Compatibility Notes

CHECK (DEPTNO IN (10, 20, 30) AND DEPTNO I'S NOT NULL)

Qualifying columns by table name is prohibited if table is aliased
Attempting to use the table name to qualify columns of an aliased table, e.g. SELECT TAB. A
FROM TAB T is now prohibited, in accordance with the SQL specification. You should use the
table alias for every qudlifier:

SELECT T. A FROM TAB T

Stricter validation of user-specified plans
User-specified plans are validated more strictly than they were formerly. If you encounter an ex-
ception related to plans, e.g. Table T is not referenced in plan, it will be necessary
to inspect your procedure and trigger sources and adjust the plans to make them semantically cor-

rect.

I mportant

Such errors could aso show up during the restore process when you are migrating databases to
the new version. It will be necessary to correct these conditions in original database before you

attempt to perform a backup/restore cycle.

Restrictions on assignment to context variablesin triggers
» Assignmentsto the OLD context variables are now prohibited for every kind of trigger.

» Assignmentsto NEW context variables in AFTER-triggers are also prohibited.

Tip
If you get an unexpected error Cannot update a read-only col umm then violation of
one of these restrictions will be the source of the exception.

Inserting to or updating the same column more than once in the same statement is now prohibited
It is no longer allowed to make multiple “hits’ on the same column in an INSERT or UPDATE
statement. Thus, a statement like

I NSERT INTO T(A, B, A

or
UPDATE T SET A=x, B=vy, A=1z
will be rgjected in Firebird 2.n, even though it was tolerated in InterBase and previous Firebird

versions.

Using a plan without a referenceto all tablesin query
Using a plan without a reference to al tables in query is now illegal and will cause an exception.
Some previous versions would accept plans with missing references, but it was a bug.

89

Installation and Compatibility Notes

Reference to "current of <cursor>" outside scope of loop

In Firebird 1.5 and earlier, referring to "current of <cursor>" outside the scope of the cursor loop
was accepted by the PSQL parser, allowing the likelihood of run-time occurring as a result. Now,
it will be rejected in the procedure or trigger definition.

NULLSare now “ lowest” for sorts

NULL is now treated as the lowest possible value for ordering purposes and sets ordered on nul-
lable criteria are sorted accordingly. Thus:

» for ascending sorts NULL s are placed at the beginning of the result set

 for descending sorts NULLs are placed at the end of the result set

Important

In former versions, NULLs were always on top. If you have client code or PSQL definitons that
rely on the legacy NULLs placement, it will be necessary to use the NULLS FIRST option in
your ORDER BY clauses.

CURRENT_TIMESTAMP now returns milliseconds by default
The context variable CURRENT_TIMESTAMP now returns milliseconds by default, while it
truncated sub-seconds back to seconds in former versions. If you need to continue receiving the
truncated value, you will now need to specify the required accuracy explicitly, i.e. specify
CURRENT_TI MESTAMP(0) .

ORDER BY <ordinal-number> now causes SELECT * expansion

When columns are referred to by the “ordinal number” (degree) in an ORDER BY clause, when
the output list uses SELECT * FROM ... syntax, the column list will be expanded and taken
into account when determining which column the number refersto.

This means that, now, SELECT T1.*, T2.COL FROM T1l, T2 ORDER BY 2 sortsonthe
second column of table T1, while the previous versions sorted on T2.COL.

Tip

This change makes it possible to specify querieslike SELECT * FROM TAB ORDER BY 5.

Performance
The following changes should be noted as possible sources of performance loss:

ALL predicate may be slow

Formerly, using the ALL existence predicate could return wrong results in cases where an index
was involved. To correct the bug, this version will never use an index with ALL. This change may
degrade performance.

Superserver garbage collection changes

Formerly, Superserver performed only background garbage collection. By contrast, Classic per-
forms “ cooperative” GC, where multiple connections share the performance hit of GC.

Superserver's default behaviour for GC is now to combine cooperative and background modes.
The new default behaviour generally guarantees better overall performance as the garbage collec-
tion is performed online, curtailing the growth of version chains under high load.

It means that some queries may be slower to start to return data if the volume of old record ver-

90

Installation and Compatibility Notes

sions in the affected tables is especially high. ODS10 and lower databases, having ineffective
garbage collection on indices, will be particularly prone to this problem.

The GCPolicy parameter in firebird.conf alows the former behaviour to be reinstated if you have
databases exhibiting this problem.

Firebird API
Note the following changes affecting the API

isc_interprete is deprecated
isc_interprete() is deprecated as dangerous. Use fb_interpret() instead.

Events callback routine declaration corrected
The new prototypefor i sc_cal | back reflectsthe actua callback signature. Formerly, it was:

typedef void (* isc_callback) ();

| SC_STATUS i sc_que_event s(
| SC_ STATUS *, isc_db handle *, |SC LONG *, short,
char *, isc_callback, void *);

Inthe Firebird 2.0 APl itis;

typedef void (*I SC_EVENT_CALLBACK)
(voi d*, |SC USHORT, const |SC UCHAR*);

| SC_STATUS i sc_que_event s(
| SC STATUS*, isc_db _handle*, |SC LONG, short,
const | SC SCHAR*, |SC EVENT CALLBACK, void*);

It may cause a compile-time incompatibility, as older event handling programs cannot be com-
piled if they use a bit different signature for a callback routine (e.g., voi d* instead of const
char* asthelast parameter).

Windows-Specific Issues

For installing, configuring and connecting to Windows servers, be aware of the following issues:

Windows Local Connection Protocol with XNet

The transport internals for the local protocol have been reimplemented (XNET instead of 1PServer).
With regard to the local protocol, the new client library is therefore incompatible with older servers
and older client libraries are incompatible with the Firebird 2 servers.

If you need to use the local protocol, please ensure your server and client binaries have exactly the
same version numbers,

Client Impersonation No Longer Works

WNET (ak.a. NetBEUI, Named Pipes) protocol no longer performs client impersonation. For more
information, refer to Change to WNET Protcol in the chapter about new features.

