
InterBase 6

Data Definition
Guide

100 Enterprise Way, Scotts Valley, CA 95066 http://www.interbase.com

Borland/INPRISE

Inprise/Borland may have patents and/or pending patent applications covering subject matter in this
document. The furnishing of this document does not convey any license to these patents.

Copyright 1999 Inprise/Borland. All rights reserved. All InterBase products are trademarks or registered
trademarks of Inprise/Borland. All Borland products are trademarks or registered trademarks of
Inprise/Borland. Other brand and product names are trademarks or registered trademarks of their respective
holders.

1INT0055WW21003 6E1R0699

DATA DEFINITION GUIDE iii

Table of Contents

List of Tables . xi

List of Figures . xiii

Chapter 1 Using the Data Definition Guide

What is data definition? . 15

Who should use this guide . 16

Related InterBase documentation . 17

Topics covered in this guide . 17

Using isql . 18

Using a data definition file . 18

Chapter 2 Designing Databases

Overview of design issues . 21

Database versus data model . 22

Design goals . 23

Design framework . 23

Analyzing requirements . 24

Collecting and analyzing data . 24

Identifying entities and attributes . 25

Designing tables . 28

Determining unique attributes . 28

Developing a set of rules . 29

Specifying a datatype . 29

Choosing international character sets. 30

Specifying domains . 31

Setting default values and NULL status . 31

Defining integrity constraints . 31

Defining CHECK constraints . 32

Establishing relationships between objects . 32

Enforcing referential integrity . 33

Normalizing the database . 34

iv INTERBASE 6

Choosing indexes . 38

Increasing cache size . 39

Creating a multifile, distributed database 39

Planning security . 39

Chapter 3 Creating Databases

What you should know . 42

Creating a database . 42

Using a data definition file . 42

Using CREATE DATABASE . 43

Read-only databases. 48

Altering a database . 48

Dropping a database . 49

Creating a database shadow . 49

Advantages of shadowing. 50

Limitations of shadowing . 50

Before creating a shadow. 51

Using CREATE SHADOW . 51

Dropping a shadow . 55

Expanding the size of a shadow . 56

Using isql to extract data definitions . 56

Extracting an InterBase 4.0 database . 56

Extracting a 3.x database . 56

Chapter 4 Specifying Datatypes

About InterBase datatypes . 60

Where to specify datatypes . 62

Defining numeric datatypes . 63

Integer datatypes . 63

Fixed-decimal datatypes . 64

Floating-point datatypes . 68

The DATE, TIME, and TIMESTAMP datatypes 70

Converting to the DATE, TIME, and TIMESTAMP datatypes. 70

InterBase and the year 2000 . 71

DATA DEFINITION GUIDE v

Character datatypes . 72

Specifying a character set . 72

Fixed-length character data . 74

Variable-length character data . 75

Defining BLOB datatypes . 76

BLOB columns . 77

BLOB segment length . 77

BLOB subtypes. 78

BLOB filters . 79

Defining arrays . 80

Multi-dimensional arrays . 81

Specifying subscript ranges for array dimensions 81

Converting datatypes . 82

Implicit type conversions . 82

Explicit type conversions . 83

Chapter 5 Working with Domains

Creating domains . 85

Using CREATE DOMAIN . 86

Specifying the domain datatype . 86

Specifying domain defaults. 87

Specifying NOT NULL . 88

Specifying domain CHECK constraints . 89

Using the VALUE keyword . 89

Specifying domain collation order. 90

Altering domains with ALTER DOMAIN . 91

Dropping a domain . 92

Chapter 6 Working with Tables

Before creating a table . 93

Creating tables . 94

Defining columns . 94

Defining integrity constraints . 100

Defining a CHECK constraint . 105

vi INTERBASE 6

Using the EXTERNAL FILE option. 107

Altering tables . 111

Before using ALTER TABLE . 111

Using ALTER TABLE . 113

Dropping tables . 117

Dropping a table. 117

DROP TABLE syntax . 118

Chapter 7 Working with Indexes

Index basics . 119

When to index . 120

Creating indexes . 120

Using CREATE INDEX . 121

When to use a multi-column index . 122

Examples using multi-column indexes . 123

Improving index performance . 124

Using ALTER INDEX . 124

Using SET STATISTICS . 125

Using DROP INDEX . 126

Chapter 8 Working with Views

Introduction . 127

Advantages of views . 129

Creating views . 129

Specifying view column names . 130

Using the SELECT statement . 130

Using expressions to define columns . 131

Types of views: read-only and updatable 131

Inserting data through a view . 133

Dropping views . 134

Chapter 9 Working with Stored Procedures

Overview of stored procedures . 135

Working with procedures . 136

Using a data definition file . 136

DATA DEFINITION GUIDE vii

Calling stored procedures . 137

Privileges for stored procedures . 138

Creating procedures . 138

CREATE PROCEDURE syntax . 139

Procedure and trigger language . 140

The procedure header . 143

The procedure body . 145

Altering and dropping stored procedures . 155

Altering stored procedures . 155

Alter procedure syntax . 156

Dropping procedures . 156

Drop procedure syntax . 157

Altering and dropping procedures in use 157

Using stored procedures . 158

Using executable procedures in isql . 159

Using select procedures in isql . 159

Viewing arrays with stored procedures . 163

Exceptions . 165

Creating exceptions . 165

Altering exceptions . 166

Dropping exceptions . 166

Raising an exception in a stored procedure 167

Handling errors . 167

Handling exceptions . 168

Handling SQL errors . 168

Handling InterBase errors . 169

Examples of error behavior and handling 170

Chapter 10 Working with Triggers

About triggers . 175

Working with triggers . 176

Using a data definition file . 176

Creating triggers . 177

CREATE TRIGGER syntax. 177

viii INTERBASE 6

InterBase procedure and trigger language 179

The trigger header . 182

The trigger body . 183

Altering triggers . 185

Altering a trigger header . 186

Altering a trigger body . 186

Dropping triggers . 187

Using triggers . 187

Triggers and transactions. 188

Triggers and security . 188

Triggers as event alerters . 189

Updating views with triggers. 190

Exceptions . 191

Raising an exception in a trigger . 192

Error handling in triggers . 193

Chapter 11 Working with Generators

About generators . 195

Creating generators . 196

Setting or resetting generator values . 196

Using generators . 197

Chapter 12 Planning Security

Overview of SQL access privileges . 199

Default security and access. 200

Privileges available . 201

SQL ROLES . 201

Granting privileges . 202

Granting privileges to a whole table . 202

Granting access to columns in a table. 204

Granting privileges to a stored procedure or trigger 204

Multiple privileges and multiple grantees . 205

Granting multiple privileges . 205

Granting all privileges . 205

DATA DEFINITION GUIDE ix

Granting privileges to multiple users . 206

Granting privileges to a list of procedures 207

Using roles to grant privileges . 207

Granting privileges to a role . 208

Granting a role to users. 208

Granting users the right to grant privileges 209

Grant authority restrictions . 209

Grant authority implications . 210

Granting privileges to execute stored procedures 211

Granting access to views . 211

Updatable views . 212

Read-only views . 213

Revoking user access . 213

Revocation restrictions . 214

Revoking multiple privileges . 215

Revoking all privileges . 215

Revoking privileges for a list of users . 216

Revoking privileges for a role . 216

Revoking a role from users . 216

Revoking EXECUTE privileges . 217

Revoking privileges from objects . 217

Revoking privileges for all users. 217

Revoking grant authority . 218

Using views to restrict data access . 218

Chapter 13 Character Sets and Collation Orders

About character sets and collation orders . 220

Character set storage requirements . 220

InterBase character sets . 221

Character sets for DOS . 224

Character sets for Microsoft Windows. 225

Additional character sets and collations 225

Specifying defaults . 226

Specifying a default character set for a database 226

x INTERBASE 6

Specifying a character set for a column in a table 226

Specifying a character set for a client connection 227

Specifying collation orders . 227

Specifying collation order for a column 227

Specifying collation order in a comparison operation 228

Specifying collation order in an ORDER BY clause. 228

Specifying collation order in a GROUP BY clause 229

Appendix A InterBase Document Conventions
The InterBase documentation set . 232

Printing conventions . 233

Syntax conventions . 234

Index . i

DATA DEFINITION GUIDE xi

List of Tables

Table 1.1 Chapter list for the Data Definition Guide 17

Table 2.1 List of entities and attributes . 26

Table 2.2 EMPLOYEE table . 28

Table 2.3 PROJECT table . 32

Table 2.4 EMPLOYEE table . 33

Table 2.5 DEPARTMENT table . 35

Table 2.6 DEPARTMENT table . 35

Table 2.7 DEPT_LOCATIONS table . 35

Table 2.8 PROJECT table . 36

Table 2.9 PROJECT table . 36

Table 2.10 PROJECT table . 37

Table 2.11 EMPLOYEE table . 37

Table 3.1 Auto vs. manual shadows . 54

Table 4.1 Datatypes supported by InterBase 61

Table 4.2 How InterBase stores NUMERIC and DECIMAL datatypes 65

Table 6.1 The EMPLOYEE table . 100

Table 6.2 The PROJECT table . 101

Table 6.3 The EMPLOYEE table . 101

Table 6.4 Referential integrity check options 102

Table 9.1 Arguments of the CREATE PROCEDURE statement 140

Table 9.2 Procedure and trigger language extensions 141

Table 9.3 SUSPEND, EXIT, and END . 153

Table 10.1 Arguments of the CREATE TRIGGER statement 178

Table 10.2 Procedure and trigger language extensions 179

Table 12.1 SQL access privileges . 201

Table 13.1 Character sets and collation orders 221

Table 13.2 Character sets corresponding to DOS code pages 224

Table A.1 Books in the InterBase 6 documentation set 232

Table A.2 Text conventions . 233

Table A.3 Syntax conventions . 234

xii INTERBASE 6

LIST OF TABLES

DATA DEFINITION GUIDE xiii

List of Figures

Figure 2.1 Identifying relationships between objects 25

Figure 4.1 Blob relationships . 77

Figure 6.1 Circular references . 103

xiv INTERBASE 6

LIST OF FIGURES

DATA DEFINITION GUIDE 15

CHAPTER

1
Chapter 1Using the Data

Definition Guide

The InterBase Data Definition Guide provides information on the following topics:

� Designing and creating databases

� Working with InterBase structures and objects, including datatypes, domains, tables,
indexes, and views

� Working with tools and utilities such as stored procedures, triggers, Blob filters, and
generators

� Planning and implementing database security

� Character sets and collation orders

What is data definition?
An InterBase database is created and populated using SQL statements, which can be
divided into two major categories: data definition language (DDL) statements and data
manipulation language (DML) statements.

CHAPTER 1 USING THE DATA DEFINITION GUIDE

16 INTERBASE 6

The underlying structures of the database—its tables, views, and indexes—are created
using DDL statements. Collectively, the objects defined with DDL statements are known
as metadata. Data definition is the process of creating, modifying, and deleting
metadata. Conversely, DML statements are used to populate the database with data, and
to manipulate existing data stored in the structures previously defined with DDL
statements. The focus of this book is how to use DDL statements. For more information
on using DML statements, see the Language Reference.

DDL statements that create metadata begin with the keyword CREATE, statements that
modify metadata begin with the keyword ALTER, and statements that delete metadata
begin with the keyword DROP. Some of the basic data definition tasks include:

� Creating a database (CREATE DATABASE).

� Creating tables (CREATE TABLE).

� Altering tables (ALTER TABLE).

� Dropping tables (DROP TABLE).

In InterBase, metadata is stored in system tables, which are a set of tables that is
automatically created when you create a database. These tables store information about
the structure of the database. All system tables begin with “RDB$”. Examples of system
tables include RDB$RELATIONS, which has information about each table in the database,
and RDB$FIELDS, which has information on the domains in the database. For more
information about the system tables, see the Language Reference.

IMPORTANT You can directly modify columns of a system table, but unless you understand all of the
interrelationships between the system tables, modifying them directly can adversely
affect other system tables and disrupt your database.

Who should use this guide
The Data Definition Guide is a resource for programmers, database designers, and users
who create or change an InterBase database or its elements.

This book assumes the reader has:

� Previous understanding of relational database concepts.

� Read the isql sections in the InterBase Getting Started book.

RELATED INTERBASE DOCUMENTATION

DATA DEFINITION GUIDE 17

Related InterBase documentation
The Language Reference is the main reference companion to the Data Definition Guide.
It supplies the complete syntax and usage for SQL data definition statements. For a
complete list of books in the InterBase documentation set, see Appendix A, “InterBase
Document Conventions.”

Topics covered in this guide
The following table lists and describes the chapters in the Data Definition Guide:

Chapter Description SQL statements

Chapter 1, “Using the Data
Definition Guide”

• Overview of InterBase Data Definition
features

• Using isql, the SQL Data Definition Utility

Chapter 2, “Designing Databases” • Planning and designing a database
• Understanding data integrity rules and

using them in a database
• Planning physical storage

Chapter 3, “Creating Databases” Creating an InterBase database CREATE/ALTER/DROP DATABASE
CREATE/ALTER/DROP SHADOW

Chapter 4, “Specifying Datatypes” Choosing a datatype CREATE/ALTER TABLE
CREATE/ALTER DOMAIN

Chapter 5, “Working with Domains” Creating, altering, and dropping domains CREATE/ALTER/DROP DOMAIN

Chapter 6, “Working with Tables” • Creating and altering database tables,
columns, and domains

• Setting up referential integrity

CREATE/ALTER/DROP TABLE

Chapter 7, “Working with Indexes” Creating and dropping indexes CREATE/ALTER/DROP INDEX

Chapter 8, “Working with Views” • Creating and dropping views
• Using WITH CHECK OPTION

CREATE/DROP VIEW

Chapter 9, “Working with
Stored Procedures”

• Using stored procedures
• What you can do with stored procedures

CREATE/ALTER/DROP PROCEDURE
CREATE/ALTER/DROP EXCEPTION

TABLE 1.1 Chapter list for the Data Definition Guide

CHAPTER 1 USING THE DATA DEFINITION GUIDE

18 INTERBASE 6

Using isql
You can use isql to interactively create, update, and drop metadata, or you can input a file
to isql that contains data definition statements, which is then executed by isql without
prompting the user. It is usually preferable to use a data definition file because it is easier
to modify the file than to retype a series of individual SQL statements, and the file
provides a record of the changes made to the database.

The isql interface can be convenient for simple changes to existing data, or for querying
the database and displaying the results. You can also use the interactive interface as a
learning tool. By creating one or more sample databases, you can quickly become more
familiar with InterBase.

Using a data definition file
A data definition file can include statements to create, alter, or drop a database, or any
other SQL statement. To issue SQL statements through a data definition file, follow these
steps:

1. Use a text editor to create the data definition file. Each DDL statement should
be followed by a COMMIT to ensure its visibility to all subsequent DDL
statements in the data definition file.

2. Save the file.

Chapter 10, “Working with Triggers” Using triggers, what you can do with triggers CREATE/ALTER/DROP TRIGGER
CREATE/ALTER/DROP EXCEPTION

Chapter 11, “Working with
Generators”

Creating, setting, and resetting generators CREATE GENERATOR/SET GENERATOR

Chapter 12, “Planning Security” Securing data and system catalogs with SQL:
tables, views, triggers, and procedures

GRANT, REVOKE

Chapter 13, “Character Sets and
Collation Orders”

Specifying character sets and collation orders CHARACTER SET COLLATE

Appendix A, “InterBase Document
Conventions”

Lists typefaces and special characters used in
this book to describe syntax and identify
object types

Chapter Description SQL statements

TABLE 1.1 Chapter list for the Data Definition Guide

USING A DATA DEFINITION FILE

DATA DEFINITION GUIDE 19

3. Input the file into isql. For information on how to input the data definition
file using Windows ISQL, see the Operations Guide. For information on how
to input the data definition file using command-line isql, see the Operations
Guide

CHAPTER 1 USING THE DATA DEFINITION GUIDE

20 INTERBASE 6

DATA DEFINITION GUIDE 21

CHAPTER

2
Chapter 2Designing Databases

This chapter provides a general overview of how to design an InterBase database—it is
not intended to be a comprehensive description of the principles of database design. This
chapter includes:

� An overview of basic design issues and goals

� A framework for designing the database

� InterBase-specific suggestions for designing your database

� Suggestions for planning database security

Overview of design issues
A database describes real-world organizations and their processes, symbolically
representing real-world objects as tables and other database objects. Once the
information is organized and stored as database objects, it can be accessed by
applications or a user interface displayed on desktop workstations and computer
terminals.

CHAPTER 2 DESIGNING DATABASES

22 INTERBASE 6

The most significant factor in producing a database that performs well is good database
design. Logical database design is an iterative process which consists of breaking down
large, heterogeneous structures of information into smaller, homogenous data objects.
This process is called normalization. The goal of normalization is to determine the
natural relationships between data in the database. This is done by splitting a table into
two or more tables with fewer columns. When a table is split during the normalization
process, there is no loss of data because the two tables can be put back together with a
join operation. Simplifying tables in this manner allows the most compatible data
elements and attributes to be grouped into one table.

Database versus data model
It is important to distinguish between the description of the database, and the database
itself. The description of the database is called the data model and is created at design
time. The model is a template for creating the tables and columns; it is created before the
table or any associated data exists in the database. The data model describes the logical
structure of the database, including the data objects or entities, datatypes, user
operations, relationships between objects, and integrity constraints.

In the relational database model, decisions about logical design are completely
independent of the physical structure of the database. This separation allows great
flexibility.

� You do not have to define the physical access paths between the data objects at design
time, so you can query the database about almost any logical relationship that exists in it.

� The logical structures that describe the database are not affected by changes in the
underlying physical storage structures. This capability ensures cross-platform portability.
You can easily transport a relational database to a different hardware platform because
the database access mechanisms defined by the data model remain the same regardless
of how the data is stored.

� The logical structure of the database is also independent of what the end-user sees. The
designer can create a customized version of the underlying database tables with views. A
view displays a subset of the data to a given user or group. Views can be used to hide
sensitive data, or to filter out data that a user is not interested in. For more information
on views, see Chapter 8, “Working with Views.”

DESIGN FRAMEWORK

DATA DEFINITION GUIDE 23

Design goals
Although relational databases are very flexible, the only way to guarantee data integrity
and satisfactory database performance is a solid database design—there is no built-in
protection against poor design decisions. A good database design:

� Satisfies the users’ content requirements for the database. Before you can design the
database, you must do extensive research on the requirements of the users and how the
database will be used.

� Ensures the consistency and integrity of the data. When you design a table, you define
certain attributes and constraints that restrict what a user or an application can enter into
the table and its columns. By validating the data before it is stored in the table, the
database enforces the rules of the data model and preserves data integrity.

� Provides a natural, easy-to-understand structuring of information. Good design makes
queries easier to understand, so users are less likely to introduce inconsistencies into the
data, or to be forced to enter redundant data. This facilitates database updates and
maintenance.

� Satisfies the users’ performance requirements. Good database design ensures better
performance. If tables are allowed to be too large, or if there are too many (or too few)
indexes, long waits can result. If the database is very large with a high volume of
transactions, performance problems resulting from poor design are magnified.

Design framework
The following steps provide a framework for designing a database:

1. Determine the information requirements for the database by interviewing
prospective users.

2. Analyze the real-world objects that you want to model in your database.
Organize the objects into entities and attributes and make a list.

3. Map the entities and attributes to InterBase tables and columns.

4. Determine an attribute that will uniquely identify each object.

5. Develop a set of rules that govern how each table is accessed, populated, and
modified.

6. Establish relationships between the objects (tables and columns).

7. Plan database security.

The following sections describe each of these steps in more detail.