91

Installation and Compatibility Notes

Installation

Content still to come.

Windows

Interactive Option Added to instsvc.exe
D. Yemanov

The optional switch -i[interactive] has been implemented in i nst svc. exe to enable an interactive
mode for Local System services

Note

i nst svc. exe isacommand-line utility for installing and uninstalling the Firebird service. It does
not apply to Windows systems that do not have the ability to run services (Win9x, WinME).

For detailed usage instructions, refer to the document README. i nst svc in the doc directory of
your Firebird installation.

POSIX

Content still to come.

92

Chapter 16

Bugs Fixed

The following bugs present in Firebird 1.5 were fixed. Note that, in many cases, the bug-fixes were
backported to Firebird 1.5.x sub-releases.

Important

For those testing this beta after testing the Beta 1 release, bug-fixes done since Beta 1 can be found
in the document What sNew in the Firebird 2.0 doc directory. For the convenience of testers, Beta 1
bugs found and fixed are listed at the end of this chapter.

General Engine Bugs

Not registered The system transaction was being reported as dead.

fixed by A. dos Santos Fernandes, V. Horsun

Not registered The server would lock up after an unsuccessful attach to the security database.
fixed by D. Yemanov, C. Valderrama

SF #1076858 Source of possible corruption in Classic server.

fixed by V. Horsun

SF #1116809 Incorrect data type conversion.

fixed by A. dos Santos Fernandes

SF #1111570 Problem dropping a table having a check constraint referencing more than one
column.

fixed by C. Valderrama

Not registered Usage of an invalid index in an explicit plan caused garbage to be shown in the
error message instead of the rejected index name.

fixed by C. Valderrama

93

Bugs Fixed

SF #543106 Bug with ALL keyword. MORE INFO REQUIRED.

fixed by D. Yemanov

Not registered System users "AUTHENTICATOR" and "SWEEPER" were lost, causing "SQL
SERVER" to be reported instead.

fixed by A. Peshkov

Not registered Don't rollback prepared 2PC sub-transaction. (Description needs clarifying,
Viad!)

fixed by V. Horsun

Not registered Memory consumption became exorbitant when blobs were converted from strings
during request processing. For example, the problem would appear when running a script with a series
of statements like

insert into t(a,b)
val ues(N, <literal string>);
when b was blob and the engine was performing the conversion internally.

fixed by N. Samofatov

Not registered Materialization of BLOBs was not invalidating temporary BLOB IDs soon
enough.

A blob is created as an orphan. This blob has a blob id of {0,dlot}. It is volatile, meaning that, if the
connection terminates, it will become éligible for garbage collection. Once a blob is assigned to field
inatable, it is said to be materialized. If the transaction that did the assignment commits, the blob has
an anchor in the table and will be considered permanent. Itsblob id is{relation_id,slot}.

In situations where internal code is referencing the blob by its old, volatile blob id, the references are
"routed” to the materialized blob, until the session is closed.

fixed by N. Samofatov

Solution Now, the references to a volatile blob are checked and, when there are no more refer-
encestoit, it isinvalidated.

Not registered Conversion from string to blob had a memory leak.

fixed by N. Samofatov

94

Bugs Fixed

S- #750664 I ssues with read-only databases and transactions.
fixed by N. Samofatov

Not registered When one classic process dropped aforeign key and another process was trying to
delete master record, the error 'partner index not found' would be thrown.

fixed by V. Horsun

Various server bugs

1. eliminated redundant attemptsto get an exclusive database lock during shutdown

2. corrected inaccurate timeout counting

3. database lock was not being released after bringing database online in the exclusive mode
4. removed a5 sec timeout when bringing database online in the shared mode

fixed by D. Yemanov

SF #1186607 Foreign key relation VARCHAR <-> INT should not have caused an exception.
fixed by V. Horsun

SF #1211325 Fixed problems with BLOBs in external tables.

fixed by V. Horsun

Not registered After an attempt to "create view v(cl) as select 1 from v" all clones of the system
reguest would remain active forever.

fixed by A. Peshkov

SF #1191006 Use of WHERE paramsin SUM would return incorrect results.
fixed by A. Brinkman

SF #750662 Fixed a bug involving multiple declaration of blob filters.

fixed by D. Yemanov

95

Bugs Fixed

SF #743679 FIRST / SKIP was not as well implemented asit could be.
fixed by D. Yemanov

Not registered CPU load would rise to 100% when an 1/O error caused a rollover to a non-
existent shadow.

fixed by D. Yemanov

Not registered "Cannot find record fragment" bugcheck could occur during garbage collection on
the system tables.

fixed by V. Horsun

SF #1211328 Error reporting cited maximum BLOB size wrongly.

fixed by D. Yemanov

SF #1292007 Duplicated field namesin INSERT and UPDATE statements were getting through.
fixed by C. Valderrama

Not registered The SQL string was being stored truncated within the RDB$* _ SOURCE columns
in some cases

fixed by D. Yemanov

Not registered Broken implementation of the MATCHES predicate in GDML
fixed by D. Yemanov

SF bug #1404215 Column dependencies were not being stored for views.
fixed by D. Yemanov

SF bug #1191206 A few constraint issues.

fixed by D. Yemanov

SF bug #609538 Alter Index on a Foreign Key index should cause an exception and it did, but
the error message was not appropriate.

96

Bugs Fixed

fixed by D. Yemanov

S bug #1175157 An error in the thread schedul er was causing the server to lock up.

fixed by V. Horsun

Not registered

1. Improper thread data operations were occurring during the protocol port cleanup

2. Transaction rollback and attachment cleanup for broken TCP connections was faulty

fixed by V. Horsun, D. Yemanov

Not registered A wrong error message was decoded when firebird.msg was missing or outdated.
fixed by D. Yemanov

Not registered Buffer overflows inside the BLR->ASCII blob filter were causing memory cor-
ruption and server crashes.

fixed by D. Yemanov

Not registered A successful status vector could be reported to the user after afailed DDL opera-
tion.

fixed by V. Horsun

Not registered Threading issues in the DSQL metadata cache were causing unexpected “invalid
transaction handle€” errors under load.

fixed by D. Yemanov
Not registered Wrong results would be returned by the division operation after DDL changes.