CHAPTER 2 DESIGNING DATABASES

24 INTERBASE 6

Analyzing requirements
The first step in the design process is to research the environment that you are trying to
model. This involves interviewing prospective users in order to understand and document
their requirements. Ask the following types of questions:

� Will your applications continue to function properly during the implementation phase?
Will the system accommodate existing applications, or will you need to restructure
applications to fit the new system?

� Whose applications use which data? Will your applications share common data?

� How do the applications use the data stored in the database? Who will be entering the
data, and in what form? How often will the data objects be changed?

� What access do current applications require? Do your applications use only one database,
or do they need to use several databases which might be different in structure? What
access do they anticipate for future applications, and how easy is it be to implement new
access paths?

� Which information is the most time-critical, requiring fast retrieval or updates?

Collecting and analyzing data
Before designing the database objects—the tables and columns—you need to organize
and analyze the real-world data on a conceptual level. There are four primary goals:

� Identify the major functions and activities of your organization. For example: hiring
employees, shipping products, ordering parts, processing paychecks, and so on.

� Identify the objects of those functions and activities. Building a business operation or
transaction into a sequence of events will help you identify all of the entities and
relationships the operation entails. For example, when you look at a process like “hiring
employees,” you can immediately identify entities such as the JOB, the EMPLOYEE, and the
DEPARTMENT.

� Identify the characteristics of those objects. For example, the
EMPLOYEE entity might include such information as EMPLOYEE_ID, FIRST_NAME,
LAST_NAME, JOB, SALARY, and so on.

� Identify certain relationships between the objects For example, how do the EMPLOYEE,
JOB, and DEPARTMENT entities relate to each other? The employee has one job title and
belongs to one department, while a single department has many employees and jobs.
Simple graphical flow charts help to identify the relationships.

IDENTIFYING ENTITIES AND ATTRIBUTES

DATA DEFINITION GUIDE 25

FIGURE 2.1 Identifying relationships between objects

Identifying entities and attributes
Based on the requirements that you collect, identify the objects that need to be in the
database—the entities and attributes. An entity is a type of person, object, or thing that
needs to be described in the database. It might be an object with a physical existence,
like a person, a car, or an employee, or it might be an object with a conceptual existence,
like a company, a job, or a project. Each entity has properties, called attributes, that
describe it. For example, suppose you are designing a database that must contain
information about each employee in the company, departmental-level information,
information about current projects, and information about customers and sales. The
example below shows how to create a list of entities and attributes that organizes the
required data.

Department

Employee Employee Employee

Job Job

CHAPTER 2 DESIGNING DATABASES

26 INTERBASE 6

Entities Attributes

EMPLOYEE Employee Number

Last Name

First Name

Department Number

Job Code

Phone Extension

Salary

DEPARTMENT Department Number

Department Name

Department Head Name

Department Head Employee
Number

Budget

Location

Phone Number

PROJECT Project ID

Project Name

Project Description

Team Leader

Product

TABLE 2.1 List of entities and attributes

IDENTIFYING ENTITIES AND ATTRIBUTES

DATA DEFINITION GUIDE 27

By listing the entities and associated attributes this way, you can begin to eliminate
redundant entries. Do the entities in your list work as tables? Should some columns be
moved from one group to another? Does the same attribute appear in several entities?
Each attribute should appear only once, and you need to determine which entity is the
primary owner of the attribute. For example, DEPARTMENT HEAD NAME should be
eliminated because employee names (FIRST NAME and LAST NAME) already exist in the
EMPLOYEE entity. DEPARTMENT HEAD EMPLOYEE NUM can then be used to access all of the
employee-specific information by referencing EMPLOYEE NUMBER in the EMPLOYEE entity.
For more information about accessing information by reference, see “Establishing
relationships between objects” on page 32.

The next section describes how to map your lists to actual database objects—entities to
tables and attributes to columns.

CUSTOMER Customer Number

Customer Name

Contact Name

Phone Number

Address

SALES PO Number

Customer Number

Sales Rep

Order Date

Ship Date

Order Status

Entities Attributes

TABLE 2.1 List of entities and attributes (continued)

CHAPTER 2 DESIGNING DATABASES

28 INTERBASE 6

Designing tables
In a relational database, the database object that represents a single entity is a table,
which is a two-dimensional matrix of rows and columns. Each column in a table
represents an attribute. Each row in the table represents a specific instance of the entity.
After you identify the entities and attributes, create the data model, which serves as a
logical design framework for creating your InterBase database. The data model maps
entities and attributes to InterBase tables and columns, and is a detailed description of
the database—the tables, the columns, the properties of the columns, and the
relationships between tables and columns.

The example below shows how the EMPLOYEE entity from the entities/attributes list has
been converted to a table.

Each row in the EMPLOYEE table represents a single employee. EMP_NO, LAST_NAME,
FIRST_NAME, DEPT_NO, JOB_CODE, PHONE_EXT, and SALARY are the columns that represent
employee attributes. When the table is populated with data, rows are added to the table,
and a value is stored at the intersection of each row and column, called a field. In the
EMPLOYEE table, “Smith” is a data value that resides in a single field of an employee
record.

Determining unique attributes
One of the tasks of database design is to provide a way to uniquely identify each
occurrence or instance of an entity so that the system can retrieve any single row in a
table. The values specified in the table’s primary key distinguish the rows from each
other. A PRIMARY KEY or UNIQUE constraint ensures that values entered into the column
or set of columns are unique in each row. If you try to insert a value in a PRIMARY KEY or
UNIQUE column that already exists in another row of the same column, InterBase prevents
the operation and returns an error.

EMP_NO LAST_NAME FIRST_NAME DEPT_NO JOB_CODE PHONE_EXT SALARY

24 Smith John 100 Eng 4968 64000

48 Carter Catherine 900 Sales 4967 72500

36 Smith Jane 600 Admin 4800 37500

TABLE 2.2 EMPLOYEE table

DEVELOPING A SET OF RULES

DATA DEFINITION GUIDE 29

For example, in the EMPLOYEE table, EMP_NO is a unique attribute that can be used to
identify each employee in the database, so it is the primary key. When you choose a value
as a primary key, determine whether it is inherently unique. For example, no two social
security numbers or driver’s license numbers are ever the same. Conversely, you should
not choose a name column as a unique identifier due to the probability of duplicate
values. If no single column has this property of being inherently unique, then define the
primary key as a composite of two or more columns which, when taken together, are
unique.

A unique key is different from a primary key in that a unique key is not the primary
identifier for the row, and is not typically referenced by a foreign key in another table.
The main purpose of a unique key is to force a unique value to be entered into the
column. You can have only one primary key defined for a table, but any number of
unique keys.

Developing a set of rules
When designing a table, you need to develop a set of rules for each table and column that
establishes and enforces data integrity. These rules include:

� Specifying a datatype

� Choosing international character sets

� Creating a domain-based column

� Setting default values and NULL status

� Defining integrity constraints and cascading rules

� Defining CHECK constraints

Specifying a datatype
Once you have chosen a given attribute as a column in the table, you must choose a
datatype for the attribute. The datatype defines the set of valid data that the column can
contain. The datatype also determines which operations can be performed on the data,
and defines the disk space requirements for each data item.

The general categories of SQL datatypes include:

� Character datatypes

� Whole number (integer) datatypes

� Fixed and floating decimal datatypes

CHAPTER 2 DESIGNING DATABASES

30 INTERBASE 6

� Datatypes for dates and times

� A Blob datatype to represent data of unspecified length and structure, such as such as
graphics and digitized voice; blobs can be numeric, text, or binary

For more information about datatypes supported by InterBase, see Chapter 4,
“Specifying Datatypes.”

Choosing international character sets
When you create the database, you can specify a default character set. A default character
set determines:

� What characters can be used in CHAR, VARCHAR, and BLOB text
columns.

� The default collation order that is used in sorting a column.

The collation order determines the order in which values are sorted. The COLLATE clause
of CREATE TABLE allows users to specify a particular collation order for columns defined
as CHAR and VARCHAR text datatypes. You must choose a collation order that is supported
for the column’s given character set. The collation order set at the column level overrides
a collation order set at the domain level.

Choosing a default character set is primarily intended for users who are interested in
providing a database for international use. For example, the following statement creates
a database that uses the ISO8859_1 character set, typically used to support European
languages:

CREATE DATABASE 'employee.gdb'

DEFAULT CHARACTER SET ISO8859_1;

You can override the database default character set by creating a different character set
for a column when specifying the datatype. The datatype specification for a CHAR,
VARCHAR, or BLOB text column definition can include a CHARACTER SET clause to specify
a particular character set for a column. If you do not specify a character set, the column
assumes the default database character set. If the database default character set is
subsequently changed, all columns defined after the change have the new character set,
but existing columns are not affected.

If you do not specify a default character set at the time the database is created, the
character set defaults to NONE. This means that there is no character set assumption for
the columns; data is stored and retrieved just as it was originally entered. You can load
any character set into a column defined with NONE, but you cannot load that same data
into another column that has been defined with a different character set. No
transliteration will be performed between the source and the destination character sets.

DEVELOPING A SET OF RULES

DATA DEFINITION GUIDE 31

For a list of the international character sets and collation orders that InterBase supports,
see Chapter 13, “Character Sets and Collation Orders.”

Specifying domains
When several tables in the database contain columns with the same definitions and
datatypes, you can create domain definitions and store them in the database. Users who
create tables can then reference the domain definition to define column attributes locally.

For more information about creating and referencing domains, see Chapter 5, “Working
with Domains.”

Setting default values and NULL status
When you define a column, you have the option of setting a DEFAULT value. This value is
used whenever an INSERT or UPDATE on the table does not supply an explicit value for the
column. Defaults can save data entry time and prevent data entry errors. For example, a
possible default for a DATE column could be today’s date; in a Y/N flag column for saving
changes, “Y” could be the default. Column-level defaults override defaults set at the
domain level.

Assign a NULL default to insert a NULL into the column if the user does not enter a value.
Assign NOT NULL to force the user to enter a value, or to define a default value for the
column. NOT NULL must be defined for PRIMARY KEY and UNIQUE key columns.

Defining integrity constraints
Integrity constraints are rules that govern column-to-table and table-to-table
relationships, and validate data entries. They span all transactions that access the
database and are maintained automatically by the system. Integrity constraints can be
applied to an entire table or to an individual column. A PRIMARY KEY or UNIQUE constraint
guarantees that no two values in a column or set of columns are the same.

Data values that uniquely identify rows (a primary key) in one table can also appear in
other tables. A foreign key is a column or set of columns in one table that contain values
that match a primary key in another table. The ON UPDATE and ON DELETE referential
constraints allow you to specify what happens to the referencing foreign key when the
primary key changes or is deleted.

CHAPTER 2 DESIGNING DATABASES

32 INTERBASE 6

For more information on using PRIMARY KEY and FOREIGN KEY constraints, see Chapter
6, “Working with Tables.” For more information on the reasons for using foreign keys,
see “Establishing relationships between objects” on page 32.

Defining CHECK constraints
Along with preventing the duplication of values using UNIQUE and PRIMARY KEY
constraints, you can specify another type of data entry validation. A CHECK constraint
places a condition or requirement on the data values in a column at the time the data is
entered. The CHECK constraint enforces a search condition that must be true in order to
insert into or update the table or column.

Establishing relationships between objects
The relationship between tables and columns in the database must be defined in the
design. For example, how are employees and departments related? An employee can have
only one department (a one-to-one relationship), but a department has many employees
(a one-to-many relationship). How are projects and employees related? An employee can
be working on more than one project, and a project can include several employees (a
many-to-many relationship). Each of these different types of relationships has to be
modeled in the database.

The relational model represents one-to-many relationships with primary key/foreign key
pairings. Refer to the following two tables. A project can include many employees, so to
avoid duplication of employee data, the PROJECT table can reference employee
information with a foreign key. TEAM_LEADER is a foreign key referencing the primary key,
EMP_NO, in the EMPLOYEE table.

PROJ_ID TEAM_LEADER PROJ_NAME PROJ_DESC PRODUCT

DGPII 44 Automap blob data hardware

VBASE 47 Video database blob data software

HWRII 24 Translator upgrade blob data software

TABLE 2.3 PROJECT table

ESTABLISHING RELATIONSHIPS BETWEEN OBJECTS

DATA DEFINITION GUIDE 33

For more information on using PRIMARY KEY and FOREIGN KEY constraints, see Chapter
6, “Working with Tables.”

Enforcing referential integrity
The primary reason for defining foreign keys is to ensure that the integrity of the data is
maintained when more than one table references the same data—rows in one table must
always have corresponding rows in the referencing table. InterBase enforces referential
integrity in the following ways:

� Before a foreign key can be added, the unique or primary keys that the foreign key
references must already be defined.

� If information is changed in one place, it must be changed in every other place that it
appears. InterBase does this automatically when you use the ON UPDATE option to the
REFERENCES clause when defining the constraints for a table or its columns. You can
specify that the foreign key value be changed to match the new primary key value
(CASCADE), or that it be set to the column default (SET DEFAULT), or to null (SET NULL). If
you choose NO ACTION as the ON UPDATE action, you must manually ensure that the
foreign key is updated when the primary key changes. For example, to change a value in
the EMP_NO column of the EMPLOYEE table (the primary key), that value must also be
updated in the TEAM_LEADER column of the PROJECT table (the foreign key).

� When a row containing a primary key in one table is deleted, the meaning of any rows
in another table that contain that value as a foreign key is lost unless appropriate action
is taken. InterBase provides the ON DELETE option to the REFERENCES clause of CREATE
TABLE and ALTER TABLE so that you can specify whether the foreign key is deleted, set to
the column default, or set to null when the primary key is deleted. If you choose NO
ACTION as the ON DELETE action, you must manually delete the foreign key before deleting
the referenced primary key.

EMP_NO LAST_NAME FIRST_NAME DEPT_NO JOB_CODE PHONE_EXT SALARY

24 Smith John 100 Eng 4968 64000

48 Carter Catherine 900 Sales 4967 72500

36 Smith Jane 600 Admin 4800 37500

TABLE 2.4 EMPLOYEE table

CHAPTER 2 DESIGNING DATABASES

34 INTERBASE 6

� InterBase also prevents users from adding a value in a column defined as a foreign key
that does not reference an existing primary key value. For example, to change a value in
the TEAM_LEADER column of the PROJECT table, that value must first be updated in the
EMP_NO column of the EMPLOYEE table.

For more information on using PRIMARY KEY and FOREIGN KEY constraints, see Chapter
6, “Working with Tables.”

Normalizing the database
After your tables, columns, and keys are defined, look at the design as a whole and
analyze it using normalization guidelines in order to find logical errors. As mentioned in
the overview, normalization involves breaking down larger tables into smaller ones in
order to group data together that is naturally related.

Note A detailed explanation of the normal forms are out of the scope of this document.
There are many excellent books on the subject on the market.

When a database is designed using proper normalization methods, data related to other
data does not need to be stored in more than one place—if the relationship is properly
specified. The advantages of storing the data in one place are:

� The data is easier to update or delete.

� When each data item is stored in one location and accessed by reference, the possibility
for error due to the existence of duplicates is reduced.

� Because the data is stored only once, the possibility for introducing inconsistent data is
reduced.

In general, the normalization process includes:

� Eliminating repeating groups.

� Removing partially-dependent columns.

� Removing transitively-dependent columns.

An explanation of each step follows.

� Eliminating repeating groups
When a field in a given row contains more than one value for each occurrence of the
primary key, then that group of data items is called a repeating group. This is a violation
of the first normal form, which does not allow multi-valued attributes.

ESTABLISHING RELATIONSHIPS BETWEEN OBJECTS

DATA DEFINITION GUIDE 35

Refer to the DEPARTMENT table. For any occurrence of a given primary key, if a column
can have more than one value, then this set of values is a repeating group. Therefore, the
first row, where DEPT_NO = “100”, contains a repeating group in the DEPT_LOCATIONS
column.

In the next example, even if you change the attribute to represent only one location, for
every occurrence of the primary key “100”, all of the columns contain repeating
information except for DEPT_LOCATION, so this is still a repeating group.

To normalize this table, we could eliminate the DEPT_LOCATION attribute from the
DEPARTMENT table, and create another table called DEPT_LOCATIONS. We could then create
a primary key that is a combination of DEPT_NO and DEPT_LOCATION. Now a distinct row
exists for each location of the department, and we have eliminated the repeating groups.

DEPT_NO DEPARTMENT HEAD_DEPT BUDGET DEPT_LOCATIONS

100 Sales 000 1000000 Monterrey, Santa Cruz, Salinas

600 Engineering 120 1100000 San Francisco

900 Finance 000 400000 Monterey

TABLE 2.5 DEPARTMENT table

DEPT_NO DEPARTMENT HEAD_DEPT BUDGET DEPT_LOCATION

100 Sales 000 1000000 Monterey

100 Sales 000 1000000 Santa Cruz

600 Engineering 120 1100000 San Francisco

100 Sales 000 1000000 Salinas

TABLE 2.6 DEPARTMENT table

DEPT_NO DEPT_LOCATION

100 Monterey

100 Santa Cruz

600 San Francisco

100 Salinas

TABLE 2.7 DEPT_LOCATIONS table

CHAPTER 2 DESIGNING DATABASES

36 INTERBASE 6

� Removing partially-dependent columns
Another important step in the normalization process is to remove any non-key columns
that are dependent on only part of a composite key. Such columns are said to have a
partial key dependency. Non-key columns provide information about the subject, but do
not uniquely define it.

For example, suppose you wanted to locate an employee by project, and you created the
PROJECT table with a composite primary key of EMP_NO and PROJ_ID.

The problem with this table is that PROJ_NAME, PROJ_DESC, and PRODUCT are attributes of
PROJ_ID, but not EMP_NO, and are therefore only partially dependent on the
EMP_NO/PROJ_ID primary key. This is also true for LAST_NAME because it is an attribute of
EMP_NO, but does not relate to PROJ_ID. To normalize this table, we would remove the
EMP_NO and LAST_NAME columns from the PROJECT table, and create another table called
EMPLOYEE_PROJECT that has EMP_NO and PROJ_ID as a composite primary key. Now a
unique row exists for every project that an employee is assigned to.

� Removing transitively-dependent columns
The third step in the normalization process is to remove any non-key columns that
depend upon other non-key columns. Each non-key column must be a fact about the
primary key column. For example, suppose we added TEAM_LEADER_ID and PHONE_EXT
to the PROJECT table, and made PROJ_ID the primary key. PHONE_EXT is a fact about
TEAM_LEADER_ID, a non-key column, not about PROJ_ID, the primary key column.

EMP_NO PROJ_ID LAST_NAME PROJ_NAME PROJ_DESC PRODUCT

44 DGPII Smith Automap blob data hardware

47 VBASE Jenner Video database blob data software

24 HWRII Stevens Translator upgrade blob data software

TABLE 2.8 PROJECT table

PROJ_ID TEAM_LEADER_ID PHONE_EXT PROJ_NAME PROJ_DESC PRODUCT

DGPII 44 4929 Automap blob data hardware

VBASE 47 4967 Video database blob data software

HWRII 24 4668 Translator upgrade blob data software

TABLE 2.9 PROJECT table

ESTABLISHING RELATIONSHIPS BETWEEN OBJECTS

DATA DEFINITION GUIDE 37

To normalize this table, we would remove PHONE_EXT, change
TEAM_LEADER_ID to TEAM_LEADER, and make TEAM_LEADER a foreign key referencing
EMP_NO in the EMPLOYEE table.

� When to break the rules
You should try to correct any normalization violations, or else make a conscious decision
to ignore them in the interest of ease of use or performance. Just be sure that you
understand the design trade-offs that you are making, and document your reasons. It
might take several iterations to reach a design that is a desirable compromise between
purity and reality, but this is the heart of the design process.

For example, suppose you always want data about dependents every time you look up
an employee, so you decide to include DEP1_NAME, DEP1_BIRTHDATE, and so on for DEP1
through DEP30, in the EMPLOYEE table. Generally speaking, that is terrible design, but the
requirements of your application are more important than the abstract purity of your
design. In this case, if you wanted to compute the average age of a given employee’s
dependents, you would have to explicitly add field values together, rather than asking for
a simple average. If you wanted to find all employees with a dependent named “Jennifer,”
you would have to test 30 fields for each employee instead of one. If those are not
operations that you intend to perform, then go ahead and break the rules. If the efficiency
attracts you less than the simplicity, you might consider defining a view that combines
records from employees with records from a separate DEPENDENTS table.

PROJ_ID TEAM_LEADER PROJ_NAME PROJ_DESC PRODUCT

DGPII 44 Automap blob data hardware

VBASE 47 Video database blob data software

HWRII 24 Translator upgrade blob data software

TABLE 2.10 PROJECT table

EMP_NO LAST_NAME FIRST_NAME DEPT_NO JOB_CODE PHONE_EXT SALARY

24 Smith John 100 Eng 4968 64000

48 Carter Catherine 900 Sales 4967 72500

36 Smith Jane 600 Admin 4800 37500

TABLE 2.11 EMPLOYEE table

CHAPTER 2 DESIGNING DATABASES

38 INTERBASE 6

While you are normalizing your data, remember that InterBase offers direct support for
array columns, so if your data includes, for example, hourly temperatures for twenty
cities for a year, you could define a table with a character column that contains the city
name, and a 24 by 366 matrix to hold all of the temperature data for one city for one year.
This would result in a table containing 20 rows (one for each city) and two columns, one
NAME column and one TEMP_ARRAY column. A normalized version of that record might
have 366 rows per city, each of which would hold a city name, a Julian date, and 24
columns to hold the hourly temperatures.

Choosing indexes
Once you have your design, you need to consider what indexes are necessary. The basic
trade-off with indexes is that more distinct indexes make retrieval by specific criteria
faster, but updating and storage slower. One optimization is to avoid creating several
indexes on the same column. For example, if you sometimes retrieve employees based
on name, department, badge number, or department name, you should define one index
for each of these columns. If a query includes more than one column value to retrieve,
InterBase will use more than one index to qualify records. In contrast, defining indexes
for every permutation of those three columns will actually slow both retrieval and update
operations.

When you are testing your design to find the optimum combination of indexes, remember
that the size of the tables affects the retrieval performance significantly. If you expect to
have tables with 10,000 to 100,000 records each, do not run tests with only 10 to 100
records.

Another factor that affects index and data retrieval times is page size. By increasing the
page size, you can store more records on each page, thus reducing the number of pages
used by indexes. If any of your indexes are more than 4 levels deep, you should consider
increasing the page size. If indexes on volatile data (data that is regularly deleted and
restored, or data that has index key values that change frequently) are less than three
levels deep, you should consider reducing your page size. In general, you should use a
page size larger than your largest record, although InterBase’s data compression will
generally shrink records that contain lots of string data, or lots of numeric values that are
0 or NULL. If your records have those characteristics, you can probably store records on
pages which are 20% smaller than the full record size. On the other hand, if your records
are not compressible, you should add 5% to the actual record size when comparing it to
the page size.

For more information on creating indexes, see Chapter 7, “Working with Indexes.”

PLANNING SECURITY

DATA DEFINITION GUIDE 39

Increasing cache size
When InterBase reads a page from the database onto disk, it stores that page in its cache,
which is a set of buffers that are reserved for holding database pages. Ordinarily, the
default cache size of 256 buffers is adequate. If your application includes joins of 5 or
more tables, InterBase automatically increases the size of the cache. If your application
is well localized, that is, it uses the same small part of the database repeatedly, you might
want to consider increasing the cache size so that you never have to release one page
from cache to make room for another.

You can use the gfix utility to increase the default number of buffers for a specific database
using the following command:

gfix -buffers n database_name

You can also change the default cache size for an entire server either by setting the value
of DATABASE_CACHE_PAGES in the configuration file or by changing is on the IB Settings
page of the InterBase Server Properties dialog on Windows platforms. This setting is not
recommended because it affects all databases on the server and can easily result in
overuse of memory or in unusably small caches. It’s is better to tune your cache on a
per-database basis using gfix -buffers.

For more information about cache size, see the Embedded SQL Guide. For more
information about using gfix -buffers, see the Operations Guide

Creating a multifile, distributed database
If you feel that your application performance is limited by disk bandwidth, you might
consider creating a multifile database and distributing it across several disks. Multifile
databases were designed to avoid limiting databases to the size of a disk on systems that
do not support multi-disk files.

Planning security
Planning security for a database is important. When implementing the database design,
you should answer the following questions:

� Who will have authority to use InterBase?

� Who will have authority to open a particular database?

� Who will have authority to create and access a particular database object within a given
database?

CHAPTER 2 DESIGNING DATABASES

40 INTERBASE 6

For more information about database security, see Chapter 12, “Planning Security.”

DATA DEFINITION GUIDE 41

CHAPTER

3
Chapter 3Creating Databases

This chapter describes how to:

� Create a database with CREATE DATABASE

� Modify the database with ALTER DATABASE

� Delete a database with DROP DATABASE

� Create an in-sync, online duplication of the database for recovery purposes with CREATE
SHADOW

� Stop database shadowing with DROP SHADOW

� Increase the size of a shadow

� Extract metadata from an existing database

CHAPTER 3 CREATING DATABASES

42 INTERBASE 6

What you should know
Before creating the database, you should know:

� Where to create the database. Users who create databases need to know only the logical
names of the available devices in order to allocate database storage. Only the system
administrator needs to be concerned about physical storage (disks, disk partitions,
operating system files).

� The tables that the database will contain.

� The record size of each table, which affects what database page size you choose. A record
that is too large to fit on a single page requires more than one page fetch to read or write
to it, so access could be faster if you increase the page size.

� How large you expect the database to grow. The number of records also affects the page
size because the number of pages affects the depth of the index tree. Larger page size
means fewer total pages. InterBase operates more efficiently with a shallow index tree.

� The number of users that will be accessing the database.

Creating a database
Create a database in isql with an interactive command or with the CREATE DATABASE
statement in an isql script file. For a description of creating a database interactively with
IBConsole, see the Operations Guide.

Although you can create, alter, and drop a database interactively, it is preferable to use a
data definition file because it provides a record of the structure of the database. It is easier
to modify a source file than it is to start over by retyping interactive SQL statements.

Using a data definition file
A data definition file contains SQL statements, including those for creating, altering, or
dropping a database. To issue SQL statements through a data definition file, follow these
steps:

1. Use a text editor to write the data definition file.

2. Save the file.

3. Process the file with isql.

Use -input in command-line isql or use File | Run in an ISQL Script in Windows ISQL. For
more information about command-line isql and Windows ISQL, see the Operations Guide.

CREATING A DATABASE

DATA DEFINITION GUIDE 43

Using CREATE DATABASE
CREATE DATABASE establishes a new database and populates its system tables, or metadata,
which are the tables that describe the internal structure of the database. CREATE DATABASE
must occur before creating database tables, views, and indexes.

CREATE DATABASE optionally allows you to do the following:

� Specify a user name and a password

� Change the default page size of the new database

� Specify a default character set for the database

� Add secondary files to expand the database

CREATE DATABASE must be the first statement in the data definition file.

IMPORTANT In DSQL, CREATE DATABASE can be executed only with EXECUTE IMMEDIATE. The database
handle and transaction name, if present, must be initialized to zero prior to use.

The syntax for CREATE DATABASE is:

CREATE {DATABASE | SCHEMA} 'filespec '

[USER ' username ' [PASSWORD ' password ']]

[PAGE_SIZE [=] int]

[LENGTH [=] int [PAGE[S]]]

[DEFAULT CHARACTER SETcharset]

[<secondary_file>];

<secondary_file> = FILE ' filespec ' [<fileinfo>] [<secondary_file>]

<fileinfo> = LENGTH [=] int [PAGE[S]] | STARTING [AT [PAGE]] int

[<fileinfo>]

IMPORTANT Use single quotes to delimit strings such as file names, user names, and passwords.

� Creating a single-file database
Although there are many optional parameters, CREATE DATABASE requires only one
parameter, filespec, which is the new database file specification. The file specification
contains the device name, path name, and database name.

By default, a database is created as a single file, called the primary file. The following
example creates a single-file database, named employee.gdb, in the current directory.

CREATE DATABASE 'employee.gdb';

For more information about file naming conventions, see the Operations Guide.

CHAPTER 3 CREATING DATABASES

44 INTERBASE 6

SPECIFYING FILE SIZE FOR A SINGLE-FILE DATABASE

You can optionally specify a file length, in pages, for the primary file. For example, the
following statement creates a database that is stored in one 10,000-page- long file:

CREATE DATABASE 'employee.gdb' LENGTH 10000;

If the database grows larger than the specified file length, InterBase extends the primary
file beyond the LENGTH limit until the disk space runs out. To avoid this, you can store a
database in more than one file, called a secondary file.

Note Use LENGTH for the primary file only if defining a secondary file in the same
statement.

� Creating a multifile database
A multifile database consists of a primary file and one or more secondary files. You
cannot specify what information goes into each secondary file because InterBase handles
this automatically. Each secondary file is typically assigned to a different disk than that
of the main database. In a multifile database, InterBase writes to the primary file until it
has filled the specified number of pages, then proceeds to fill the next specified secondary
file.

When you define a secondary file, you can choose to specify its size in database pages
(LENGTH), or you can specify the initial page number of the following file (STARTING AT).
InterBase always treats the final file of a multifile database as dynamically sizeable: it
grows the last file as needed. Although specifying a LENGTH for the final file does not
return an error, a LENGTH specification for the last—or only—file of a database is
meaningless.

IMPORTANT Whenever possible, create the database locally. If the database is created locally,
secondary file names can include a full file specification, including a host or node
names as well as a path and database file name. If you create the database on a remote
server, secondary file specifications cannot include a node name, and all secondary files
must reside on the same node.

CREATING A DATABASE

DATA DEFINITION GUIDE 45

SPECIFYING A SECONDARY FILE USING LENGTH

The LENGTH parameter specifies the number of database pages for the file. The eventual
maximum file size is then the number of pages times the page size for the database. (See
“Specifying database page size” on page 46.) The following example creates a database
with a primary file and three secondary files. The primary file and the first two secondary
files are each 10,000 pages long.

CREATE DATABASE 'employee.gdb'

FILE 'employee2.gdb' STARTING AT PAGE 10001 LENGTH 10000 PAGES

FILE 'employee3.gdb' LENGTH 10000 PAGES

FILE 'employee4.gdb';

Note Because file-naming conventions are platform-specific, for the sake of simplicity,
none of the examples provided include the device and path name portions of the file
specification.

SPECIFYING THE STARTING PAGE NUMBER OF A SECONDARY FILE

If you do not declare a length for a secondary file, then you must specify a starting page
number. STARTING AT specifies the beginning page number for a secondary file. The PAGE
keyword is optional. You can specify a combination of length and starting page numbers
for secondary files.

If you specify a STARTING AT parameter that is inconsistent with a LENGTH parameter for
the previous file, the LENGTH specification takes precedence:

CREATE DATABASE 'employee.gdb' LENGTH 10000

FILE 'employee2.gdb' LENGTH 10000 PAGES

FILE 'employee3.gdb' LENGTH 10000 PAGES

FILE 'employee4.gdb';

The following example produces exactly the same results as the previous one, but uses a
mixture of LENGTH and STARTING AT:

CREATE DATABASE 'employee.gdb'

FILE 'employee2.gdb' STARTING AT 10001 LENGTH 10000 PAGES

FILE 'employee3.gdb' LENGTH 10000 PAGES

FILE 'employee4.gdb';

� Specifying user name and password
If provided, the user name and password are checked against valid user name and
password combinations in the security database on the server where the database will
reside. Only the first 8 characters of the password are significant.

CHAPTER 3 CREATING DATABASES

46 INTERBASE 6

IMPORTANT Windows client applications must create their databases on a remote server. For these
remote connections, the user name and password are not optional. Windows clients
must provide the USER and PASSWORD options with CREATE DATABASE before connecting
to a remote server.

The following statement creates a database with a user name and password:

CREATE DATABASE 'employee.gdb' USER 'SALES' PASSWORD 'mycode';

� Specifying database page size
You can override the default page size of 1024 bytes for database pages by specifying a
different PAGE_SIZE. PAGE_SIZE can be 1024, 2048, 4096, or 8192. The next statement
creates a single-file database with a page size of 2048 bytes:

CREATE DATABASE 'employee.gdb' PAGE_SIZE 2048;

WHEN TO INCREASE PAGE SIZE

Increasing page size can improve performance for several reasons:

� Indexes work faster because the depth of the index is kept to a minimum.

� Keeping large rows on a single page is more efficient. (A row that is too large to fit on a
single page requires more than one page fetch to read or write to it.)

� BLOB data is stored and retrieved more efficiently when it fits on a single page. If an
application typically stores large BLOB columns (between 1K and 2K), a page size of 2048
bytes is preferable to the default (1024).

If most transactions involve only a few rows of data, a smaller page size might be
appropriate, since less data needs to be passed back and forth and less memory is used
by the disk cache.

CHANGING PAGE SIZE FOR AN EXISTING DATABASE

To change a page size of an existing database, follow these steps:

1. Back up the database.

2. Restore the database using the PAGE_SIZE option to specify a new page size.

For more detailed information on backing up the database, see the Operations Guide.

CREATING A DATABASE

DATA DEFINITION GUIDE 47

� Specifying the default character set
DEFAULT CHARACTER SET allows you to optionally set the default character set for the
database. The character set determines:

� What characters can be used in CHAR, VARCHAR, and BLOB text columns.

� The default collation order that is used in sorting a column.

Choosing a default character set is useful for all databases, even those where international
use is not an issue. Choice of character set determines if transliteration among character
sets is possible. For example, the following statement creates a database that uses the
ISO8859_1 character set, typically used in Europe to support European languages:

CREATE DATABASE 'employee.gdb'

DEFAULT CHARACTER SET 'ISO8859_1';

For a list of the international character sets and collation orders that InterBase supports,
see Chapter 13, “Character Sets and Collation Orders.”

USING CHARACTER SET NONE

If you do not specify a default character set, the character set defaults to NONE. Using
CHARACTER SET NONE means that there is no character set assumption for columns; data
is stored and retrieved just as you originally entered it. You can load any character set
into a column defined with NONE, but you cannot load that same data into another
column that has been defined with a different character set. No transliteration will be
performed between the source and destination character sets, so in most cases, errors will
occur during the attempted assignment.

For example:

CREATE TABLE MYDATA (PART_NUMBER CHARACTER(30) CHARACTER SET NONE);

SET NAMES LATIN1;

INSERT INTO MYDATA (PART_NUMBER) VALUES ('à');

SET NAMES DOS437;

SELECT * FROM MYDATA;

The data (“à”) is returned just as it was entered, without the à being transliterated from
the input character (LATIN1) to the output character (DOS437). If the column had been set
to anything other than NONE, the transliteration would have occurred.

CHAPTER 3 CREATING DATABASES

48 INTERBASE 6

Read-only databases
By default, databases are in read-write mode at creation time. Such tables must be on a
writable filesystem even if they are used only for SELECT, because InterBase writes
information about transaction states to a data structure in the database file.

Starting with InterBase 6, you have the option of changing a database to read-only mode.
Such databases can reside on read-only filesystems, such as CD-ROMs.

To change the mode of a database to read-only, you can either use gfix (or the equivalent
choice in IBConsole), or you can back up the database and restore it in read-only mode.
See the Operations Guide for details on how to change the mode of a database using gfix,
gbak, or IBConsole.

Altering a database
Use ALTER DATABASE to add one or more secondary files to an existing database.
Secondary files are useful for controlling the growth and location of a database. They
permit database files to be spread across storage devices, but must remain on the same
node as the primary database file. For more information on secondary files, see
“Creating a multifile database” on page 44.

A database can be altered by its creator, the SYSDBA user, and any users with operating
system root privileges.

ALTER DATABASE requires exclusive access to the database. For more information about
exclusive database access, see “Database shutdown and restart” on page 135 of the
Operations Guide.

The syntax for ALTER DATABASE is:

ALTER {DATABASE | SCHEMA}

ADD <add_clause> ;

<add_clause> = FILE ' filespec ' <fileinfo> [<add_clause>]

<fileinfo> = {LENGTH [=] int [PAGE[S]] | STARTING [AT [PAGE]] int }

[<fileinfo>]

You must specify a range of pages for each file either by providing the number of pages
in each file, or by providing the starting page number for the file.

DROPPING A DATABASE

DATA DEFINITION GUIDE 49

Note It is never necessary to specify a length for the last—or only—file, because
InterBase always dynamically sizes the last file and will increase the file size as necessary
until all the available space is used or until it reaches the maximum database file size of
4GB.

The first example adds two secondary files to the currently connected database by
specifying the starting page numbers:

ALTER DATABASE

ADD FILE 'employee2.gdb' STARTING AT PAGE 10001

ADD FILE 'employee3.gdb' STARTING AT PAGE 20001

The next example does nearly the same thing as the previous example, but it specifies
the secondary file length rather than the starting page number. The difference is that in
the previous example, the original file will grow until it reaches 10000 pages. In the
second example, InterBase starts the secondary file at the next available page and begins
using it immediately.

ALTER DATABASE

ADD FILE 'employee2.gdb' LENGTH 10000

ADD FILE 'employee3.gdb'

Dropping a database
DROP DATABASE is the command that deletes the database currently connected to,
including any associated shadow and log files. Dropping a database deletes any data it
contains. A database can be dropped by its creator, the SYSDBA user, and any users with
operating system root privileges.

The following statement deletes the current database:

DROP DATABASE;

Creating a database shadow
InterBase lets you recover a database in case of disk failure, network failure, or accidental
deletion of the database. The recovery method is called shadowing. This section describes
the various tasks involved in shadowing, as well as the advantages and limitations of
shadowing. The main tasks in setting up and maintaining shadowing are as follows:

CHAPTER 3 CREATING DATABASES

50 INTERBASE 6

� CREATING A SHADOW Shadowing begins with the creation of a shadow. A shadow is an
identical physical copy of a database. When a shadow is defined for a database, changes
to the database are written simultaneously to its shadow. In this way, the shadow always
reflects the current state of the database. For information about the different ways to
define a shadow, see “Using CREATE SHADOW” on page 51.

� DELETING A SHADOW If shadowing is no longer desired, the shadow can be deleted. For
more information about deleting a shadow, see “Dropping a shadow” on page 55.

� ADDING FILES TO A SHADOW A shadow can consist of more than one file. As shadows
grow in size, files can be added to accommodate the increased space requirements.

Advantages of shadowing
Shadowing offers several advantages:

� Recovery is quick: Activating a shadow makes it available immediately.

� Creating a shadow does not require exclusive access to the database.

� You can control the allocation of disk space. A shadow can span multiple files on multiple
disks.

� Shadowing does not use a separate process. The database process handles writing to the
shadow.

� Shadowing runs behind the scenes and needs little or no maintenance.

Limitations of shadowing
Shadowing has the following limitations:

� Shadowing is useful only for recovery from hardware failures or accidental deletion of
the database. User errors or software failures that corrupt the database are duplicated in
the shadow.

� Recovery to a specific point in time is not possible. When a shadow is activated, it takes
over as a duplicate of the database. Shadowing is an “all or nothing” recovery method.

� Shadowing can occur only to a local disk. InterBase does not support shadowing to an
NFS file system, mapped drive, tape, or other media.

CREATING A DATABASE SHADOW

DATA DEFINITION GUIDE 51

Before creating a shadow
Before creating a shadow, consider the following questions:

� Where will the shadow reside?

A shadow should be created on a different disk from where the main database resides.
Because shadowing is intended as a recovery mechanism in case of disk failure,
maintaining a database and its shadow on the same disk defeats the purpose of
shadowing.