Example

create table test(fld nuneric(18, 2));
insert into test (fld) values (1);

commi t;
alter table test alter fld type nuneric(18, 3);
select fld/3 fromtest; -- returns 0.033 instead of expected 0.333

fixed by D. Yemanov

97

Bugs Fixed

SF #1184099 Incorrect padding was exhibited when using character set OCTETS.
fixed by C. Valderrama, A. dos Santos Fernandes

Not registered Unexpected errors were occurring because of improperly handled dead record
versions created by the system transaction during DDL operations.

fixed by A. Harrison

Not registered Superserver could deadlock in the DSQL metadata cache.
fixed by A. Peshkov

S # The server could crash during certain DDL actions.

Example

alter table rdb$rel ations
add rdb$gar bage varchar (30);

fixed by J. Sarkey
S #223060 Processing of the GREATER-THAN operator was too slow.
fixed by V. Horsun

Not registered Check constraints were not SQL standard-compliant in regard to the handling of
NULL.

Example

CHECK (DEPTNO IN (10, 20, 30)) shouldalow NULL inthe DEPTNO column but it did
not.

fixed by P. Ruizendaal, D. Yemanov

Not registered It was possible to create a primary key on a column having NULLSs present. For
example,

create table bug (f1 int not null, f2 int not null);

insert into bug (f1, f2) values (1, 1);

commit;

alter table bug add pk int not null primry key;

98

Bugs Fixed

fixed by V. Horsun
SF #1334034 REVOKE was damaging the ACL (Access Control List).

fixed by D. Yemanov

Services Manager

Not registered Incorrect encryption of password when the services manager was invoked by the
Windows Embedded client.

fixed by A. Peshkov

GFix Bugs

SF #1242106 Shutdown bugs:

1. Incorrect commit instead of rollback during shutdown

2. Crash or bugcheck during SuperServer shutdown with active attachments
fixed by D. Yemanov

Not registered Crash occurred in service gfix code when it tried to reattach to a currently un-
available database. Since a service cannot interact with the end-user, an endless loop leads to over-
flowing the service buffer and causing a crash as aresult.

fixed by V. Horsun

DSQL Bugs
Not registered The engine would fail to parse the SQL ROLE keyword properly.
fixed by C. Valderrama

Not registered EXECUTE PROCEDURE did not check SQL permissions at the prepare stage.

fixed by D. Yemanov

99

Bugs Fixed

SF #217042 Weird SQL constructions are not always properly validated.

Partly fixed by C. Valderrama

SF #1108909 View could be created without rights on a table name like "a b"

fixed by C. Valderrama

SF #512975 Clear embedded spaces and CR+LF before DEFAULT clauses when storing them in
system tables

Implemented by C. Valderrama

SF #910423 Anomaly with ALTER TABLE altering a column's type to VARCHAR, when de-
termining valid length of the string.

SQL> CREATE TABLE tab (i I NTEGER);

SQL> | NSERT I NTO tab VALUES (2000000000);
SQL> COWM T,

SQL> ALTER TABLE tab ALTER i TYPE VARCHAR(5);
Statenment failed, SQLCODE = -607

unsuccessful netadata update
-New si ze specified for colum | nust be at |east 11 characters.

i.e., it would need potentially 10 characters for the numerals and one for the negative sign.
SQ.> ALTER TABLE tab ALTER i TYPE VARCHAR(9);

This command should fail with the same error, but it did not, which could later lead to unreadable
data

SQ.> SELECT * FROM t ab;
I

Statenment failed, SQLCODE = -413
conversion error fromstring "2000000000"

fixed by C. Valderrama

Not registered There were some rounding problemsin date/time arithmetic.

fixed by N. Samofatov

100

Bugs Fixed

Not registered Line numbersin DSQL parser were being miscounted when multi-line literals and
identifiers were used.

fixed by N. Samofatov

SF #784121 Some expressions in outer join conditions were causing problems.
fixed by C. Valderrama

Not registered There were some dialect- specific arithmetic bugs:

Dialect 1

1. '15/'0.5 did not work

2. avg('1.5) did not work

3. 5*'L5 produced an INT result instead of DOUBLE PRECISION

4. sum ('1.5") produced a NUMERIC(15, 2) result instead of DOUBLE PRECISION
5. -'1.5did not work

Dialect 3

e 'L5*'0.5 and'1.5'/'0.5 were not forbidden, but they should have been.

fixed by D. Yemanov

SF #1250150 There was a situation where a procedure could not be dropped.
fixed by V. Horsun

SF #1238104 Internal sweep report was incorrect.

fixed by C. Valderrama

SF #1371274 The infamous “ Datatype unknown” error when attempting some castings has been
eliminated. It is now possible to use CAST to advise the engine about the data type of a parameter.

fixed by D. Yemanov

SF #1292106 ORDER BY with FOR UPDATE WITH LOCK would trash the index.

fixed by D. Yemanov

101

Bugs Fixed

SF #1368741 UPPER() was returning wrong results.

fixed by A. dos Santos Fernandes

PSQL Bugs
SF #1124720 Problem with "FOR EXECUTE STATEMENT ... DO SUSPEND;"
fixed by A. Peshkov

Not registered Memory leakage was occurring when selectable stored procedures were called
from PSQL or in subqueries.

fixed by N. Samofatov
Not registered EXECUTE STATEMENT had amemory leak.
fixed by A. Peshkov

Not registered The wrong error would be reported when non-active contexts were accessed in
multi-action triggers.

fixed by D. Yemanov

Not registered Aninternal error was reported when attempting to pass/return blobs to/from string
functions inside PSQL.

fixed by D. Yemanov

Crash Conditions
Not registered An overflow in the plan buffer would cause the server to crash.
fixed by D. Yemanov

Not registered Possible server lockup/crash when 'RELEASE SAVEPOINT xxx ONLY' syntax
is used or when existing savepoint name is reused in transaction context

fixed by N. Samofatov

102

Bugs Fixed

Not registered Rare client crashes caused by improperly cleaned XDR packets.
fixed by D. Yemanov

Not registered Server crash during SuperServer shutdown

fixed by A. Peshkov

SF #1057538 The server would crash if the output parameter of a UDF was not the last paramet-
er.

fixed by C. Valderrama
Not registered A number of possible server crash conditions had been reported by Valgrind.
fixed by N. Samofatov

Not registered Server would crash when awrong type or domain name was specified when chan-
ging the data type for a column.

fixed by N. Samofatov

Not registered Incorrect accounting of attachment pointers used inside the lock structure was
causing the server to crash.

fixed by N. Samofatov

Not registered Inv.1.5, random crashes would occur during arestore.

fixed by J. Sarkey

Not registered Crash/lock-up with multiple calls of isc_dsqgl_prepare for a single statement.
fixed by N. Samofatov

Not registered Server would crash when the system year was set too high or too low.

fixed by D. Yemanov

103

Bugs Fixed

Not registered Server would crash when the stream number exceeded the limit.
fixed by D. Yemanov

Not registered Server would crash when outer aggregation was performed and explicit plans
were used in subqueries.

fixed by D. Yemanov
Not registered DECLARE FILTER would cause the server to crash.
fixed by A. Peshkov

Not registered The server would crash when a PLAN for a VIEW was specified but no table ali-
aswas given.

fixed by V. Horsun

Not registered Server would crash during the table metadata scan in some cases.

fixed by D. Yemanov

Not registered Server would crash when too big a key was specified for an index retrieval.
fixed by D. Yemanov

Not registered Server would crash when manipulating input DPB due to memory corruption in
Parameter Blocks management.

fixed by C. Valderrama

Not registered Server would crash when attempting to restore a database backup with corrupted
VARCHAR data.

fixed by D. Yemanov

Remote Interface Bugs

SF #1065511 Clients on Windows XP SP2 were slow connecting to a Linux server.

104

Bugs Fixed

fixed by N. Samofatov

S- #571026 INET/INET _connect: gethostbyname was not working properly.
fixed by D. Yemanov

SF #223058 Multi-hop server capability was broken.

fixed by D. Yemanov

Not registered Fixed memory leak from connection pool inisc_database info.
fixed by N. Samofatov

Not registered Database aliases were not working in WNET.

fixed by D. Yemanov

Not registered Client would crash while disconnecting with an active event listener.
fixed by D. Yemanov

Not registered Theclient library would not react to environment variables being set via SetEnvir-
onmentV ariable().

fixed by C. Valderrama

Indexing & Optimization
SF #459059D Index breaks = ANY result. MORE INFO REQUIRED.

fixed by N. Samofatov

Not registered Ambiguous queries were still possible under some conditions.

fixed by A. Brinkman

SF #735720 SELECT ... STARTING WITH :v waswrong when :v ="

105

Bugs Fixed

fixed by A. Brinkman

Not registered There were issues with negative dates, i.e. those below Julian date [zero], when
stored in indices.

fixed by A. Brinkman

SF #1211354 Redundant evaluations were occurring in COALESCE.

fixed by A. Brinkman

Not registered Error "index key too big" would occur when creating a descending index.
fixed by V. Horsun

SF #1242982 Bug in compound index key mangling.

fixed by A. Brinkman

Vulnerabilities

Not registered Severa buffer overflows were fixed.
fixed by A. Peshkov

Not registered A few internal buffer overflows are fixed.
fixed by A. Peshkov

SF #1155520 Fixed avulnerability that could make it possible for a user who was neither SY SD-
BA nor owner to create a database that would overwrite an existing database.

fixed by A. dos Santos Fernandes

ISQL Bugs

SF #781610 Commentsin ISQL using '--' were causing problems.

106

Bugs Fixed

fixed by J. Bellardo, B. Rodriguez Samoza

Not registered ISQL_disconnect_database was overwriting the Quiet flag permanently.
fixed by M. Penchev, C. Valderrama

SF #1208932 SHOW GRANT did not distinguish object types.

fixed by C. Valderrama

SF #494981 Bad exception report.

fixed by C. Valderrama

SF #450404 I1SQL would uppercase role in the command line.

fixed by C. Valderrama

Various, not registered

1. Fix for the -b (Bail On Error) option when SQL commands are issued and no db connection ex-
ists yet.

2. Applied Mirodav Penchev's patch for bug with -Q always returning 1 to the operating system,
discovered by lvan Prenosil.

fixed by M. Penchev, C. Valderrama

Not registered Metadata extraction for triggers, check constraints and views with check option
was wrong.

fixed by C. Valderrama, D. Yemanov

International Character Set Bugs
SF #1016040 Missing external libraries would cause an engine exception.

fixed by A. dos Santos Fernandes

Not registered

107

Bugs Fixed

1. Charset/collation issues for expression-based view columns
2. Lost charset/collation for local PSQL variables
fixed by D. Yemanov

Not registered Comparisons between strings in NONE and another character set would cause an
error.

fixed by D. Yemanov, A. dos Santos Fernandes

S #1244126 There was a problem updating some text BLOBs when connected with character
set NONE.

fixed by A. dos Santos Fernandes
SF #1242379 Applying a collation could change aVARCHAR's length

fixed by A. dos Santos Fernandes

SQL Privileges

Not registered Privileges granted to procedures/triggers/views were being preserved after the ob-
ject had been dropped.

fixed by D. Yemanov

Not registered Column-level SQL privileges were being preserved after the affected column was
dropped.

fixed by D. Yemanov

SF #223128 SY SDBA could grant non-existent roles

fixed by D. Yemanov

UDF Bugs

Not registered The UDF AddMonth() in the UDF library FBUDF had a bug that displayed itself
when the calculation rolled the month past the end of the year.