� How will the shadow be distributed?

A shadow can be created as a single disk file called a shadow file or as multiple files called
a shadow set. To improve space allocation and disk I/O, each file in a shadow set can be
placed on a different disk.

� If something happens that makes a shadow unavailable, should users be allowed to
access the database?

If a shadow becomes unavailable, InterBase can either deny user access until shadowing
is resumed, or InterBase can allow access even though database changes are not being
shadowed. Depending on which database behavior is desired, the database administrator
(DBA) creates a shadow either in auto mode or in manual mode. For more information
about these modes, see “Auto mode and manual mode” on page 54.

� If a shadow takes over for a database, should a new shadow be automatically created?

To ensure that a new shadow is automatically created, create a conditional shadow. For
more information, see “Conditional shadows” on page 55.

Using CREATE SHADOW

Use the CREATE SHADOW statement to create a database shadow. Because this does not
require exclusive access, it can be done without affecting other users. A shadow can be
created using a combination of the following options:

� Single-file or multifile shadows

� Auto or manual shadows

� Conditional shadows

These options are not mutually exclusive. For example, you can create a single-file,
manual, conditional shadow.

CHAPTER 3 CREATING DATABASES

52 INTERBASE 6

The syntax of CREATE SHADOW is:

CREATE SHADOWset_num [AUTO | MANUAL] [CONDITIONAL]

' filespec ' [LENGTH [=] int [PAGE[S]]] [<secondary_file>];

<secondary_file> = FILE ' filespec ' [<fileinfo>] [<secondary_file>]

<fileinfo> = {LENGTH[=] int [PAGE[S]]| STARTING [AT [PAGE]] int }

[<fileinfo>]

� Creating a single-file shadow
To create a single-file shadow for the database employee.gdb, enter:

CREATE SHADOW 1 'employee.shd';

The shadow is associated with the currently connected database, employee.gdb. The name
of the shadow file is employee.shd, and it is identified by a shadow set number, 1, in this
example. The shadow set number tells InterBase that all of the shadow files listed are
grouped together under this identifier.

To verify that the shadow has been created, enter the isql command SHOW DATABASE:

SHOW DATABASE;

Database: employee.gdb

Shadow 1: '/usr/interbase/employee.shd' auto

PAGE_SIZE 1024

Number of DB pages allocated = 392

Sweep interval = 20000

The page size of the shadow is the same as that of the database.

� Shadow location
On non-NFS systems, which includes all Windows machines, the shadow must reside on
the same host as the database. You cannot specify a different host name or a mapped
drive as the location of the shadow.

On UNIX systems, it is possible to place the shadow on any NFS-mounted directory, but
you run the risk of losing the shadow if you experience problems with NFS, so this is not
a recommended procedure.

� Creating a multifile shadow
You can create multifile shadows, similarly to the way you create multifile databases. To
create a multifile shadow, specify the name and size of each file in the shadow set. File
specifications are platform-specific.

CREATING A DATABASE SHADOW

DATA DEFINITION GUIDE 53

The following examples illustrate the creation of a multifile shadow on a UNIX platform.
They create the shadow files on the A, B, and C drives of the IB_bckup node.

The first example creates a shadow set consisting of three files. The primary file,
employee.shd, is 10,000 database pages in length and the first secondary file is 20,000
database pages long. The final secondary file, as always, grows as needed.

CREATE SHADOW 1 'D:/shadows/employee.shd' LENGTH 10000

FILE 'D:/shadows/employee2.shd' LENGTH 5000

FILE 'D:/shadows/employee3.shd';

Instead of specifying the page length of secondary files, you can specify their starting
pages. The previous example could be entered as follows:

CREATE SHADOW 1 'D:/shadows/employee.shd' LENGTH 10000

FILE 'D:/shadows/employee2.shd' STARTING AT 10000

FILE 'D:/shadows/employee3.shd' STARTING AT 30000;

In either case, you can use SHOW DATABASE to verify the file names, page lengths, and
starting pages for the shadow just created:

SHOW DATABASE;

Database: employee.gdb

Owner: SYSDBA

Shadow 1: "D:\SHADOWS\EMPLOYEE.SHD" auto length 10000

file D:\SHADOWS\EMPLOYEE2.SHD starting 10000

file D:\SHADOWS\EMPLOYEE3.SHD starting 30000

PAGE_SIZE 1024

Number of DB pages allocated = 462

Sweep interval = 20000

Note The page length allocated for secondary shadow files need not correspond to the
page length of the database’s secondary files. As the database grows and its first shadow
file becomes full, updates to the database automatically overflow into the next shadow
file.

CHAPTER 3 CREATING DATABASES

54 INTERBASE 6

� Auto mode and manual mode
A shadow can become unavailable for the same reasons a database becomes unavailable:
disk failure, network failure, or accidental deletion. If a shadow becomes unavailable,
and it was created in AUTO mode, database operations continue automatically without
shadowing. If a shadow becomes unavailable, and it was created in MANUAL mode, further
access to the database is denied until the database administrator intervenes. The benefits
of AUTO mode and MANUAL mode are compared in the following table:

AUTO MODE

The AUTO keyword directs the CREATE SHADOW statement to create a shadow in AUTO
mode:

CREATE SHADOW 1 AUTO 'employee.shd';

Auto mode is the default, so omitting the AUTO keyword achieves the same result.

In AUTO mode, database operation continues even if the shadow becomes inoperable. If
the original shadow was created as a conditional shadow, a new shadow is automatically
created. If the shadow was not conditional, you must create a new shadow manually. For
more information about conditional shadows, see “Conditional shadows” on page 55.

MANUAL MODE

The MANUAL keyword directs the CREATE SHADOW statement to create a shadow in manual
mode:

CREATE SHADOW 1 MANUAL 'employee.shd';

Manual mode is useful when continuous shadowing is more important than continuous
operation of the database. When a manual-mode shadow becomes unavailable, further
connections to the database are prevented. To allow database connections again, the
database administrator must remove the old shadow file, delete references to it, and
create a new shadow.

Mode Advantage Disadvantage

AUTO Database operation is uninterrupted Creates a temporary period when the database is
not shadowed; the DBA might be unaware that the
database is operating without a shadow.

MANUAL Prevents the database from running
unintentionally without a shadow

Halts database operation until the problem is
fixed; needs intervention of the DBA

TABLE 3.1 Auto vs. manual shadows

DROPPING A SHADOW

DATA DEFINITION GUIDE 55

� Conditional shadows
A shadow can be defined so that if it replaces a database, a new shadow will be
automatically created, allowing shadowing to continue uninterrupted. A shadow defined
with this behavior is called a conditional shadow.

To create a conditional shadow, specify the CONDITIONAL keyword with the CREATE
SHADOW statement. For example:

CREATE SHADOW 3 CONDITIONAL 'employee.shd';

Creating a conditional file directs InterBase to automatically create a new shadow. This
happens in either of two cases:

� The database or one of its shadow files becomes unavailable.

� The shadow takes over for the database due to hardware failure.

Dropping a shadow
To stop shadowing, use the shadow number as an argument to the DROP SHADOW
statement. DROP SHADOW deletes shadow references from a database’s metadata, as well
as the physical files on disk.

A shadow can be dropped by its creator, the SYSDBA user, or any user with operating
system root privileges.

DROP SHADOW syntax

DROP SHADOWset_num ;

The following example drops all of the files associated with the shadow set
number 1:

DROP SHADOW 1;

If you need to look up the shadow number, use the isql command SHOW DATABASE.

SHOW DATABASE;

Database: employee.gdb

Shadow 1: 'employee.shd' auto

PAGE_SIZE 1024

Number of DB pages allocated = 392

Sweep interval = 20000

CHAPTER 3 CREATING DATABASES

56 INTERBASE 6

Expanding the size of a shadow
If a database is expected to increase in size, or if the database is already larger than the
space available for a shadow on one disk, you might need to expand the size of the
shadow. To do this, drop the current shadow and create a new one containing additional
files. To add a shadow file, first use DROP SHADOW to delete the existing shadow, then use
CREATE SHADOW to recreate it with the desired number of secondary files.

The page length allocated for secondary shadow files need not correspond to the page
length of the database’s secondary files. As the database grows and its first shadow file
becomes full, updates to the database automatically overflow into the next shadow file.

Using isql to extract data definitions
isql enables you to extract data definition statements from a database and store them in
an output file. All keywords and objects are extracted into the file in uppercase.

The output file enables users to:

� Examine the current state of a database’s system tables before planning alterations. This
is especially useful when the database has changed significantly since its creation.

� Create a database with schema definitions that are identical to the extracted database.

� Make changes to the database, or create a new database source file with a text editor.

Extracting an InterBase 4.0 database
You can use Windows ISQL on a Windows Client PC to extract data definition statements.
On some servers, you can also use command-line isql on the server platform to extract
data definition statements. For more information on using Windows ISQL and
command-line isql, see the Operations Guide.

Extracting a 3.x database
To extract metadata from a 3.x database, use command-line isql on the server. Use the -a
switch instead of -x. The difference between the -x option and the -a option is that the -x
option extracts metadata for SQL objects only, and the -a option extracts all DDL for the
named database. The syntax can differ depending upon operating system requirements.

USING ISQL TO EXTRACT DATA DEFINITIONS

DATA DEFINITION GUIDE 57

The following command extracts the metadata from the employee.gdb database into the
file, newdb.sql:

isql -a employee.gdb -o newdb.sql

For more information on using command-line isql, see the Operations Guide.

CHAPTER 3 CREATING DATABASES

58 INTERBASE 6

DATA DEFINITION GUIDE 59

CHAPTER

4
Chapter 4Specifying Datatypes

This chapter describes the following:

� All of the datatypes that are supported by InterBase, and the allowable operations on
each type

� Where to specify the datatype, and which data definition statements reference or define
the datatype

� How to specify a default character set

� How to create each datatype, including BLOB data

� How to create arrays of datatypes

� How to perform datatype conversions

CHAPTER 4 SPECIFYING DATATYPES

60 INTERBASE 6

About InterBase datatypes
When creating a new column in an InterBase table, the primary attribute that you must
define is the datatype, which establishes the set of valid data that the column can contain.
Only values that can be represented by that datatype are allowed. Besides establishing
the set of valid data that a column can contain, the datatype defines the kinds of
operations that you can perform on the data. For example, numbers in INTEGER columns
can be manipulated with arithmetic operations, while CHARACTER columns cannot.

The datatype also defines how much space each data item occupies on the disk. Choosing
an optimum size for the data value is an important consideration when disk space is
limited, especially if a table is very large.

InterBase supports the following datatypes:

� INTEGER and SMALLINT

� FLOAT and DOUBLE PRECISION

� NUMERIC and DECIMAL

� DATE, TIME, and TIMESTAMP

� CHARACTER and VARYING CHARACTER

� BLOB

InterBase provides the binary large object (BLOB) datatype to store data that cannot easily
be stored in one of the standard SQL datatypes. A BLOB is used to store very large data
objects of indeterminate and variable size, such as bitmapped graphics images, vector
drawings, sound files, video segments, chapter or book-length documents, or any other
kind of multimedia information.

InterBase also supports arrays of most datatypes. An array is a matrix of individual items
composed of any single InterBase datatype (except BLOB). An array can have from 1 to
16 dimensions. An array can be handled as a single entity, or manipulated item-by-item.

A TIMESTAMP datatype is supported that includes information about year, month, day of
the month, and time. The TIMESTAMP datatype is stored as two long integers, and requires
conversion to and from InterBase when entered or manipulated in a host-language
program. The DATE datatype includes information on the year, month, and day of the
month. The TIME datatype includes information about time in hours, minutes, seconds,
and tenths, hundredths, and thousandths of seconds.

ABOUT INTERBASE DATATYPES

DATA DEFINITION GUIDE 61

The following table describes the datatypes supported by InterBase:

Name Size Range/Precision Description

BLOB Variable • None
• Blob segment size is limited to 64K

• Dynamically sizable datatype for
storing large data such as graphics,
text, and digitized voice

• Basic structural unit is the segment
• Blob subtype describes Blob

contents

CHAR(n) n characters • 1 to 32,767 bytes
• Character set character size

determines the maximum number of
characters that can fit in 32K

• Fixed length CHAR or text string type
• Alternate keyword: CHARACTER

DATE 64 bits 1 Jan 100 a.d. to 29 Feb 32768 a.d.

DECIMAL (precision, scale) Variable
(16, 32, or
64 bits)

• precision = 1 to 18; specifies at least
precision digits of precision to store

• scale = 0 to 18; specifies number of
decimal places must be less than or
equal to precision

• Number with a decimal point scale
digits from the right

• Example: DECIMAL(10, 3) holds
numbers accurately in the following
format: ppppppp.sss

DOUBLE PRECISION 64 bitsa 2.225 x 10–308 to 1.797 x 10308 IEEE double precision: 15 digits

FLOAT 32 bits 1.175 x 10–38 to 3.402 x 1038 IEEE single precision: 7 digits

INTEGER 32 bits –2,147,483,648 to 2,147,483,647 Signed long (longword)

NUMERIC (precision, scale) Variable
(16, 32, or
64 bits)

• precision = 1 to 18; specifies exactly
precision digits of precision to store

• scale = 0 to 18; specifies number of
decimal places and must be less than
or equal to precision

• Number with a decimal point scale
digits from the right

• Example: NUMERIC(10,3) holds
numbers accurately in the following
format: ppppppp.sss

SMALLINT 16 bits –32,768 to 32,767 Signed short (word)

TABLE 4.1 Datatypes supported by InterBase

CHAPTER 4 SPECIFYING DATATYPES

62 INTERBASE 6

Where to specify datatypes
A datatype is assigned to a column in the following situations:

� Creating a table using CREATE TABLE.

� Creating a global column template using CREATE DOMAIN.

� Modifying a global column template using ALTER DOMAIN.

� Adding a new column to a table or altering a column using ALTER TABLE.

The syntax for specifying the datatype with these statements is provided here for
reference.

<datatype > =

{SMALLINT | INTEGER | FLOAT | DOUBLE PRECISION}[<array_dim>]

| {DATE | TIME | TIMESTAMP} [<array_dim>]

| {DECIMAL | NUMERIC} [(precision [, scale])] [<array_dim>]

| {CHAR | CHARACTER | CHARACTER VARYING | VARCHAR} [(int)]

[<array_dim>] [CHARACTER SET charname]

| {NCHAR | NATIONAL CHARACTER | NATIONAL CHAR}

[VARYING] [(int)] [<array_dim>]

| BLOB [SUB_TYPE { int | subtype_name }] [SEGMENT SIZE int]

[CHARACTER SETcharname]

| BLOB [(seglen [, subtype])]

For more information on how to create a datatype using CREATE TABLE and ALTER TABLE,
see Chapter 6, “Working with Tables.” For more information on using CREATE DOMAIN
to define datatypes, see Chapter 5, “Working with Domains.”

TIME 64 bits 0:00 AM-23:59.9999 PM

TIMESTAMP 64 bits 1 Jan 100 a.d. to 29 Feb 32768 a.d. Also includes time information

VARCHAR (n) n characters • 1 to 32,765 bytes
• Character set character size

determines the maximum number of
characters that can fit in 32K

• Variable length CHAR or text string
type

• Alternate keywords: CHAR VARYING,
CHARACTER VARYING

a. Actual size of DOUBLE is platform-dependent. Most platforms support the 64-bit size.

Name Size Range/Precision Description

TABLE 4.1 Datatypes supported by InterBase (continued)

DEFINING NUMERIC DATATYPES

DATA DEFINITION GUIDE 63

Defining numeric datatypes
The numeric datatypes that InterBase supports include integer numbers of various sizes
(INTEGER and SMALLINT), floating-point numbers with variable precision (FLOAT, DOUBLE
PRECISION), and formatted, fixed-decimal numbers (DECIMAL and NUMERIC).

Integer datatypes
Integers are whole numbers. InterBase supports two integer datatypes: SMALLINT and
INTEGER. SMALLINT is a signed short integer with a range from –32,768 to 32,767. INTEGER
is a signed long integer with a range from –2,147,483,648 to 2,147,483,647.

The next two statements create domains with the SMALLINT and INTEGER datatypes:

CREATE DOMAIN EMPNO

AS SMALLINT;

CREATE DOMAIN CUSTNO

AS INTEGER

CHECK (VALUE > 99999);

You can perform the following operations on the integer datatypes:

� Comparisons using the standard relational operators (=, <, >, >=, <=). Other operators
such as CONTAINING, STARTING WITH, and LIKE perform string comparisons on numeric
values.

� Arithmetic operations. The standard arithmetic operators determine the sum, difference,
product, or dividend of two or more integers.

� Conversions. When performing arithmetic operations that involve mixed datatypes,
InterBase automatically converts between INTEGER, FLOAT, and CHAR datatypes. For
operations that involve comparisons of numeric data with other datatypes, InterBase first
converts the data to a numeric type, then performs the arithmetic operation or
comparison.

� Sorts. By default, a query retrieves rows in the exact order that it finds them in the table,
which is likely to be unordered. You can sort rows using the ORDER BY clause of a SELECT
statement in descending or ascending order.

CHAPTER 4 SPECIFYING DATATYPES

64 INTERBASE 6

Fixed-decimal datatypes
InterBase supports two SQL datatypes, NUMERIC and DECIMAL, for handling numeric data
with a fixed decimal point, such as monetary values. You can specify optional precision
and scale factors for both datatypes.

� Precision is the total number or maximum number of digits, both significant and
fractional, that can appear in a column of these datatypes. The allowable range for
precision is from 1 to a maximum of 18.

� Scale is the number of digits to the right of the decimal point that comprise the fractional
portion of the number. The allowable range for scale is from zero to precision; in other
words, scale must be less than or equal to precision.

The syntax for NUMERIC and DECIMAL is as follows:

NUMERIC[(precision [, scale])]

DECIMAL[(precision [, scale])]

You can specify NUMERIC and DECIMAL datatypes without precision or scale, with precision
only, or with both precision and scale.

� NUMERIC datatype
NUMERIC(x,y)

In the syntax above, InterBase stores exactly x digits. Of that number, exactly y digits are
to the right of the decimal point. For example,

NUMERIC(5,2)

declares that a column of this type always holds numbers with exactly 5 digits, with
exactly two digits to the right of the decimal point: ppp.ss .

� DECIMAL datatype
DECIMAL(x,y)

In the syntax above, InterBase stores at least x digits. Of that number, exactly y digits are
to the right of the decimal point. For example,

DECIMAL(5,2)

declares that a column of this type must be capable of holding at least five but possibly
more digits and exactly two digits to the right of the decimal point: ppp.ss .

DEFINING NUMERIC DATATYPES

DATA DEFINITION GUIDE 65

� How InterBase stores fixed-decimal datatypes
When you create a domain or column with a NUMERIC or DECIMAL datatype, InterBase
determines which datatype to use for internal storage based on the precision and scale
that you specify and the dialect of the database.

� NUMERIC and DECIMAL datatypes that are declared without either precision or scale are
stored as INTEGER.

� Defined with precision, with or without scale, they are stored as SMALLINT, INTEGER,
DOUBLE PRECISION or 64-bit integer. Storage type depends on both the precision and the
dialect of the database. Table 4.2 describes these relationships.

NUMERIC and DECIMAL datatypes with precision greater than 10 always produce an error
when you create a dialect 2 database. This forces you to examine each instance during a
migration. For more about migrating exact numerics, see “Migrating databases with
NUMERIC and DECIMAL datatypes” on page 67. For a broader discussion of migration
issues, see the migration chapter of Getting Started.