108

Bugs Fixed

fixed by C. Valderram

Not registered Diagnostics when a UDF module was missing/unusable needed improvement.
fixed by A. Peshkov

Not registered There were some problems with the mapping of UDF arguments to parameters.
fixed by N. Samofatov

Not registered UDF arguments were being prepared/optimized twice.

fixed by D. Yemanov

SF #544132, #728839 Nulls handling in UDFs was causing problems.

fixed by C. Valderrama

Not registered UDF access checking was incorrect.

fixed by D. Yemanov

GBak

Not registered GBAK could not restore a database containing broken foreign keys.
fixed by A. Peshkov

Not registered GBAK would stall when used via the Services Manager and an invalid command
line was passed.

fixed by V. Horsun

Not registered A computed column of ablob or array type would zero values in the first column
of the table being restored.

fixed by D. Yemanov

109

Bugs Fixed

Not registered Fixed some backup issues with stream BLOBs that caused them to be truncated
under some conditions.

fixed by N. Samofatov
Not registered Interdependent views caused problems during the restore process.
fixed by A. Brinkman

SF #750659 If you want to start a fresh db, you should be able to restore a backup done with the
metadata-only option. Generator values were resisting metadata-only backup and retaining latest val-
ues from the live database, instead of resetting the generators to zero.

fixed by C. Valderrama, D. Yemanov

SF #908319 Inv.1.5, wrong error messages would appear when using gbak with service_mgr.
fixed by V. Horsun

SF #1122344 gbak -kill option would drop an existing shadow.

fixed by D. Yemanov

Not registered gbak was adding garbage bytes to the SPB when called in the -Se[rvice_mgr]
mode.

fixed by A. dos Santos Fernandes, C. Valderrama, V. Horsun

GPre

SF #504978 GPRE variable names were being truncated.

fixed by C. Valderrama

S- #627677 GPRE "ANSI85 compatible COBOL" switch was broken.
fixed by C. Valderrama

SF #1103666 GPRE was using inconsistent lengths

110

Bugs Fixed

fixed by C. Valderrama

SF #1103670 GPRE would invalidate a quoted cursor name after it was opened.
fixed by C. Valderrama

SF #1103683 GPRE was not checking the length of the DB alias.

fixed by C. Valderrama

SF #1103740 GPRE did not detect duplicate quoted cursor names

fixed by C. Valderrama

Not registered GPRE could not generate more than 32,000 identifiers.

fixed by A. Harrison

GSTAT

Not registered Error output by GSTAT on Windows 32 was incorrect.

fixed by C. Valderrama

Code Clean-up

(Not a bug) -L[ocal] command-line switch for SS on Win32 is gone

by D. Yemanov

Assorted clean-up

» Extensive, ongoing code cleanup and style standardization

» Broken write-ahead logging (WAL) and journalling code is fully cleaned out

by C. Valderrama

111

Bugs Fixed

Bugs Introduced in Beta 1

Not registered Problem causing collation to be lost in the sglsubtype when using a dynamic char-
acter set.

fixed by A. dos Santos Fernandes
Not registered Expression indices were working incorrectly with the COLLATE clause.
fixed by D. Yemanov

Not registered Wrong results were returned when a few candidate predicates had different
matching rules affecting the lower or upper bounds of an index.

fixed by A. Brinkman

Not registered Remote connections to the Services API performed with a wrong host were get-
ting served by the local protocol instead of throwing an error

fixed by D. Yemanov

Not registered A Bugcheck #205 (index bucket overfilled) was being exhibited during restore.
fixed by D. Yemanov

Not registered Expression indices could not be used for navigation in outer joins.

fixed by D. Yemanov

Not registered Errors were being reported wrongly or incompletely by system triggers.

fixed by D. Yemanov

SF #229237 Support for handling blank passwords was poor. Blank passwords are now forbid-
den.

fixed by A. Peshkov

Not registered An infinite loop was being exhibited when fetching explicit PSQL cursors based
on anavigationally sorted stream.

112

Bugs Fixed

fixed by D. Yemanov

Not registered Unexpected warnings would appear about missing UDF libraries during restore
on Win32.

fixed by D. Yemanov

Not registered Linux SS performance was being degraded by a bug related to the management of
threads.

fixed by A. Peshkov

Not registered GFIX validation was incorrectly reporting about corruption of primary/unique in-
dices.

fixed by A. Brinkman

Index-related bugs, not registered A number of bugs related to indexing were detected and fixed:
1. complex, interdependent metadata took along time to restore

2. Indices were not used for small tables

3. Badjoin orders were being used for non-indexed relationships

fixed by A. Brinkman, D. Yemanov

Not registered The engine would allow data type changes to columns constrained by indexes.
fixed by D. Yemanov

Not registered Wrong result for STARTING WITH when the argument was a subquery contain-
ing CASE function.

fixed by A. dos Santos Fernandes

Not registered Backup of the security database using the Services APl was disallowed.

fixed by A. Peshkov

Not registered The server would crash when the TRIM() function was used in an aggregation

fixed by D. Yemanov

113

Bugs Fixed

Not registered Column names were getting lost when a UNION contained derived fields

fixed by A. Brinkman

Not registered The server would crash when a few expression indices were used simultaneously.
fixed by V. Horsun

Not registered Server would crash when attempting to |oad metadata for an expression index that
belonged to atable that was not scanned.

fixed by V. Horsun

Not registered The IDs of system generators were corrupted after arestore.

fixed by D. Yemanov

Not registered An explicit plan could be rejected or ignored in an ODS11 database.
fixed by A. Brinkman

Not registered Join order was being badly optimized.

fixed by D. Yemanov

Not registered Incorrect source SQL was being stored in the metadata for DEFAULT CUR-
RENT_TIME[STAMP].

fixed by V. Horsun, D. Yemanov

Not registered Column defaults were remaining cached after a DROP DEFAULT statement had
been executed.