The following table summarizes how InterBase stores NUMERIC and
DECIMAL datatypes based on precision and scale:

Precision Dialect 1 Dialect 3

1 to 4 • SMALLINT for NUMERIC datatypes
• INTEGER for DECIMAL datatypes

• SMALLINT

5 to 9 INTEGER INTEGER

10 to 18 DOUBLE PRECISION INT64

TABLE 4.2 How InterBase stores NUMERIC and DECIMAL datatypes

Datatype specified as… Datatype stored as…

NUMERIC INTEGER

NUMERIC(4) SMALLINT

NUMERIC(9) INTEGER

NUMERIC(10) • DOUBLE PRECISION in dialect1
• INT64 in dialect 3

NUMERIC(4,2) SMALLINT

NUMERIC(9,3) INTEGER

CHAPTER 4 SPECIFYING DATATYPES

66 INTERBASE 6

� Specifying NUMERIC and DECIMAL with scale and precision
When a NUMERIC or DECIMAL datatype declaration includes both precision and scale,
values containing a fractional portion can be stored, and you can control the number of
fractional digits. InterBase stores such values internally as SMALLINT, INTEGER, or 64-bit
integer data, depending on the precision specified. How can a number with a fractional
portion be stored as an integer value? For all SMALLINT and INTEGER data entered,
InterBase stores:

� A scale factor, a negative number indicating how many decimal places are contained in
the number, based on the power of 10. A scale factor of –1 indicates a fractional portion
of tenths; a –2 scale factor indicates a fractional portion of hundredths. You do not need
to include the sign; it is negative by default.

� For example, when you specify NUMERIC(4,2), InterBase stores the number internally as
a SMALLINT. If you insert the number 25.253, it is stored as a decimal 25.25, with 4 digits
of precision, and a scale of 2.

� The number is divided by 10 to the power of scale (number/10scale) to produce a number
without a fractional portion.

� Specifying datatypes using embedded applications
DSQL applications such as isql can correct for the scale factor for SMALLINT and INTEGER
datatypes by examining the XSQLVAR sqlscale field and dividing to produce the correct
value.

NUMERIC(10,4) • DOUBLE PRECISION in dialect1
• INT64 in dialect 3

DECIMAL INTEGER

DECIMAL(4) INTEGER

DECIMAL(9) INTEGER

DECIMAL(10) • DOUBLE PRECISION in dialect1
• INT64 in dialect 3

DECIMAL(4,2) INTEGER

DECIMAL(9,3) INTEGER

DECIMAL(10,4) • DOUBLE PRECISION in dialect1
• INT64 in dialect 3

Datatype specified as… Datatype stored as…

DEFINING NUMERIC DATATYPES

DATA DEFINITION GUIDE 67

IMPORTANT Embedded applications cannot use or recognize small precision NUMERIC or DECIMAL
datatypes with fractional portions when they are stored as SMALLINT or INTEGER types. To
avoid this problem, create all NUMERIC and DECIMAL datatypes that are to be accessed
from embedded applications with a precision of 10 or more, which forces them to be
stored as 64-bit integer types. Again, remember to specify a scale if you want to control
the precision and scale.

Both SQL and DSQL applications handle NUMERIC and DECIMAL types stored as 64-bit
integer without problem.

� Considering migration for NUMERIC and DECIMAL datatypes
NUMERIC and DECIMAL datatypes that have a precision greater than 9 are stored differently
in dialect 1 and dialect 3 databases. Future versions of InterBase will no longer support
dialect 1. It is offered now as a transitional mode. As you migrate your databases to dialect
3, consider the following questions about columns defined with NUMERIC and DECIMAL
datatypes:

� Is the precision less than 10? There is no issue. You can migrate without taking any action
and there will be no change in the database and no effect on clients.

� For NUMERIC and DECIMAL columns with precision equal to or greater than 10, is DOUBLE
PRECISION an appropriate way to store your data?

· In many cases, the answer is “yes.” If you want to continue to store your data as DOUBLE
PRECISION, change the datatype of the column to DOUBLE PRECISION either before or
after migrating your database to dialect 3. This doesn’t change any functionality in
dialect 3, but it brings the declaration into line with the storage mode. In a dialect 3
database, newly-created columns of this type are stored as INT64, but migrated columns
are still stored as DOUBLE PRECISION. Changing the declaration avoids confusion.

· DOUBLE PRECISION might not be appropriate or desirable for financial applications and
others that are sensitive to rounding errors. In this case, you need to take steps to
migrate your column so that it is stored as INT64 in dialect 3. As you make this decision,
remember that INT64 does not store the same range as DOUBLE PRECISION. Check
whether you will lose information in this conversion and whether this is acceptable.

� Migrating databases with NUMERIC and DECIMAL datatypes
Read the “considering migration” section above to decide whether you have columns in
a dialect 1 database that would be best stored as 64-bit INTs in a dialect 3 database. If
this is the case, follow these steps for each column:

CHAPTER 4 SPECIFYING DATATYPES

68 INTERBASE 6

1. Back up your original database. Read the “migration” chapter in Getting
Started to determine what preparations you need to make before migrating
the database. Typically, this includes detecting metadata that uses double
quotes around strings. After making necessary preparations, back up the
database using its current GBAK version and restore it using InterBase 6.

2. Use gfix -set_db_SQL_dialect 3 to change the database to dialect 3

3. Use the ALTER COLUMN clause of the ALTER DATABASE statement to change the
name of each affected column to something different from its original name.
If column position is going to be an issue with any of your clients, use ALTER
COLUMN to change the positions as well.

4. Create a new column for each one that you are migrating. Use the original
column names and if necessary, positions. Declare each one as a DECIMAL or
NUMERIC with precision greater than 9.

5. Use UPDATE to copy the data from each old column to its corresponding new
column:

UPDATE tablename

SET new_col_name = old_col_name ;

6. Check that your data has been successfully copied to the new columns and
drop the old columns.

Note If you are migrating exact numeric columns to a dialect 1 database in InterBase 6,
no special steps are needed. A dialect 1 database in InterBase 6 behaves just like an
InterBase 5 database. Dialect 1 is an old standard, however, and will eventually not be
supported by InterBase.

Floating-point datatypes
InterBase provides two floating-point datatypes, FLOAT and DOUBLE PRECISION; the only
difference is their size. FLOAT specifies a single-precision, 32-bit datatype with a precision
of approximately 7 decimal digits. DOUBLE PRECISION specifies a double-precision, 64-bit
datatype with a precision of approximately 15 decimal digits.

The precision of FLOAT and DOUBLE PRECISION is fixed by their size, but the scale is not,
and you cannot control the formatting of the scale. With floating numeric datatypes, the
placement of the decimal point can vary; the position of the decimal is allowed to “float.”
For example, in the same column, one value could be stored as 25.33333, and another
could be stored as 25.333.

DEFINING NUMERIC DATATYPES

DATA DEFINITION GUIDE 69

Use floating-point numbers when you expect the placement of the decimal point to vary,
and for applications where the data values have a very wide range, such as in scientific
calculations.

If the value stored is outside of the range of the precision of the floating-point number,
then it is stored only approximately, with its least-significant digits treated as zeros. For
example, if the type is FLOAT, you are limited to 7 digits of precision. If you insert a
10-digit number 25.33333312 into the column, it is stored as 25.33333.

The next statement creates a column, PERCENT_CHANGE, using a DOUBLE PRECISION type:

CREATE TABLE SALARY_HISTORY

(. . .

PERCENT_CHANGE DOUBLE PRECISION

DEFAULT 0

NOT NULL

CHECK (PERCENT_CHANGE BETWEEN -50 AND 50),

. . .);

You can perform the following operations on FLOAT and DOUBLE PRECISION datatypes:

� Comparisons using the standard relational operators (=, <, >, >=, <=). Other operators
such as CONTAINING, STARTING WITH, and LIKE perform string comparisons on the integer
portion of floating data.

� Arithmetic operations. The standard arithmetic operators determine the sum, difference,
product, or dividend of two or more integers.

� Conversions. When performing arithmetic operations that involve mixed datatypes,
InterBase automatically converts between INTEGER, FLOAT, and CHAR datatypes. For
operations that involve comparisons of numeric data with other datatypes, such as
CHARACTER and INTEGER, InterBase first converts the data to a numeric type, then
compares them numerically.

� Sorts. By default, a query retrieves rows in the exact order that it finds them in the table,
which is likely to be unordered. Sort rows using the ORDER BY clause of a SELECT
statement in descending or ascending order.

The following CREATE TABLE statement provides an example of how the different numeric
types can be used: an INTEGER for the total number of orders, a fixed DECIMAL for the
dollar value of total sales, and a FLOAT for a discount rate applied to the sale.

CHAPTER 4 SPECIFYING DATATYPES

70 INTERBASE 6

CREATE TABLE SALES

(. . .

QTY_ORDERED INTEGER

DEFAULT 1

CHECK (QTY_ORDERED >= 1),

TOTAL_VALUE DECIMAL (9,2)

CHECK (TOTAL_VALUE >= 0),

DISCOUNT FLOAT

DEFAULT 0

CHECK (DISCOUNT >= 0 AND DISCOUNT <= 1));

The DATE, TIME, and TIMESTAMP datatypes
InterBase supports DATE, TIME, and TIMESTAMP datatypes.

� DATE stores a date as a 32-bit longword. Valid dates are from January 1, 100 a.d. to
February 29, 32768 a.d.

� TIME stores time as a 32-bit longword. Valid times are from 00:00 AM to 23:59.9999 PM.

� TIMESTAMP is stored as two 32-bit longwords and is a combination of DATE and TIME.

The following statement creates TIMESTAMP columns in the SALES table:

CREATE TABLE SALES

(. . .

ORDER_DATE TIMESTAMP

DEFAULT 'now'

NOT NULL,

SHIP_DATE TIMESTAMP

CHECK (SHIP_DATE >= ORDER_DATE OR SHIP_DATE IS NULL),

. . .);

In the previous example, NOW returns the system date and time.

Converting to the DATE, TIME, and TIMESTAMP datatypes
Most languages do not support the DATE, TIME, and TIMESTAMP datatypes. Instead, they
express them as strings or structures. These datatypes requires conversion to and from
InterBase when entered or manipulated in a host-language program. For example, you
could convert to the DATE datatype in one of the following ways:

THE DATE, TIME, AND TIMESTAMP DATATYPES

DATA DEFINITION GUIDE 71

� Create a string in a format that InterBase understands (for example,
1-JAN-1999). When you insert the date into a DATE column, InterBase automatically
converts the text into the internal DATE format.

� Use the call interface routines provided by InterBase to do the conversion.
isc_decode_date() converts from the InterBase internal DATE format to the C time
structure. isc_encode_date() converts from the C time structure to the internal InterBase
DATE format.

Note The string conversion described in the first bullet does not work in the other
direction. To read a date in an InterBase format and convert it to a C date variable, you
must call isc_decode_date().

For more information about how to convert DATE, TIME, and TIMESTAMP datatypes in C,
and how to use the CAST() function for type conversion using SELECT statements, refer to
“Using CAST() to convert dates and times” in Chapter 7, “Working with Dates” in the
Embedded SQL Guide.

InterBase and the year 2000
InterBase stores all date values correctly, including those after the year 2000. InterBase
always stores the full year value in a DATE or TIMESTAMP column, never the two-digit
abbreviated value. When a client application enters a two-digit year value, InterBase uses
the “sliding window” algorithm, described below, to make an inference about the century
and stores the full date value including the century. When you retrieve the data, InterBase
returns the full year value including the century information. It is up to client applications
to display the information with two or four digits.

InterBase uses the following sliding window algorithm to infer a century:

� Compare the two-digit year number entered to the current year modulo 100

� If the absolute difference is greater than 50, then infer that the century of the number
entered is 20, otherwise it is 19.

CHAPTER 4 SPECIFYING DATATYPES

72 INTERBASE 6

Character datatypes
InterBase supports four character string datatypes:

1. A fixed-length character datatype, called CHAR(n) or CHARACTER(n), where n
is the exact number of characters stored.

2. A variable-length character type, called VARCHAR(n) or CHARACTER
VARYING(n), where n is the maximum number of characters in the string.

3. An NCHAR(n) or NATIONAL CHARACTER(n) or NATIONAL CHAR(n) datatype,
which is a fixed-length character string of n characters which uses the
ISO8859_1 character set.

4. An NCHAR VARYING(n) or NATIONAL CHARACTER VARYING(n) or NATIONAL CHAR
VARYING(n) datatype, which is a variable-length national character string up
to a maximum of n characters.

Specifying a character set
When you define the datatype for a column, you can specify a character set for the
column with the CHARACTER SET argument. This setting overrides the database default
character set that is assigned when the database is created.

You can also change the default character set with SET NAMES in command-line isql or with
the Session | Advanced Settings command in Windows ISQL. For details about using
interactive SQL in either environment, see the Operations Guide.

The character set determines:

� What characters can be used in CHAR, VARCHAR, and BLOB text columns.

� The collation order to be used in sorting the column.

Note Collation order does not apply to BLOB data.

For example, the following statement creates a column that uses the ISO8859_1 character
set, which is typically used in Europe to support European languages:

CREATE TABLE EMPLOYEE

(FIRST_NAME VARCHAR(10) CHARACTER SET ISO8859_1,

. . .);

For a list of the international character sets and collation orders that InterBase supports,
see Chapter 13, “Character Sets and Collation Orders.”

CHARACTER DATATYPES

DATA DEFINITION GUIDE 73

� Characters vs. bytes
The number of bytes that the system uses to store a single character can vary depending
upon the character set. InterBase limits a character column to 32,767 bytes. Some
character sets require two or three bytes per character, so the maximum number of
characters allowed in n varies depending upon the character set used.

In the case of a single-byte character column, one character is stored in one byte, so the
internal memory used to store the string is also 32,767 bytes. Therefore, you can define
32,767 characters per single-byte column without encountering an error.

In the case of multi-byte characters, one character does not equal one byte.
In the following example, the user specifies a CHAR datatype using the UNICODE_FSS
character set:

CHAR (10922) CHARACTER SET UNICODE_FSS; /* succeeds */

CHAR (10923) CHARACTER SET UNICODE_FSS; /* fails */

This character set has a maximum size of 3 bytes for a single character. Because each
character requires 3 bytes of internal storage, the maximum number of characters
allowed without encountering an error is 10,922 (32,767 divided by 3 is approximately
10,922).

Note To determine the maximum number of characters allowed in the data definition
statement of any multi-byte column, look up the number of bytes per character in
Appendix A. Then divide 32,767 (the internal byte storage limit for any character
datatype) by the number of bytes for each character. Two-byte character sets have a
character limit of 16,383 per field, and a three-byte character set has a limit of 10,922
characters per field.

� Using CHARACTER SET NONE

If a default character set was not specified when the database was created, the character
set defaults to NONE. Using CHARACTER SET NONE means that there is no character set
assumption for columns; data is stored and retrieved just as you originally entered it. You
can load any character set into a column defined with NONE, but you cannot load that
same data into another column that has been defined with a different character set. No
transliteration will be performed between the source and destination character sets, so in
most cases, errors will occur during the attempted assignment.

For example:

CREATE TABLE MYDATA (PART_NUMBER CHARACTER(30) CHARACTER SET NONE);

SET NAMES LATIN1;

INSERT INTO MYDATA (PART_NUMBER) VALUES('à');

SET NAMES DOS437;

SELECT * FROM MYDATA;

CHAPTER 4 SPECIFYING DATATYPES

74 INTERBASE 6

The data (“à”) is returned just as it was entered, without the à being transliterated from
the input character (LATIN1) to the output character (DOS437). If the column had been set
to anything other than NONE, the transliteration would have occurred.

� About collation order
Each character set has its own subset of possible collation orders. The character set that
you choose when you define the datatype limits your choice of collation orders. The
collation order for a column is specified when you create the table.

For a list of the international character sets and collation orders that InterBase supports,
see Chapter 13, “Character Sets and Collation Orders.”

Fixed-length character data
InterBase supports two fixed-length string datatypes: CHAR(n), or alternately CHARACTER
(n), and NCHAR(n), or alternately NATIONAL CHAR(n).

� CHAR(n) or CHARACTER(n)
The CHAR(n) or CHARACTER(n) datatype contains character strings. The number of
characters n is fixed. For the maximum number of characters allowed for the character
set that you have specified, see Chapter 13, “Character Sets and Collation Orders.”

When the string to be stored or read contains less than n characters, InterBase fills in the
blanks to make up the difference. If a string is larger than n, then the value is truncated.
If you do not supply n, it will default to 1, so CHAR is the same as CHAR(1). The next
statement illustrates this:

CREATE TABLE SALES

(. . .

PAID CHAR

DEFAULT 'n'

CHECK (PAID IN ('y', 'n'), …);

Trailing blanks InterBase compresses trailing blanks when it stores fixed-length strings,
so data with trailing blanks uses the same amount of space as an equivalent
variable-length string. When the data is read, InterBase reinserts the blanks. This saves
disk space when the length of the data items varies widely.

CHARACTER DATATYPES

DATA DEFINITION GUIDE 75

� NCHAR(n) or NATIONAL CHAR(n)
NCHAR(n) is exactly the same as CHARACTER(n), except that it uses the ISO8859_1 character
set by definition. Using NCHAR(n) is a shortcut for using the CHARACTER SET clause to
specify the ISO8859_1 character set for a column.

The next two CREATE TABLE examples are equivalent:

CREATE TABLE EMPLOYEE

(…

FIRST_NAME NCHAR(10),

LAST_NAME NCHAR(15), …);

CREATE TABLE EMPLOYEE

(…

FIRST_NAME CHAR(10) CHARACTER SET 'ISO8859_1',

LAST_NAME CHAR(15) CHARACTER SET 'ISO8859_1', …);

Variable-length character data
InterBase supports two variable-length string datatypes: VARCHAR(n), or alternately
CHAR(n) VARYING, and NCHAR(n), or alternately NATIONAL CHAR(n) VARYING.

� VARCHAR(n)
VARCHAR(n)—also called CHAR VARYING(n), or CHARACTER VARYING(n)—allows you to
store the exact number of characters that is contained in your data, up to a maximum of
n. You must supply n; there is no default to 1.

If the length of the data within a column varies widely, and you do not want to pad your
character strings with blanks, use the VARCHAR(n) or CHARACTER VARYING(n) datatype.

InterBase converts from variable-length character data to fixed-length character data by
adding spaces to the value in the varying column until the column reaches its maximum
length n. When the data is read, InterBase removes the blanks.

The main advantages of using the VARCHAR(n) datatype are that it saves disk space, and
since more rows fit on a disk page, the database server can search the table with fewer
disk I/O operations. The disadvantage is that table updates can be slower than using a
fixed-length column in some cases.

CHAPTER 4 SPECIFYING DATATYPES

76 INTERBASE 6

The next statement illustrates the VARCHAR(n) datatype:

CREATE TABLE SALES

(…

ORDER_STATUS VARCHAR(7)

DEFAULT 'new'

NOT NULL

CHECK (ORDER_STATUS IN ('new', 'open',

'shipped', 'waiting')), …);

� NCHAR VARYING(n)
NCHAR VARYING(n)—also called NATIONAL CHARACTER VARYING (n) or NATIONAL CHAR
VARYING(n)—is exactly the same as VARCHAR(n), except that the ISO8859_1 character set
is used. Using NCHAR VARYING(n) is a shortcut for using the CHARACTER SET clause of
CREATE TABLE, CREATE DOMAIN, or ALTER TABLE to specify the ISO8859_1 character set.

Defining BLOB datatypes
InterBase supports a dynamically sizable datatype called a BLOB to store data that cannot
easily be stored in one of the standard SQL datatypes. A Blob is used to store very large
data objects of indeterminate and variable size, such as bitmapped graphics images,
vector drawings, sound files, video segments, chapter or book-length documents, or any
other kind of multimedia information. Because a Blob can hold different kinds of
information, it requires special processing for reading and writing. For more information
about Blob handling, see the Embedded SQL Guide.

The BLOB datatype provides the advantages of a database management system, including
transaction control, maintenance by database utilities, and access using SELECT, INSERT,
UPDATE, and DELETE statements. Use the BLOB datatype to avoid storing pointers to
non-database files.