fixed by V. Horsun

Not registered An invalid reference to RDB$SROLES.RDB$SYSTEM_FLAG in ODS10 data-
bases caused the server to crash.

fixed by C. Valderrama

114

Bugs Fixed

Not registered Changesto large blobs were causing incremental backups created afterwards to be
corrupted.

fixed by N. Samofatov
Not registered Subqueries/derived tablesin the HAVING clause were being checked incorrectly.
fixed by A. Brinkman

Not registered Memory corruption was causing the server to crash when using CUR-
RENT_TIME[STAMP] in some complex cases (nested procedure calls or views).

fixed by D. Yemanov

Not registered ALTER TABLE SET DEFAULT was incorrectly modifying RDB$FIELDS in-
stead of RDB$RELATION_FIELDS.

fixed by C. Valderrama

Not registered Anindex was not rebuilt after a change in the data type of akey column.
fixed by V. Horsun

SF #1192225 Automating NOT NULL in primary key columns was incomplete.

fixed by C. Valderrama

Not registered access permissions to the QL1 help database were wrong.

fixed by A. Peshkov

Not registered OLD/NEW context references were being improperly recognized as matching
columnsin another table.

fixed by A. Brinkman

115

Chapter 17

Appendix to Firebird 2
Release Notes

Security Upgrade Script
A. Peshkov

/*

*

L I T R R SRR R I R

Script security_database.sql, Revision 1.2 tagged T2_0_0_ Betal

The contents of this file are subject to the Initial

Devel oper's Public License Version 1.0 (the "License");

you may not use this file except in conpliance with the

Li cense. You nay obtain a copy of the License at
http://ww. i bphoeni x. conf mai n. nf s?a=i bphoeni x&page=i bp_i dpl

Sof tware distributed under the License is distributed AS IS,
W THOUT WARRANTY OF ANY KIND, either express or inplied.

See the License for the specific |anguage governing rights
and Iimtations under the License.

The Original Code was created by Al ex Peshkov on 16- Nov-2004
for the Firebird Open Source RDBMS proj ect.

Copyright (c) 2004 Al ex Peshkov
and all contributors signed bel ow

Al'l Rights Reserved.
Contributor(s):

1. tenporary table to alter donains correctly.

CREATE TABLE UTMP (

USER_NAME VARCHAR(128) CHARACTER SET ASCI |
SYS_USER_NAME VARCHAR(128) CHARACTER SET ASCI |
GROUP_NAME VARCHAR(128) CHARACTER SET ASCI I,

u b | NTEGER

[C D) | NTEGER

PASSWWD VARCHAR(64) CHARACTER SET BI NARY,
PRI VI LEGE I NTEGER

COMVENT BLOB SUB_TYPE TEXT SEGMVENT SI ZE 80

CHARACTER SET UNI CCDE_FSS,

FI RST_NANME VARCHAR(32) CHARACTER SET UNI CCDE_FSS

DEFAULT _UNI CODE_FSS

M DDLE_NAME VARCHAR(32) CHARACTER SET UNI CCDE_FSS

DEFAULT _UNI CODE_FSS

LAST_NAME VARCHAR(32) CHARACTER SET UNI CODE_FSS

DEFAULT _UNI CODE_FSS

co T

2. save users data

| NSERT | NTO UTMP(USER _NAME, SYS_USER NAME, GROUP_NAME,

116

Appendix to Firebird 2 Release Notes

UbD GD, PR VILEGE, COWENT, FIRST_NAVE, M DDLE_NAME,
LAST_NAME, PASSVD)
SELECT USER_NAME, SYS_USER NAME, GROUP_NANE,
U D, GD PR VILEGE, COMVENT, FIRST_NAME, M DDLE_NAME,
LAST_NAME, PASSWD
FROM USERS;
COW T;

-- 3. drop old tables and domai ns
DROP TABLE USERS;

DROP TABLE HOST | NFO,

COW T;

DRCOP DOVAI N COMMVENT;
DROP DOVAI N NAME_PART;
DRCP DOVAI N G D;

DROP DOVAI N HOST_KEY;
DROP DOVAI N HOST _NAME;
DRCOP DOVAI N PASSVD;
DRCP DOVAI N Ul D;

DROP DOVAI N USER _NAME;
DRCOP DOVAI N PRI VI LEGE;
COW T;

-- 4. create new objects in database

CREATE DOVAI N RDB$SCOMVENT AS BLOB SUB TYPE TEXT SEGVENT Sl ZE 80
CHARACTER SET UNI CODE_FSS;

CREATE DOVAI N RDBSNAVE_PART AS VARCHAR(32)
CHARACTER SET UNI CODE FSS DEFAULT _UNI CODE FSS '';

CREATE DOVAI N RDB$A D AS | NTEGER;

CREATE DOVAI N RDB$PASSWD AS VARCHAR(64) CHARACTER SET BI NARY;

CREATE DOVAI N RDB$UI D AS | NTEGER;

CREATE DOVAI N RDBSUSER NAME AS VARCHAR(128)

CHARACTER SET UNI CODE_FSS;

CREATE DOMAI N RDB$USER_PRI VI LEGE AS | NTECGER;

COW T;

CREATE TABLE RDB$USERS (
RDB$SUSER_NANME RDB$USER _NAME NOT NULL PRI MARY KEY,
/* local system user nane
for setuid for file perm ssions */
RDB$SYS USER NAME RDB$USER NAME,

RDB$GROUP_NAVE RDBSUSER _NANME,
RDB$UI D RDB$UI D,
RDB$G D RDB$G D,
RDB$PASSVD RDB$PASSWD,

/* Privilege | evel of user -
mark a user as having DBA privil ege */

RDB$PRI VI LEGE RDBSUSER PRI VI LEGE,

RDB$ COMVENT RDB$COMVENT,

RDB$FI RST_NANME RDBSNAME _PART,

RDB$M DDLE_NAME RDBSNAME_PART,

RDBSLAST _NAME RDBSNAME_PART) ;
COW T;