DEFINING BLOB DATATYPES

DATA DEFINITION GUIDE 77

BLOB columns
You define BLOB columns in database tables just as you do non-BLOB columns. For
example, the following statement creates a table with a BLOB column:

CREATE TABLE PROJECT

(PROJ_ID PROJNO NOT NULL,

PROJ_NAME VARCHAR(20) NOT NULL UNIQUE,

PROJ_DESC BLOB,

TEAM_LEADER EMPNO,

PRODUCT PRODTYPE,

. . .);

Rather than storing BLOB data directly, a BLOB column stores a BLOB ID. A BLOB ID is a
unique numeric value that references BLOB data. The BLOB data is stored elsewhere in the
database, in a series of BLOB segments, which are units of BLOB data that are read and
written in chunks. InterBase writes data to a BLOB one segment at a time. Similarly, it
reads a BLOB one segment at a time.

The following diagram shows the relationship between a BLOB column containing a
BLOB ID and the BLOB data referenced by the BLOB ID:

FIGURE 4.1 Blob relationships

BLOB segment length
When a BLOB column is defined in a table, the BLOB definition can specify the expected
size of BLOB segments that are written to the column. Actually, for SELECT, INSERT, and
UPDATE operations, BLOB segments can be of varying length. For example, during
insertion, a BLOB might be read in as three segments, the first segment having length 30,
the second having length 300, and the third having length 3.

BLOB ID ……

BLOB
column

Table row

BLOB data segment segment segment …

CHAPTER 4 SPECIFYING DATATYPES

78 INTERBASE 6

The length of an individual segment should be specified when it is written. For example,
the following code fragment inserts a BLOB segment. The segment length is specified in
the host variable, segment_length:

INSERT CURSOR BCINS VALUES (:write_segment_buffer : segment_length);

� Defining segment length
gpre, the InterBase precompiler, is used to process embedded SQL statements inside
applications. The segment length setting, defined for a BLOB column when it is created,
is used to determine the size of the internal buffer where the BLOB segment data will be
written. This setting specifies (to gpre) the maximum number of bytes that an application
is expected to write to any segment in the column. The default segment length is 80.
Normally, an application should not attempt to write segments larger than the segment
length defined in the table; doing so overflows the internal segment buffer, corrupting
memory in the process.

The segment length setting does not affect InterBase system performance. Choose the
segment length most convenient for the specific application. The largest possible segment
length is 32 kilobytes (32,767 bytes).

� Segment syntax
The following statement creates two BLOB columns, BLOB1, with a default segment size
of 80, and BLOB2, with a specified segment length of 512:

CREATE TABLE TABLE2

(BLOB1 BLOB,

BLOB2 BLOB SEGMENT SIZE 512);

BLOB subtypes
When you define a BLOB column, you have the option of specifying a subtype. A BLOB
subtype is a positive or negative integer that describes the nature of the BLOB data
contained in the column. InterBase provides two predefined subtypes, 0, signifying that
a BLOB contains binary data, the default, and 1, signifying that a BLOB contains ASCII text.
User-defined subtypes must always be represented as negative integers. Positive integers
are reserved for use by InterBase.

Blob subtype Description

0 Unstructured, generally applied to binary data or data of an indeterminate type

1 Text

DEFINING BLOB DATATYPES

DATA DEFINITION GUIDE 79

For example, the following statement defines three BLOB columns: BLOB1 with subtype 0
(the default), BLOB2 with InterBase subtype 1 (TEXT), and BLOB3 with user-defined
subtype –1:

CREATE TABLE TABLE2

(BLOB1 BLOB,

BLOB2 BLOB SUB_TYPE 1,

BLOB3 BLOB SUB_TYPE –1);

The application is responsible for ensuring that data stored in a BLOB column agrees with
its subtype. For example, if subtype –10 denotes a certain datatype in a particular
application, then the application must ensure that only data of that datatype is written to
a BLOB column of subtype –10. InterBase does not check the type or format of BLOB
data.

To specify both a default segment length and a subtype when creating a BLOB column,
use the SEGMENT SIZE option after the SUB_TYPE option, as in the following example:

CREATE TABLE TABLE2

(BLOB1 BLOB SUB_TYPE 1 SEGMENT SIZE 100 CHARACTER SET DOS437);

BLOB filters
BLOB subtypes are used in conjunction with BLOB filters. A BLOB filter is a routine that
translates BLOB data from one subtype to another. InterBase includes a set of special
internal BLOB filters that convert from subtype 0 to subtype 1 (TEXT), and from InterBase
system subtypes to subtype 1 (TEXT). In addition to using the internal text filters,
programmers can write their own external filters to provide special data translation. For
example, an external filter might automatically translate from one bitmapped image
format to another.

Note BLOB filters are not supported on NetWare servers.

2 Binary language representation (BLR)

3 Access control list

4 (Reserved for future use)

5 Encoded description of a table’s current metadata

6 Description of multi-database transaction that finished irregularly

Blob subtype Description

CHAPTER 4 SPECIFYING DATATYPES

80 INTERBASE 6

Associated with every filter is an integer pair that specifies the input subtype and the
output subtype. When declaring a cursor to read or write BLOB data, specify FROM and TO
subtypes that correspond to a particular BLOB filter. InterBase invokes the filter based on
the FROM and TO subtype specified by the read or write cursor declaration.

The display of BLOB subtypes in isql can be specified with SET BLOBDISPLAY in
command-line isql or with the Session | Advanced Settings command in Windows ISQL.

For more information about Windows ISQL and command-line isql, see the Operations
Guide. For more information about creating external BLOB filters, see the Embedded SQL
Guide.

Defining arrays
InterBase allows you to create arrays of datatypes. Using an array enables multiple data
items to be stored in a single column. InterBase can perform operations on an entire
array, effectively treating it as a single element, or it can operate on an array slice, a
subset of array elements. An array slice can consist of a single element, or a set of many
contiguous elements.

Using an array is appropriate when:

� The data items naturally form a set of the same datatype.

� The entire set of data items in a single database column must be represented and
controlled as a unit, as opposed to storing each item in a separate column.

� Each item must also be identified and accessed individually.

The data items in an array are called array elements. An array can contain elements of
any InterBase datatype except BLOB, and cannot be an array of arrays. All of the elements
of a particular array are of the same datatype.

Arrays are defined with the CREATE DOMAIN or CREATE TABLE statements. Defining an array
column is just like defining any other column, except that the array dimensions must also
be specified. For example, the following statement defines both a regular character
column, and a single-dimension, character array column containing four elements:

EXEC SQL

CREATE TABLE TABLE1

(NAME CHAR(10),

CHAR_ARR CHAR(10)[4]);

Array dimensions are always enclosed in square brackets following a column’s datatype
specification.

DEFINING ARRAYS

DATA DEFINITION GUIDE 81

For a complete discussion of CREATE TABLE and array syntax, see the Language Reference.
To learn more about the flexible data access provided by arrays, see the Embedded SQL
Guide.

Multi-dimensional arrays
InterBase supports multi-dimensional arrays, arrays with 1 to 16 dimensions. For
example, the following statement defines three INTEGER array columns with two, three,
and six dimensions respectively:

EXEC SQL

CREATE TABLE TABLE1

(INT_ARR2 INTEGER[4,5],

INT_ARR3 INTEGER[4,5,6],

INT_ARR6 INTEGER[4,5,6,7]);

In this example, INT_ARR2 allocates storage for 4 rows, 5 elements in width, for a total of
20 integer elements, INT_ARR3 allocates 120 elements, and INT_ARR6 allocates 840
elements.

IMPORTANT InterBase stores multi-dimensional arrays in row-major order. Some host languages,
such as FORTRAN, expect arrays to be in column-major order. In these cases, care must
be taken to translate element ordering correctly between InterBase and the host
language.

Specifying subscript ranges for array dimensions
In InterBase, array dimensions have a specific range of upper and lower boundaries,
called subscripts. In many cases, the subscript range is implicit. The first element of the
array is element 1, the second element 2, and the last is element n. For example, the
following statement creates a table with a column that is an array of four integers:

EXEC SQL

CREATE TABLE TABLE1

(INT_ARR INTEGER[4]);

The subscripts for this array are 1, 2, 3, and 4.

A different set of upper and lower boundaries for each array dimension can be explicitly
defined when an array column is created. For example, C programmers, familiar with
arrays that start with a lower subscript boundary of zero, might want to create array
columns with a lower boundary of zero as well.

CHAPTER 4 SPECIFYING DATATYPES

82 INTERBASE 6

To specify array subscripts for an array dimension, both the lower and upper boundaries
of the dimension must be specified using the following syntax:

lower : upper

For example, the following statement creates a table with a single-dimension array
column of four elements where the lower boundary is 0 and the upper boundary is 3:

EXEC SQL

CREATE TABLE TABLE1

(INT_ARR INTEGER[0:3]);

The subscripts for this array are 0, 1, 2, and 3.

When creating multi-dimensional arrays with explicit array boundaries, separate each
dimension’s set of subscripts from the next with commas. For example, the following
statement creates a table with a two-dimensional array column where each dimension
has four elements with boundaries of 0 and 3:

EXEC SQL

CREATE TABLE TABLE1

(INT_ARR INTEGER[0:3, 0:3]);

Converting datatypes
Normally, you must use compatible datatypes to perform arithmetic operations, or to
compare data in search conditions. If you need to perform operations on mixed
datatypes, or if your programming language uses a datatype that is not supported by
InterBase, then datatype conversions must be performed before the database operation
can proceed. InterBase either automatically converts the data to an equivalent datatype
(an implicit type conversion), or you can use the CAST() function in search conditions to
explicitly translate one datatype into another for comparison purposes.

Implicit type conversions
InterBase automatically converts columns of an unsupported datatype to an equivalent
one, if required. This is an implicit datatype conversion. For example, in the following
operation,

3 + '1' = 4

InterBase automatically converts the character “1” to an INTEGER for the addition
operation.

CONVERTING DATATYPES

DATA DEFINITION GUIDE 83

The next example returns an error because InterBase cannot convert the “a” to an
INTEGER:

3 + 'a' = 4

Explicit type conversions
When InterBase cannot do an implicit type conversion, you must perform an explicit type
conversion using the CAST() function. Use CAST() to convert one datatype to another inside
a SELECT statement. Typically, CAST() is used in the WHERE clause to compare different
datatypes. The syntax is:

CAST (value | NULL AS datatype)

Use CAST() to translate a:

� DATE, TIME, or TIMESTAMP datatype into a CHARACTER datatype.

� CHARACTER datatype into a DATE, TIME, or TIMESTAMP datatype.

� TIMESTAMP datatype into a TIME or DATE datatype.

� TIME or DATE datatype into a TIMESTAMP datatype.

For example, in the following WHERE clause, CAST() is used to translate a CHAR datatype,
INTERVIEW_DATE, to a DATE datatype in order to compare against a DATE datatype,
HIRE_DATE:

… WHERE HIRE_DATE = (CAST(INTERVIEW_DATE AS DATE);

In the next example, CAST() is used to translate a DATE datatype into a CHAR datatype:

… WHERE CAST(HIRE_DATE AS CHAR) = INTERVIEW_DATE;

You can use CAST() to compare columns with different datatypes in the same table, or
across tables.

For more information, refer to “Using CAST() to convert dates and times” in Chapter 7,
“Working with Dates” in the Embedded SQL Guide.

CHAPTER 4 SPECIFYING DATATYPES

84 INTERBASE 6

DATA DEFINITION GUIDE 85

CHAPTER

5
Chapter 5Working with Domains

This chapter describes how to:

� Create a domain

� Alter a domain

� Drop a domain

Creating domains
When you create a table, you can use a global column definition, called a domain, to
define a column locally. Before defining a column that references a domain, you must
first create the domain definition in the database with CREATE DOMAIN. CREATE DOMAIN
acts as a template for defining columns in subsequent CREATE TABLE and ALTER TABLE
statements. For more information on creating and modifying tables, see Chapter 6,
“Working with Tables.”

Domains are useful when many tables in a database contain identical column definitions.
Columns based on a domain definition inherit all characteristics of the domain; some of
these attributes can be overridden by local column definitions.

Note You cannot apply referential integrity constraints to a domain.

The syntax for CREATE DOMAIN is:

CHAPTER 5 WORKING WITH DOMAINS

86 INTERBASE 6

CREATE DOMAINdomain [AS] <datatype>

[DEFAULT { literal | NULL | USER}]

[NOT NULL] [CHECK (<dom_search_condition>)]

[COLLATE collation];

Using CREATE DOMAIN

When you create a domain in the database, you must specify a unique name for the
domain, and define the various attributes and constraints of the column definition. These
attributes include:

� Datatype

� Default values and NULL status

� CHECK constraints

� Collation order

Specifying the domain datatype
The datatype is the only required attribute that must be set for the domain—all other
attributes are optional. The datatype defines the set of valid data that the column can
contain. The datatype also determines the set of allowable operations that can be
performed on the data, and defines the disk space requirements for each data item.

The syntax for specifying the datatype is:

<datatype> = SMALLINT

| INTEGER

| FLOAT

| DOUBLE PRECISION

| {DECIMAL | NUMERIC} [(precision [, scale])]

| {DATE | TIME | TIMESTAMP)

| {CHAR | CHARACTER | CHARACTER VARYING | VARCHAR}

[(int)] [CHARACTER SET charname]

| {NCHAR | NATIONAL CHARACTER | NATIONAL CHAR} [VARYING] [(int)]

<array_dim> = [x:y [, x1:y1 …]]

Note The outermost (boldface) brackets must be included when declaring arrays.

datatype is the SQL datatype for any column based on a domain. You cannot override the
domain datatype with a local column definition.

USING CREATE DOMAIN

DATA DEFINITION GUIDE 87

The general categories of SQL datatypes include:

� Character datatypes.

� Integer datatypes.

� Decimal datatypes, both fixed and floating.

� A DATE datatype to represent the date, a TIME datatype to represent the time, and a
TIMESTAMP datatype to represent both data and time.

� A BLOB datatype to represent unstructured binary data, such as graphics and digitized
voice.

� Arrays of datatypes (except for BLOB data).

See Table 4.1 on page 61 for a complete list and description of datatypes that InterBase
supports.

For more information about datatypes, see Chapter 4, “Specifying Datatypes.”

The following statement creates a domain that defines an array of CHARACTER datatype:

CREATE DOMAIN DEPTARRAY AS CHAR(31) [4:5];

The next statement creates a BLOB domain with a text subtype that has an assigned
character set:

CREATE DOMAIN DESCRIPT AS BLOB SUB_TYPE TEXT SEGMENT SIZE 80

CHARACTER SET SJIS;

Specifying domain defaults
You can set an optional default value that is automatically entered into a column if you
do not specify an explicit value. Defaults set at the column level with CREATE TABLE or
ALTER TABLE override defaults set at the domain level. Defaults can save data entry time
and prevent data entry errors. For example, a possible default for a DATE column could
be today’s date, or in a (Y/N) flag column for saving changes, “Y” could be the default.

Default values can be:

� literal: The default value is a user-specified string, numeric value, or date value.

� NULL: If the user does not enter a value, a NULL value is entered into the column.

� USER: The default is the name of the current user. If your operating system supports the
use of 8 or 16-bit characters in user names, then the column into which USER will be
stored must be defined using a compatible character set.

CHAPTER 5 WORKING WITH DOMAINS

88 INTERBASE 6

In the following example, the first statement creates a domain with USER named as the
default. The next statement creates a table that includes a column, ENTERED_BY, based on
the USERNAME domain.

CREATE DOMAIN USERNAME AS VARCHAR(20) DEFAULT USER;

CREATE TABLE ORDERS (ORDER_DATE DATE, ENTERED_BY USERNAME,

ORDER_AMT DECIMAL(8,2));

INSERT INTO ORDERS (ORDER_DATE, ORDER_AMT)

VALUES ('1-MAY-93', 512.36);

The INSERT statement does not include a value for the ENTERED_BY column, so InterBase
automatically inserts the user name of the current user, JSMITH:

SELECT * FROM ORDERS;

1-MAY-93 JSMITH 512.36

Specifying NOT NULL
You can optionally specify NOT NULL to force the user to enter a value. If you do not
specify NOT NULL, then NULL values are allowed for any column that references this
domain. NOT NULL specified on the domain level cannot be overridden by a local column
definition.

IMPORTANT If you have already specified NULL as a default value, be sure not to create contradictory
constraints by also assigning NOT NULL to the domain, as in the following example:

CREATE DOMAIN DOM1 INTEGER DEFAULT NULL, NOT NULL;

USING CREATE DOMAIN

DATA DEFINITION GUIDE 89

Specifying domain CHECK constraints
You can specify a condition or requirement on a data value at the time the data is entered
by applying a CHECK constraint to a column. The CHECK constraint in a domain definition
sets a search condition (dom_search_condition) that must be true before data can be
entered into columns based on the domain.

The syntax of the search condition is:

<dom_search_condition> = {

VALUE <operator> <val>

| VALUE [NOT] BETWEEN <val> AND <val>

| VALUE [NOT] LIKE <val> [ESCAPE <val>]

| VALUE [NOT] IN (<val> [, <val> …])

| VALUE IS [NOT] NULL

| VALUE [NOT] CONTAINING <val>

| VALUE [NOT] STARTING [WITH] <val>

| (<dom_search_condition>)

| NOT <dom_search_condition>

| <dom_search_condition> OR <dom_search_condition>

| <dom_search_condition> AND <dom_search_condition>

}

<operator> = {= | < | > | <= | >= | !< | !> | <> | !=}

The following restrictions apply to CHECK constraints:

� A CHECK constraint cannot reference any other domain or column name.

� A domain can have only one CHECK constraint.

� You cannot override the domain’s CHECK constraint with a local CHECK constraint. A
column based on a domain can add additional CHECK constraints to the local column
definition.

Using the VALUE keyword
VALUE defines the set of values that is valid for the domain. VALUE is a placeholder for the
name of a column that will eventually be based on the domain. The search condition can
verify whether the value entered falls within a certain range, or match it to any one value
in a list of values.

CHAPTER 5 WORKING WITH DOMAINS

90 INTERBASE 6

Note If NULL values are allowed, they must be included in the CHECK constraint, as in the
following example:

CHECK ((VALUE IS NULL) OR (VALUE > 1000));

The next statement creates a domain where value must be > 1,000:

CREATE DOMAIN CUSTNO

AS INTEGER

CHECK (VALUE > 1000);

The following statement creates a domain that must have a positive value greater than
1,000, with a default value of 9,999.

CREATE DOMAIN CUSTNO

AS INTEGER

DEFAULT 9999

CHECK (VALUE > 1000);

The next statement limits the values entered in the domain to four specific values:

CREATE DOMAIN PRODTYPE

AS VARCHAR(12)

CHECK (VALUE IN ('software', 'hardware', 'other', 'N/A'));

When a problem cannot be solved using comparisons, you can instruct the system to
search for a specific pattern in a character column. For example, the next search
condition allows only cities in California to be entered into columns that are based on the
CALIFORNIA domain:

CREATE DOMAIN CALIFORNIA

AS VARCHAR(25)

CHECK (VALUE LIKE '%, CA');

Specifying domain collation order

The COLLATE clause of CREATE DOMAIN allows you to specify a particular collation order
for columns defined as CHAR or VARCHAR text datatypes. You must choose a collation
order that is supported for the column’s given character set. The character set is either
the default character set for the entire database, or you can specify a different set in the
CHARACTER SET clause of the datatype definition. The collation order set at the column
level overrides a collation order set at the domain level.

For a list of the collation orders available for each character set, see Chapter 13,
“Character Sets and Collation Orders.”