CREATE VI EW USERS (USER_NAME, SYS_USER NAME, GROUP_NAME,
U D, G D PASSW, PRIVILEGE, COMMENT, FIRST_NAME,
M DDLE_NAME, LAST_NAME, FULL_NAME) AS

SELECT RDB$SUSER _NAME, RDB$SYS USER NAME, RDB$GROUP_NAME,
RDB$UI D, RDB$GE D, RDB$PASSWD, RDB$PRI VI LEGE, RDB$COMVENT,
RDB$FI RST_NAME, RDB$M DDLE NAME, RDB$LAST NAME,

RDB$first _name || _UNICODE FSS ' ' || RDB$m ddi e_nane

117

Appendix to Firebird 2 Release Notes

|| _UNICODE FSS ' ' || RDB$I ast_name
FROM RDB$USERS
VWHERE CURRENT USER
OR CURRENT_USER
COW T,

' SYSDBA'
RDB$USERS. RDB$SUSER _NAME;

GRANT ALL ON RDB$USERS to VI EW USERS;
GRANT SELECT ON USERS to PUBLI C
GRANT UPDATE(PASSWD, GROUP_NAME, U D, G D, FI RST_NANME,
M DDLE_ NAI\/E LAST_NAME)
ON USERS TO PUBLI G;
COW T;

-- 5. nove data fromtenporary table and drop it
| NSERT | NTO RDB$USERS(RDBSUSER NAME, RDB$SYS USER NAME,
RDBSGROUP_NAME, RDB$UI D, RDB$G D, RDB$PRI VI LEGE, RDB$COVVENT,
RDBSFI RST_NAME, RDB$M DDLE_NAME, RDB$LAST NAME, RDB$PASSWD)
SELECT USER_NAME, SYS USER NAME, GROUP_NAME, U D, G D,
PRI VI LEGE, COWMENT, FI RST_NAME, M DDLE _NAME, LAST_NAME,
PASSWD
FROM UTMP;
COW T,

DROP TABLE UTMP;
COW T;

118

	Firebird 2.0 Release Notes
	Table of Contents
	General Notes
	These Notes
	ALERT
	Bug Reporting and Support

	New in Firebird 2.0
	Derived Tables
	PSQL Now Supports Named Cursors
	Reimplemented Protocols on Windows
	Local Protocol--XNET
	Benefits of the XNET Protocol over IPServer
	Performance
	Disadvantages

	Change to WNET (NetBEUI) Protocol

	Reworking of Garbage Collection
	Storing Databases on Raw Devices (POSIX Only)
	Porting of the Services API to Classic is Complete
	Reworking of Constraint Checking
	Lock Timeout for WAIT Transactions
	New Implementation of String Search Operators
	Reworking of Updatable Views
	Additional Database Shutdown Modes Introduced
	UDFs Improved re NULL Handling
	Signalling SQL NULL

	Run-time Checking for Concatenation Overflow
	Changes to Synchronisation Logic
	Support for 64-bit Platforms
	Record Enumeration Limits Increased
	Debugging Improvements
	Improved Reporting from Bugchecks
	Updated Internal Structure Reporting
	New Debug Logging Facilities

	Improved Connection Handling on POSIX Superserver
	PSQL Invariant Tracking Reworked
	ROLLBACK RETAIN Syntax Support
	No More Registry Search on Win32 Servers
	More Optimizer Improvements
	ODS Changes

	Changes to the Firebird API and ODS
	API (Application Programming Interface)
	Cleanup of ibase.h
	Lock Timeout for WAIT Transactions
	isc_dsql_info() Now Includes Relation Aliases
	Enhancement to isc_blob_lookup_desc()
	API Identifies Client Version
	Improved Services API
	Task Execution Optimized
	Brute-force Attack Protection

	New Function for Delivering Error Text

	ODS (On-Disk Structure) Changes
	New ODS Number
	Size limit for exception messages increased
	New Description Field for Generators
	New Description Field for SQL Roles
	ODS Type Recognition
	Smarter DSQL Error Reporting
	New Column in RDB$Index_Segments
	Other

	Data Definition Language (DDL)
	New and Enhanced Syntaxes
	CREATE SEQUENCE
	REVOKE ADMIN OPTION FROM
	SET/DROP DEFAULT Clauses for ALTER TABLE
	New Syntaxes for Changing Exceptions
	RECREATE EXCEPTION
	CREATE OR ALTER EXCEPTION

	ALTER EXTERNAL FUNCTION
	COMMENT Statement Implemented
	Extensions to CREATE VIEW Specification
	RECREATE TRIGGER Statement Implemented
	Usage Enhancements
	Creating Foreign Key Constraints No Longer Requires Exclusive Access
	Changed Logic for View Updates
	Declare BLOB Subtypes by Known Descriptive Identifiers

	Data Manipulation Language (DML)
	New and Extended DSQL Syntaxes
	EXECUTE BLOCK Statement
	Derived Tables
	ROLLBACK RETAIN Syntax
	ROWS Syntax
	Enhancements to UNION Handling
	UNION DISTINCT Keyword Implementation
	Improved Type Coercion in UNIONs
	UNIONs Allowed in ANY/ALL/IN Subqueries

	IIF Expression Syntax Added
	CAST() Behaviour Improved
	Built-in Function SUBSTRING() Enhanced
	Enhancements to NULL Logic
	(NULL=NULL) Can Return True for DISTINCT Test
	NULL Comparison Rule Relaxed
	NULLs Ordering Changed to Comply with Standard

	CROSS JOIN is Now Supported
	Subqueries and INSERT Statements Can Now Accept UNION Sets
	New Extensions to UPDATE and DELETE Syntaxes
	New Context Variables
	New Context Variable ROW_COUNT
	Sub-second Values Enabled for Time and DateTime Variables
	CURRENT_TIMESTAMP, 'NOW' Now Return Milliseconds
	Seconds Precision Enabled for CURRENT_TIME and CURRENT_TIMESTAMP

	New System Functions to Retrieve Context Variables
	Pre-defined Namespaces
	USER_SESSION
	USER_TRANSACTION
	SYSTEM

	Notes

	Improvements in Handling User-specified Query Plans
	Improvements in Sorting
	Order By or Group By <alias-name>
	GROUP BY Arbitrary Expressions
	Order SELECT * Sets by Degree Number

	NEXT VALUE FOR Expression Syntax
	RETURNING Clause for Insert Statements
	DSQL parsing of table aliases is stricter

	SELECT Statement & Expression Syntax

	New Reserved Words and Changes>
	Newly Reserved Words
	Changed from Non-reserved to Reserved
	Keywords Added as Non-reserved
	Keywords No Longer Reserved
	No Longer Reserved as Keywords

	Stored Procedure Language (PSQL)
	PSQL Enhancements
	Explicit Cursors
	Defaults for Stored Procedure Arguments
	LEAVE <label> Syntax Support
	OLD Context Variables Now Read-only
	PSQL Stack Trace
	Call a UDF as a Void Function (Procedure)

	Enhancements to Indexing
	252-byte index length limit is gone
	Expression Indexes
	Changes to Null keys handling
	Improved Index Compression
	Selectivity Maintenance per Segment
	Firebird Index Structure from ODS11 Onward
	New flag for the new index structure
	Duplicate nodes
	Jump nodes
	NULL state

	Optimizations
	Improved PLAN Clause
	Optimizer Improvements
	For All Databases
	Some General Improvements
	Faster Evaluation of IN() and OR
	Improved UNIQUE Retrieval
	More Optimization of NOT Conditions
	Distribute HAVING Conjunctions to the WHERE Clause
	Distribute UNION Conjunctions to the Inner Streams
	Improved Handling of CROSS JOIN and Merge/SORT
	Better Choice of Join Order for Mixed Inner/Outer Joins
	Equality Comparison on Expressions

	For ODS 11 Databases only
	Segment-level Selectivities are Used
	Better Support for IS NULL
	Better Support for STARTING WITH
	Matching of Both OR and AND Nodes to Indexes
	Better JOIN Orders
	Indexed Order Enabled for Outer Joins

	New Features for Text Data
	New String Functions
	LOWER()
	TRIM()
	New String Size Functions

	New INTL Interface for Non-ASCII Character Sets
	Architecture
	Enhancements
	Well-formedness checks
	Uppercasing
	Maximum string length
	NONE as attachment character set
	Enhancements for BLOBs
	COLLATE clauses for BLOBs
	Full equality comparisons between BLOBs
	Character set conversion for BLOBs

	INTL Plug-ins
	New Character Sets/Collations
	UTF8 character set
	UNICODE collations (for UTF8)
	Brazilian collations

	Drivers
	Adding More Character Sets to a Database

	New Character Sets and Collations Implemented
	KOI8-R
	KOI8-U
	WIN1257_LV
	WIN1257_LT
	WIN1257_EE
	UTF8
	Brazilian collations
	Bosnian Collation
	Czech Collations
	Vietnamese Character Set

	Character Set Bug Fixes

	Security in Firebird 2
	Summary of Changes
	New security database
	Better password encryption
	Users can modify their own passwords
	Non-server access to security database is rejected
	Active protection from brute-force attack
	Vulnerabilities have been closed

	Details of the Security Changes in Firebird 2.0
	Authentication
	Firebird 1.5 Authentication
	Firebird 2: Server-side Hashing
	The SHA-1 Hashing Algorithm

	The New Security Database
	New security database structure

	GSEC in Firebird 2
	Some Protection from Hacking

	Classic Server on POSIX
	Dealing with the New Security Database
	Doing the Security Database Upgrade

	Command-line Utilities
	Backup Tools
	New On-line Incremental Backup
	Nbak
	NBackup
	Backing Up
	Restoring
	Usage
	Valid Options

	User Manual

	GBak Backup/Porting/Restore Utility
	New Switches, Changed Behaviours

	ISQL Query Utility
	New Switches
	-b[ail] "Bail out"
	Some Features

	-m2 to Output Stats and Plans
	-r2 to Pass a Case-Sensitive Role Name

	New Commands
	SET HEAD[ing] toggle
	SHOW SYSTEM now shows predefined UDFs
	SET SQLDA_DISPLAY ON/OFF
	SET TRANSACTION Enhanced
	SHOW DATABASE now Returns ODS Version Number
	Ability to show the line number where an error happened in a script

	ISQL Bugs Fixed

	GSec Authentication Manager
	GSEC return code

	GFix Server Utility
	New Shutdown States (Modes)

	External Functions (UDFs)
	Ability to Signal SQL NULL via a Null Pointer
	UDF library diagnostic messages improved
	UDFs Added and Changed
	IB_UDF_srand()
	IB_UDF_lower

	New Configuration Parameters and Changes
	ExternalFileAccess
	LegacyHash
	Redirection
	About Multi-hop

	GCPolicy
	UsePriorityScheduler
	TCPNoNagle has changed
	DeadThreadsCollection is no longer used
	New parameter OldColumnNaming

	Installation and Compatibility Notes
	Known Compatibility Issues
	Security in Firebird 2 (All Platforms)
	Other Issues (All Platforms)
	Configuration Parameters
	Change to GBAK -R Semantics
	SQL Migration Issues
	Performance
	Firebird API

	Windows-Specific Issues
	Windows Local Connection Protocol with XNet
	Client Impersonation No Longer Works

	Installation
	Windows
	Interactive Option Added to instsvc.exe

	POSIX

	Bugs Fixed
	General Engine Bugs
	Services Manager
	GFix Bugs
	DSQL Bugs
	PSQL Bugs
	Crash Conditions
	Remote Interface Bugs
	Indexing & Optimization
	Vulnerabilities
	ISQL Bugs
	International Character Set Bugs
	SQL Privileges
	UDF Bugs
	GBak
	GPre
	GSTAT
	Code Clean-up
	Bugs Introduced in Beta 1

	Appendix to Firebird 2 Release Notes
	Security Upgrade Script