ALTERING DOMAINS WITH ALTER DOMAIN

DATA DEFINITION GUIDE 91

In the following statement, the domain, TITLE, overrides the database default character
set, specifying a DOS437 character set with a PDOX_INTL collation order:

CREATE DOMAIN TITLE AS

CHAR(50) CHARACTER SET DOS437 COLLATE PDOX_INTL;

Altering domains with ALTER DOMAIN

ALTER DOMAIN changes any aspect of an existing domain except its NOT NULL setting.
Changes that you make to a domain definition affect all column definitions based on the
domain that have not been overridden at the table level.

Note To change the NOT NULL setting of a domain, drop the domain and recreate it with
the desired combination of features.

A domain can be altered by its creator, the SYSDBA user, and any users with operating
system root privileges.

ALTER DOMAIN allows you to:

� Drop an existing default value.

� Set a new default value.

� Drop an existing CHECK constraint.

� Add a new CHECK constraint.

� Modify the domain name and datatype

The syntax for ALTER DOMAIN is:

ALTER DOMAINname {

[SET DEFAULT { literal | NULL | USER}]

| [DROP DEFAULT]

| [ADD [CONSTRAINT] CHECK (<dom_search_condition>)]

| [DROP CONSTRAINT]

| new_col_name

| TYPE data_type

};

The following statement sets a new default value for the CUSTNO domain:

ALTER DOMAIN CUSTNO SET DEFAULT 9999;

The following statement changes the name of the CUSTNO domain to CUSTNUM:

ALTER DOMAIN CUSTNO TO CUSTNUM;

The following statement changes the datatype of the CUSTNUM domain to CHAR(20):

CHAPTER 5 WORKING WITH DOMAINS

92 INTERBASE 6

ALTER DOMAIN CUSTNUM TYPE CHAR(20);

Dropping a domain
DROP DOMAIN removes an existing domain definition from a database.

If a domain is currently used in any column definition in the database, the DROP
operation fails. To prevent failure, delete the columns based on the domain with ALTER
TABLE before executing DROP DOMAIN.

A domain can be dropped by its creator, the SYSDBA, and any users with operating
system root privileges.

The syntax of DROP DOMAIN is:

DROP DOMAINname;

The following statement deletes a domain:

DROP DOMAIN COUNTRYNAME;

DATA DEFINITION GUIDE 93

CHAPTER

6
Chapter 6Working with Tables

This chapter describes:

� What to do before creating a table

� How to create database tables

� How to alter tables

� How to drop tables

Before creating a table
Before creating a table, you should:

� Design, normalize, create, and connect to a database

� Determine what tables, columns, and column definitions to create

� Create the domain definitions in the database

� Declare the table if an embedded SQL application both creates a table and populates the
table with data in the same program

For information on how to create, drop, and modify domains, see Chapter 5, “Working
with Domains.” The DECLARE TABLE statement must precede CREATE TABLE. For the syntax
of DECLARE TABLE, see the Language Reference.

CHAPTER 6 WORKING WITH TABLES

94 INTERBASE 6

Creating tables
You can create tables in the database with the CREATE TABLE statement. The syntax for
CREATE TABLE is:

CREATE TABLEtable [EXTERNAL [FILE] ' filespec ']

(<col_def> [, <col_def> | <tconstraint> ...]);

The first argument that you supply to CREATE TABLE is the table name, which is required,
and must be unique among all table and procedure names in the database. You must also
supply at least one column definition.

InterBase automatically imposes the default SQL security scheme on the table. The
person who creates the table (the owner), is assigned all privileges for it, including the
right to grant privileges to other users, triggers, and stored procedures. For more
information on security, see Chapter 12, “Planning Security.”

For a detailed specification of CREATE TABLE syntax, see the Language Reference.

Defining columns
When you create a table in the database, your main task is to define the various attributes
and constraints for each of the columns in the table. The syntax for defining a column is:

<col_def> = col { datatype | COMPUTED [BY] (< expr >) | domain }

[DEFAULT { literal | NULL | USER}]

[NOT NULL] [<col_constraint >]

[COLLATE collation]

The next sections list the required and optional attributes that you can define for a
column.

� Required attributes
You are required to specify:

� A column name, which must be unique among the columns in the table.

� One of the following:

· An SQL datatype (datatype).

· An expression (expr) for a computed column.

· A domain definition (domain) for a domain-based column.

CREATING TABLES

DATA DEFINITION GUIDE 95

� Optional attributes
You have the option to specify:

� A default value for the column.

� Integrity constraints. Constraints can be applied to a set of columns (a table-level
constraint), or to a single column (a column-level constraint). Integrity constraints
include:

· The PRIMARY KEY column constraint, if the column is a PRIMARY KEY, and the PRIMARY
KEY constraint is not defined at the table level. Creating a PRIMARY KEY requires
exclusive database access.

· The UNIQUE constraint, if the column is not a PRIMARY KEY, but should still disallow
duplicate and NULL values.

· The FOREIGN KEY constraint, if the column references a PRIMARY KEY in another table.
Creating a FOREIGN KEY requires exclusive database access. The foreign key constraint
includes the ON UPDATE and ON DELETE mechanisms for specifying what happens to the
foreign key when the primary key is updated (cascading referential integrity).

� A NOT NULL attribute does not allow NULL values. This attribute is required if the column
is a PRIMARY KEY or UNIQUE key.

� A CHECK constraint for the column. A CHECK constraint enforces a condition that must be
true before an insert or an update to a column or group of columns is allowed.

� A CHARACTER SET can be specified for a single column when you define the datatype. If
you do not specify a character set, the column assumes the database character set as a
default.

� Specifying the datatype
When creating a table, you must specify the datatype for each column. The datatype
defines the set of valid data that the column can contain. The datatype also determines
the set of allowable operations that can be performed on the data, and defines the disk
space requirements for each data item.

CHAPTER 6 WORKING WITH TABLES

96 INTERBASE 6

The syntax for specifying the datatype is:

<datatype > =

{SMALLINT|INTEGER|FLOAT|DOUBLE PRECISION}[<array_dim>]

| {DATE|TIME|TIMESTAMP}[<array_dim>]

| {DECIMAL | NUMERIC} [(precision [, scale])] [<array_dim>]

| {CHAR | CHARACTER | CHARACTER VARYING | VARCHAR} [(int)]

[<array_dim>] [CHARACTER SET charname]

| {NCHAR | NATIONAL CHARACTER | NATIONAL CHAR}

[VARYING] [(int)] [<array_dim>]

| BLOB [SUB_TYPE { int | subtype_name }] [SEGMENT SIZE int]

[CHARACTER SETcharname]

| BLOB [(seglen [, subtype])]

<array_dim> = [x:y [, x1:y1 ...]]

Note The outermost (boldface) brackets must be included when declaring arrays.

SUPPORTED DATATYPES

The general categories of datatypes that are supported include:

� Character datatypes.

� Integer datatypes.

� Decimal datatypes, both fixed and floating.

� A DATE datatype to represent the date, a TIME datatype to represent the time, and a
TIMESTAMP datatype to represent both the date and time.

� A BLOB datatype to represent unstructured binary data, such as graphics and digitized
voice.

� Arrays of datatypes (except for BLOB data).

See Table 4.1 on page 61 for a complete list and description of datatypes that InterBase
supports.

CASTING DATATYPES

If your application programming language does not support a particular datatype, you
can let InterBase automatically convert the data to an equivalent datatype (an implicit
type conversion), or you can use the CAST() function in search conditions to explicitly
translate one datatype into another for comparison purposes. For more information
about specifying datatypes and using the CAST() function, see Chapter 4, “Specifying
Datatypes.”

CREATING TABLES

DATA DEFINITION GUIDE 97

DEFINING A CHARACTER SET

The datatype specification for a CHAR, VARCHAR, or BLOB text column definition can
include a CHARACTER SET clause to specify a particular character set for a column. If you
do not specify a character set, the column assumes the default database character set. If
the database default character set is subsequently changed, all columns defined after the
change have the new character set, but existing columns are not affected. For a list of
available character sets recognized by InterBase, see Chapter 13, “Character Sets and
Collation Orders.”

� The COLLATE clause
The collation order determines the order in which values are sorted. The
COLLATE clause of CREATE TABLE allows you to specify a particular collation order for
columns defined as CHAR and VARCHAR text datatypes. You must choose a collation order
that is supported for the column’s given character set. The character set is either the
default character set for the entire database, or you can specify a different set in the
CHARACTER SET clause of the datatype definition. The collation order set at the column
level overrides a collation order set at the domain level.

In the following statement, BOOKNO keeps the default collating order for the database’s
default character set. The second (TITLE) and third (EUROPUB) columns specify different
character sets and collating orders.

CREATE TABLE BOOKADVANCE (BOOKNO CHAR(6),

TITLE CHAR(50) CHARACTER SET DOS437 COLLATE PDOX_INTL,

EUROPUB CHAR(50) CHARACTER SET ISO8859_1 COLLATE FR_FR);

For a list of the available characters sets and collation orders that InterBase recognizes,
see Chapter 13, “Character Sets and Collation Orders.”

� Defining domain-based columns
When you create a table, you can set column attributes by using an existing domain
definition that has been previously stored in the database. A domain is a global column
definition. Domains must be created with the CREATE DOMAIN statement before you can
reference them to define columns locally. For information on how to create a domain, see
Chapter 5, “Working with Domains.”

Domain-based columns inherit all the characteristics of a domain, but the column
definition can include a new default value, additional CHECK constraints, or a collation
clause that overrides the domain definition. It can also include additional column
constraints. You can specify a NOT NULL setting if the domain does not already define one.

Note You cannot override the domain’s NOT NULL setting with a local column definition.

CHAPTER 6 WORKING WITH TABLES

98 INTERBASE 6

For example, the following statement creates a table, COUNTRY, referencing the domain,
COUNTRYNAME, which was previously defined with a datatype of VARCHAR(15):

CREATE TABLE COUNTRY

(COUNTRY COUNTRYNAME NOT NULL PRIMARY KEY,

CURRENCY VARCHAR(10) NOT NULL);

� Defining expression-based columns
A computed column is one whose value is calculated each time the column is accessed
at run time. The syntax is:

<col_name> COMPUTED [BY] (<expr>);

If you do not specify the datatype, InterBase calculates an appropriate one. expr is any
arithmetic expression that is valid for the datatypes in the columns; it must return a single
value, and cannot be an array or return an array. Columns referenced in the expression
must exist before the COMPUTED [BY] clause can be defined.

For example, the following statement creates a computed column, FULL_NAME, by
concatenating the LAST_NAME and FIRST_NAME columns.

CREATE TABLE EMPLOYEE

(FIRST_NAME VARCHAR(10) NOT NULL,

LAST_NAME VARCHAR(15) NOT NULL,

FULL_NAME COMPUTED BY (LAST_NAME || ', ' || FIRST_NAME));

The next example creates a table with a calculated column (NEW_SALARY) using the
previously created EMPNO and SALARY domains.

CREATE TABLE SALARY_HISTORY (EMP_NO EMPNO NOT NULL,

CHANGE_DATE DATE DEFAULT 'NOW' NOT NULL,

UPDATER_ID VARCHAR(20) NOT NULL,

OLD_SALARY SALARY NOT NULL,

PERCENT_CHANGE DOUBLE PRECISION

DEFAULT 0

NOT NULL

CHECK (PERCENT_CHANGE BETWEEN –50 AND 50),

NEW_SALARY COMPUTED BY

(OLD_SALARY + OLD_SALARY * PERCENT_CHANGE / 100),

PRIMARY KEY (EMP_NO, CHANGE_DATE, UPDATER_ID),

FOREIGN KEY (EMP_NO) REFERENCES EMPLOYEE (EMP_NO)

ON UPDATE CASCADE

ON DELETE CASCADE);

Note Constraints on computed columns are not enforced, but InterBase does not return
an error if you do define such a constraint.

CREATING TABLES

DATA DEFINITION GUIDE 99

� Specifying column default values
You can set an optional default value that is automatically entered into a column if you
do not specify an explicit value. Defaults set at the column level with CREATE TABLE or
ALTER TABLE override defaults set at the domain level. Defaults can save data entry time
and prevent data entry errors. For example, a possible default for a DATE column could
be today’s date, or in a (Y/N) flag column for saving changes, “Y” could be the default.

Default values can be:

� literal—The default value is a user-specified string, numeric value, or date value.

� NULL—If the user does not enter a value, a NULL value is entered into the column.

� USER—The default is the name of the current user. If your operating system supports the
use of 8 or 16-bit characters in user names, then the column into which USER will be
stored must be defined using a compatible character set.

In the following example, the first statement creates a domain with USER named as the
default. The next statement creates a table that includes a column, ENTERED_BY, based on
the USERNAME domain.

CREATE DOMAIN USERNAME AS VARCHAR(20)

DEFAULT USER;

CREATE TABLE ORDERS (ORDER_DATE DATE, ENTERED_BY USERNAME,

ORDER_AMT DECIMAL(8,2));

INSERT INTO ORDERS (ORDER_DATE, ORDER_AMT)

VALUES ('1-MAY-93', 512.36);

The INSERT statement does not include a value for the ENTERED_BY column, so InterBase
automatically inserts the user name of the current user, JSMITH:

SELECT * FROM ORDERS;

� Specifying NOT NULL
You can optionally specify NOT NULL to force the user to enter a value. If you do not
specify NOT NULL, then NULL values are allowed in the column. You cannot override a NOT
NULL setting that has been set at a domain level with a local column definition.

Note If you have already specified NULL as a default value, be sure not to create
contradictory constraints by also specifying the NOT NULL attribute, as in the following
example:

CREATE TABLE MY_TABLE (COUNT INTEGER DEFAULT NULL NOT NULL);

CHAPTER 6 WORKING WITH TABLES

100 INTERBASE 6

Defining integrity constraints
InterBase allows you to optionally apply certain constraints to a column, called integrity
constraints, which are the rules that govern column-to-table and table-to-table
relationships, and validate data entries. They span all transactions that access the
database and are automatically maintained by the system. Integrity constraints can be
applied to an entire table or to an individual column.

� PRIMARY KEY and UNIQUE constraints
The PRIMARY KEY and UNIQUE integrity constraints ensure that the values entered into a
column or set of columns are unique in each row. If you try to insert a duplicate value in
a PRIMARY KEY or UNIQUE column, InterBase returns an error. When you define a UNIQUE
or PRIMARY KEY column, determine whether the data stored in the column is inherently
unique. For example, no two social security numbers or driver’s license numbers are ever
the same. If no single column has this property, then define the primary key as a
composite of two or more columns which, when taken together, are unique.

In the EMPLOYEE table, EMP_NO is the primary key that uniquely identifies each employee.
EMP_NO is the primary key because no two values in the column are alike. If the EMP_NO
column did not exist, then no other column is a candidate for primary key due to the high
probability for duplication of values. LAST_NAME, FIRST_NAME, and JOB_TITLE fail because
more than one employee can have the same first name, last name, and job title. In a large
database, a combination of LAST_NAME and FIRST_NAME could still result in duplicate
values. A primary key that combines LAST_NAME and PHONE_EXT might work, but there
could be two people with identical last names at the same extension. In this table, the
EMP_NO column is actually the only acceptable candidate for the primary key because it
guarantees a unique number for each employee in the table.

A table can have only one primary key. If you define a PRIMARY KEY constraint at the table
level, you cannot do it again at the column level. The reverse is also true; if you define a
PRIMARY KEY constraint at the column level, you cannot define a primary key at the table
level. You must define the NOT NULL attribute for a PRIMARY KEY column in order to
preserve the uniqueness of the data values in that column.

EMP_NO LAST_NAME FIRST_NAME JOB_TITLE PHONE_EXT

10335 Smith John Engineer 4968

21347 Carter Catherine Product Manager 4967

13314 Jones Sarah Senior Writer 4800

TABLE 6.1 The EMPLOYEE table

CREATING TABLES

DATA DEFINITION GUIDE 101

Like primary keys, a unique key ensures that no two rows have the same value for a
specified column or ordered set of columns. You must define the NOT NULL attribute for
a UNIQUE column. A unique key is different from a primary key in that the UNIQUE
constraint specifies alternate keys that you can use to uniquely identify a row. You can
have more than one unique key defined for a table, but the same set of columns cannot
make up more than one PRIMARY KEY or UNIQUE constraint for a table. Like a primary key,
a unique key can be referenced by a foreign key in another table.

� Enforcing referential integrity with the FOREIGN KEY

A foreign key is a column or set of columns in one table that correspond in exact order
to a column or set of columns defined as a primary key in another table. For example, in
the PROJECT table, TEAM_LEADER is a foreign key referencing the primary key, EMP_NO in
the EMPLOYEE table.

The primary reason for defining foreign keys is to ensure that data integrity is maintained
when more than one table uses the same data: rows in the referencing table must always
have corresponding rows in the referenced table.

InterBase enforces referential integrity in the following ways:

� The unique or primary key columns must already be defined before you can create the
foreign key that references them.

PROJ_ID TEAM_LEADER PROJ_NAME PROJ_DESC PRODUCT

DGPII 44 Automap blob data hardware

VBASE 47 Video database blob data software

HWRII 24 Translator upgrade blob data software

TABLE 6.2 The PROJECT table

EMP_NO LAST_NAME FIRST_NAME DEPT_NO JOB_CODE PHONE_EXT SALARY

24 Smith John 100 Eng 4968 64000

48 Carter Catherine 900 Sales 4967 72500

36 Smith Jane 600 Admin 4800 37500

TABLE 6.3 The EMPLOYEE table

CHAPTER 6 WORKING WITH TABLES

102 INTERBASE 6

� Referential integrity checks are available in the form of the ON UPDATE and ON DELETE
options to the REFERENCES statement. When you create a foreign key by defining a
column or table REFERENCES constraint, you can specify what should happen to the
foreign key when the referenced primary key changes. The options are:

� If you do not use the ON UPDATE and ON DELETE options when defining foreign keys, you
must make sure that when information changes in one place, it changes in all referencing
columns as well. Typically, you write triggers to do this. For example, to change a value
in the EMP_NO column of the EMPLOYEE table (the primary key), that value must also be
updated in the TEAM_LEADER column of the PROJECT table (the foreign key).

� If you delete a row from a table that is a primary key, you must first delete all foreign
keys that reference that row. If you use the ON DELETE CASCADE option when defining the
foreign keys, InterBase does this for you.

Note When you specify SET DEFAULT as the action, the default value used is the one in
effect when the referential integrity constraint was defined. When the default for a foreign
key column is changed after the referential integrity constraint is set up, the change does
not have an effect on the default value used in the referential integrity constraint.

� You cannot add a value to a column defined as a foreign key unless that value exists in
the referenced primary key. For example, to enter a value in the TEAM_LEADER column of
the PROJECT table, that value must first exist in the EMP_NO column of the EMPLOYEE table.

The following example specifies that when a value is deleted from a primary key, the
corresponding values in the foreign key are set to NULL. When the primary key is updated,
the changes are cascaded so that the corresponding foreign key values match the new
primary key values.

Action specified Effect on foreign key

NO ACTION [Default] The foreign key does not change (can cause the primary key update or
delete to fail due to referential integrity checks)

CASCADE The corresponding foreign key is updated or deleted as appropriate to the new
value of the primary key

SET DEFAULT Every column of the corresponding foreign key is set to its default value; fails if the
default value of the foreign key is not found in the primary key

SET NULL Every column of the corresponding foreign key is set to NULL

TABLE 6.4 Referential integrity check options

CREATING TABLES

DATA DEFINITION GUIDE 103

CREATE TABLE PROJECT {

. . .

TEAM LEADER INTEGER REFERENCES EMPLOYEE (EMP_NO)

ON DELETE SET NULL

ON UPDATE CASCADE

. . .};

� Referencing tables owned by others
If you want to create a foreign key that references a table owned by someone else, that
owner must first use the GRANT command to grant you REFERENCES privileges on that
table. Alternately, the owner can grant REFERENCES privileges to a role and then grant that
role to you. See Chapter 12, “Planning Security” and the Language Reference for more
information on granting privileges to users and roles. See the Language Reference for
more on creating and dropping roles.

� Circular references
When two tables reference each other’s foreign keys and primary keys, a circular
reference exists between the two tables. In the following illustration, the foreign key in
the EMPLOYEE table, DEPT_NO, references the primary key, DEPT_NO, in the DEPARTMENT
table. Therefore, the primary key, DEPT_NO must be defined in the DEPARTMENT table
before it can be referenced by a foreign key in the EMPLOYEE table. In the same manner,
EMP_NO, which is the EMPLOYEE table’s primary key, must be created before the
DEPARTMENT table can define EMP_NO as its foreign key.

FIGURE 6.1 Circular references

PRIMARY KEY FOREIGN KEY

emp_no dept_no

PRIMARY KEY FOREIGN KEY

dept_no emp_no

EMPLOYEE table

DEPARTMENT table

CHAPTER 6 WORKING WITH TABLES

104 INTERBASE 6

The problem with circular referencing occurs when you try to insert a new row into either
table. Inserting a new row into the EMPLOYEE table causes a new value to be inserted into
the DEPT_NO (foreign key) column, but you cannot insert a value into the foreign key
column unless that value already exists in the DEPT_NO (primary key) column of the
DEPARTMENT table. It is also true that you cannot add a new row to the DEPARTMENT table
unless the values placed in the EMP_NO (foreign key) column already exist in the EMP_NO
(primary key) column of the EMPLOYEE table. Therefore, you are in a deadlock situation
because you cannot add a new row to either table!

InterBase gets around the problem of circular referencing by allowing you to insert a
NULL value into a foreign key column before the corresponding primary key value exists.
The following example illustrates the sequence for inserting a new row into each table:

� Insert a new row into the EMPLOYEE table by placing “1” in the EMP_NO primary key
column, and a NULL in the DEPT_NO foreign key column.

� Insert a new row into the DEPARTMENT table, placing “2” in the DEPT_NO primary key
column, and “1” in the foreign key column.

� Use ALTER TABLE to modify the EMPLOYEE table. Change the DEPT_NO column from NULL
to “2.”

� How to declare constraints
When declaring a table-level or a column-level constraint, you can optionally name the
constraint using the CONSTRAINT clause. If you omit the CONSTRAINT clause, InterBase
generates a unique system constraint name which is stored in the system table,
RDB$RELATION_CONSTRAINTS.

Tip To ensure that the constraint names are visible in RDB$RELATION_CONSTRAINTS, commit
your transaction before trying to view the constraint in the RDB$RELATION_CONSTRAINTS
system table.

The syntax for a column-level constraint is:

<col_constraint > = [CONSTRAINT constraint] < constraint_def>

[<col_constraint > ...]

<constraint_def> = {UNIQUE | PRIMARY KEY

| CHECK (<search_condition>)

| REFERENCESother_table [(other_col [, other_col …])]

[ON DELETE {NO ACTION|CASCADE|SET DEFAULT|SET NULL}]

[ON UPDATE {NO ACTION|CASCADE|SET DEFAULT|SET NULL}]

}

CREATING TABLES

DATA DEFINITION GUIDE 105

The syntax for a table-level constraint is:

<tconstraint > = [CONSTRAINT constraint] <tconstraint_def>

[< tconstraint > ...]

<tconstraint_def > = {{PRIMARY KEY | UNIQUE} (col [, col …])

| FOREIGN KEY (col [, col …]) REFERENCESother_table

[ON DELETE {NO ACTION|CASCADE|SET DEFAULT|SET NULL}]

[ON UPDATE {NO ACTION|CASCADE|SET DEFAULT|SET NULL}]

| CHECK (<search_condition >)}

Tip Although naming a constraint is optional, assigning a descriptive name with the
CONSTRAINT clause can make the constraint easier to find for changing or dropping, and
easier to find when its name appears in a constraint violation error message.

The following statement illustrates how to create a simple, column-level PRIMARY KEY
constraint:

CREATE TABLE COUNTRY

(COUNTRY COUNTRYNAME NOT NULL PRIMARY KEY,

CURRENCY VARCHAR(10) NOT NULL);

The next example illustrates how to create a UNIQUE constraint at both the
column level and the table level:

CREATE TABLE STOCK

(MODEL SMALLINT NOT NULL UNIQUE,

MODELNAME CHAR(10) NOT NULL,

ITEMID INTEGER NOT NULL,

CONSTRAINT MOD_UNIQUE UNIQUE (MODELNAME, ITEMID));

Defining a CHECK constraint
You can specify a condition or requirement on a data value at the time the data is entered
by applying a CHECK constraint to a column. Use CHECK constraints to enforce a condition
that must be true before an insert or an update to a column or group of columns is
allowed. The search condition verifies whether the value entered falls within a certain
permissible range, or matches it to one value in a list of values. The search condition can
also compare the value entered with data values in other columns.

CHAPTER 6 WORKING WITH TABLES

106 INTERBASE 6

Note A CHECK constraint guarantees data integrity only when the values being verified
are in the same row that is being inserted and deleted. If you try to compare values in
different rows of the same table or in different tables, another user could later modify
those values, thus invalidating the original CHECK constraint that was applied at insertion
time.

In the following example, the CHECK constraint is guaranteed to be satisfied:

CHECK (VALUE (COL_1 > COL_2));

INSERT INTO TABLE_1 (COL_1, COL_2) VALUES (5,6);

The syntax for creating a CHECK constraint is:

CHECK (<search condition>);

<search_condition> = { <val> <operator>

{ <val> | (<select_one>)}

| <val> [NOT] BETWEEN <val> AND <val>

| <val> [NOT] LIKE <val> [ESCAPE <val>]

| <val> [NOT] IN (<val> [, <val> ...] | <select_list>)

| <val> IS [NOT] NULL

| <val> {[NOT] {= | < | >} | >= | <=}

{ALL | SOME | ANY} (<select_list>)

| EXISTS (<select_expr>)

| SINGULAR (<select_expr>)

| <val> [NOT] CONTAINING <val>

| <val> [NOT] STARTING [WITH] <val>

| (<search_condition>)

| NOT <search_condition>

| <search_condition> OR <search_condition>

| <search_condition> AND <search_condition> }

When creating CHECK constraints, the following restrictions apply:

� A CHECK constraint cannot reference a domain.

� A column can have only one CHECK constraint.

� On a domain-based column, you cannot override a CHECK constraint imposed by the
domain with a local CHECK constraint. A column based on a domain can add additional
CHECK constraints to the local column definition.

CREATING TABLES

DATA DEFINITION GUIDE 107

In the next example, a CHECK constraint is placed on the SALARY domain. VALUE is a
placeholder for the name of a column that will eventually be based on the domain.

CREATE DOMAIN BUDGET

AS NUMERIC(12,2)

DEFAULT 0

CHECK (VALUE > 0);

The next statement illustrates PRIMARY KEY, FOREIGN KEY, CHECK, and the referential
integrity constraints ON UPDATE and ON DELETE. The PRIMARY KEY constraint is based on
three columns, so it is a table-level constraint. The FOREIGN KEY column (JOB_COUNTRY)
references the PRIMARY KEY column (COUNTRY) in the table, COUNTRY. When the primary
key changes, the ON UPDATE and ON DELETE clauses guarantee that the foreign key
column will reflect the changes. This example also illustrates using domains (JOBCODE,
JOBGRADE, COUNTRYNAME, SALARY) and a CHECK constraint to define columns:

CREATE TABLE JOB

(JOB_CODE JOBCODE NOT NULL,

JOB_GRADE JOBGRADE NOT NULL,

JOB_COUNTRY COUNTRYNAME NOT NULL,

JOB_TITLE VARCHAR(25) NOT NULL,

MIN_SALARY SALARY NOT NULL,

MAX_SALARY SALARY NOT NULL,

JOB_REQUIREMENT BLOB(400,1),

LANGUAGE_REQ VARCHAR(15) [5],

PRIMARY KEY (JOB_CODE, JOB_GRADE, JOB_COUNTRY),

FOREIGN KEY (JOB_COUNTRY) REFERENCES COUNTRY (COUNTRY)

ON UPDATE CASCADE

ON DELETE CASCADE,

CHECK (MIN_SALARY < MAX_SALARY));

Using the EXTERNAL FILE option

The EXTERNAL FILE option creates a table for which the data resides in an external table
or file, rather than in the InterBase database. External files are ASCII text that can also be
read and manipulated by non-InterBase applications. In the syntax for CREATE TABLE, the
filespec that accompanies the EXTERNAL keyword is the fully qualified file specification for
the external data file. You can modify the external file outside of InterBase, since
InterBase accesses it only when needed.

CHAPTER 6 WORKING WITH TABLES

108 INTERBASE 6

Use the EXTERNAL FILE option to:

� Import data from a flat external file in a known fixed-length format into a new or existing
InterBase table. This allows you to populate an InterBase table with data from an external
source. Many applications allow you to create an external file with fixed-length records.

� SELECT from the external file as if it were a standard InterBase table.

� Export data from an existing InterBase table to an external file. You can format the data
from the InterBase table into a fixed-length file that another application can use.

� Restrictions
The following restrictions apply to using the EXTERNAL FILE option:

� You must create the external file before you try to access the external table inside of the
database.

� Each record in the external file must be of fixed length. You cannot put BLOB or array
data into an external file.

� When you create the table that will be used to import the external data, you must define
a column to contain the end-of-line (EOL) or new-line character. The size of this column
must be exactly large enough to contain a particular system’s EOL symbol (usually one
or two bytes). For most versions of UNIX, it is 1 byte. For Windows, NT, and NetWare, it
is 2 bytes.

� While it is possible to read in numeric data directly from an external table, it is much
easier to read it in as character data, and convert using the CAST() function.

� Data to be treated as VARCHAR in InterBase must be stored in an external file in the
following format:

<2-byte unsigned short><string of character bytes>

where the 2-byte unsigned short indicates the number of bytes in the actual string, and
the string immediately follows. Because it is not readily portable, using VARCHAR data in
an external file is not recommended.

� You can only INSERT into and SELECT from the rows of an external table. You cannot
UPDATE or DELETE from an external table; if you try to do so, InterBase returns an error
message.

� Inserting into and selecting from an external table are not under standard transaction
control because the external file is outside of the database. Therefore, changes are
immediate and permanent—you cannot roll back your changes. If you want your table
to be under transaction control, create another internal InterBase table, and insert the
data from the external table into the internal one.

CREATING TABLES

DATA DEFINITION GUIDE 109

� If you use DROP DATABASE to delete the database, you must also remove the external file—
it will not be automatically deleted as a result of DROP DATABASE.

� Importing external files to InterBase tables
The following steps describe how to import an external file into an InterBase table:

1. Create an InterBase table that allows you to view the external data. Declare
all columns as CHAR. The text file containing the data must be on the server.
In the following example, the external file exists on a UNIX system, so the
EOL character is 1 byte.

CREATE TABLE EXT_TBL EXTERNAL FILE 'file.txt'

(FNAME CHAR(10),

LNAME CHAR(20),

HDATE CHAR(8),

NEWLINE CHAR(1));

COMMIT;

2. Create another InterBase table that will eventually be your working table. If
you expect to export data from the internal table back to an external file at a
later time, be sure to create a column to hold the newline. Otherwise, you do
not need to leave room for the newline character. In the following example,
a column for the newline is provided:

CREATE TABLE PEOPLE

(FIRST_NAME CHAR(10),

LAST_NAME CHAR(20),

HIRE_DATE CHAR(8),

NEW_LINE CHAR(1));

COMMIT;

3. Create and populate the external file. You can create the file with a text
editor, or you can create an appropriate file with an application like Paradox
for Windows or dBASE for Windows. If you create the file yourself with a text
editor, make each record the same length, pad the unused characters with
blanks, and insert the EOL character(s) at the end of each record.

Note The number of characters in the EOL is platform-specific. You need to know how
many characters are contained in your platform’s EOL (typically one or two) in order to
correctly format the columns of the tables and the corresponding records in the external
file. In the following example, the record length is 36 characters. “b” represents a blank
space, and “n” represents the EOL:

123456789012345678901234567890123456

fname.....lname.............hdate..n

CHAPTER 6 WORKING WITH TABLES

110 INTERBASE 6

Robertbbbb Brickmanbbbbbbbbbb 6/12/92n

SambbbbbbbJonesbbbbbbbbbbbb 12/13/93n

4. At this point, when you do a SELECT statement from table EXT_TBL, you will
see the records from the external file:

SELECT FNAME, LNAME, HDATE FROM EXT_TBL;

FNAME LNAME HDATE

======== ================= ===========

Robert Brickman 12-JUN-1992

Sam Jones 13-DEC-1993

5. Insert the data into the destination table.

INSERT INTO PEOPLE SELECT FNAME, LNAME, CAST(HDATE AS DATE),

NEWLINE FROM EXT_TBL;

Now if you SELECT from PEOPLE, the data from your external table will be there.

SELECT FIRST_NAME, LAST_NAME, HIRE_DATE FROM PEOPLE;

FIRST_NAME LAST_NAME HIRE_DATE

========== =================== ===========

Robert Brickman 12-JUN-1992

Sam Jones 13-DEC-1993

InterBase allows you to store the date as an integer by converting from a CHAR(8) to
DATE using the CAST() function.

� Exporting InterBase tables to an external file
If you add, update, or delete a record from an internal table, the changes will not be
reflected in the external file. So in the previous example, if you delete the “Sam Jones”
record from the PEOPLE table, and do a subsequent SELECT from EXT_TBL, you would still
see the “Sam Jones” record.

This section explains how to export InterBase data to an external file. Using the example
developed in the previous section, follow these steps:

1. Open the external file in a text editor and remove everything from the file. If
you then do a SELECT on EXT_TBL, it should be empty.

2. Use an INSERT statement to copy the InterBase records from PEOPLE into the
external file, file.txt.

INSERT INTO EXT_TBL SELECT FIRST_NAME, LAST_NAME, HIRE_DATE,

NEW_LINE FROM PEOPLE WHERE FIRST_NAME LIKE 'Rob%';

ALTERING TABLES

DATA DEFINITION GUIDE 111

3. Now if you do a SELECT from the external table, EXT_TBL, only the records you
inserted should be there. In this example, only a single record should be
displayed:

SELECT FNAME, LNAME, HDATE FROM EXT_TBL;

FNAME LNAME HDATE

======== ================= ===========

Robert Brickman 12-JUN-1992

IMPORTANT Make sure that all records that you intend to export from the internal table to the
external file have the correct EOL character(s) in the newline column.

Altering tables
Use ALTER TABLE to modify the structure of an existing table. ALTER TABLE allows you to:

� Add a new column to a table.

� Drop a column from a table.

� Drop integrity constraints from a table or column.

� Modify the column name, datatype, and position.

You can perform any number of the above operations with a single ALTER TABLE
statement. A table can be altered by its creator, the SYSDBA user, and any users with
operating system root privileges.

Before using ALTER TABLE

Before modifying or dropping columns in a table, you need to do three things:

1. Make sure you have the proper database privileges.

2. Save the existing data.

3. Drop any constraints on the column.

� Saving existing data
Before modifying an existing column definition using ALTER TABLE, you must preserve
existing data, or it will be lost.

Preserving data in a column and modifying the definition for a column, is a five-step
process:

CHAPTER 6 WORKING WITH TABLES

112 INTERBASE 6

1. Add a temporary column to the table whose definition mirrors the current
column to be changed.

2. Copy the data from the column to be changed to the temporary column.

3. Modify the temporary column.

4. Copy the data from the temporary column to the old column.

5. Drop the temporary column.

For example, suppose the EMPLOYEE table contains a column, OFFICE_NO, defined to hold
a datatype of CHAR(3), and suppose that the size of the column needs to be increased by
one. The following numbered sequence describes each step and provides sample code:

1. First, create a temporary column to hold the data in OFFICE_NO during the
modification process:

ALTER TABLE EMPLOYEE ADD TEMP_NO CHAR(3);

2. Move existing data from OFFICE_NO to TEMP_NO to preserve it:

UPDATE EMPLOYEE

SET TEMP_NO = OFFICE_NO;

3. Modify TEMP_NO, specifying the datatype and new size:

ALTER TABLE ALTER TEMP_NO TYPE CHAR(4);

4. Move the data from TEMP_NO to OFFICE_NO:

UPDATE EMPLOYEE

SET OFFICE_NO = TEMP_NO;

5. Finally, drop the TEMP_NO column:

ALTER TABLE DROP TEMP_NO;

� Dropping columns
Before attempting to drop or modify a column, you should be aware of the different ways
that ALTER TABLE can fail:

� The person attempting to alter data does not have the required privileges.

� Current data in a table violates a PRIMARY KEY or UNIQUE constraint definition added to
the table; there is duplicate data in columns that you are trying to define as PRIMARY KEY
or UNIQUE.

� The column to be dropped is part of a UNIQUE, PRIMARY, or FOREIGN KEY constraint.

ALTERING TABLES

DATA DEFINITION GUIDE 113

� The column is used in a CHECK constraint. When altering a column based on a domain,
you can supply an additional CHECK constraint for the column. Changes to tables that
contain CHECK constraints with subqueries can cause constraint violations.

� The column is used in another view, trigger, or in the value expression of a computed
column.

IMPORTANT You must drop the constraint or computed column before dropping the table column.
You cannot drop PRIMARY KEY and UNIQUE constraints if they are referenced by FOREIGN
KEY constraints. In this case, drop the FOREIGN KEY constraint before dropping the
PRIMARY KEY or UNIQUE key it references. Finally, you can drop the column.

IMPORTANT When you alter or drop a column, all data stored in it is lost.

Using ALTER TABLE

ALTER TABLE allows you to make the following changes to an existing table:

� Add new column definitions. To create a column using an existing name, you must drop
existing column definitions before adding new ones.

� Add new table constraints. To create a constraint using an existing name, you must drop
existing constraints with that name before adding a new one.

� Drop existing column definitions without adding new ones.

� Drop existing table constraints without adding new ones.

� Modify column names, datatypes, and position

For a detailed specification of ALTER TABLE syntax, see the Language Reference.

� Adding a new column to a table
The syntax for adding a column with ALTER TABLE is:

ALTER TABLE table ADD <col_def>

<col_def> = col { <datatype> | [COMPUTED [BY] (< expr >) | domain }

[DEFAULT { literal | NULL | USER}]

[NOT NULL] [<col_constraint>]

[COLLATE collation]

<col_constraint> = [CONSTRAINT constraint] <constraint_def>

[<col_constraint>]

CHAPTER 6 WORKING WITH TABLES

114 INTERBASE 6

<constraint_def > = {PRIMARY KEY | UNIQUE

| CHECK (<search_condition >)

| REFERENCESother_table [(other_col [, other_col …])]

[ON DELETE {NO ACTION|CASCADE|SET DEFAULT|SET NULL}]

[ON UPDATE {NO ACTION|CASCADE|SET DEFAULT|SET NULL}]}

For the complete syntax of ALTER TABLE, see the Language Reference.

For example, the following statement adds a column, EMP_NO, to the EMPLOYEE table
using the EMPNO domain:

ALTER TABLE EMPLOYEE ADD EMP_NO EMPNO NOT NULL;

You can add multiple columns to a table at the same time. Separate column definitions
with commas. For example, the following statement adds two columns, EMP_NO, and
FULL_NAME, to the EMPLOYEE table. FULL_NAME is a computed column, a column that
derives it values from calculations based on two other columns already defined for the
EMPLOYEE table:

ALTER TABLE EMPLOYEE

ADD EMP_NO EMPNO NOT NULL,

ADD FULL_NAME COMPUTED BY (LAST_NAME || ', ' || FIRST_NAME);

You can also define integrity constraints for columns that you add to the table. For
example, the next statement adds two columns, CAPITAL and LARGEST_CITY, to the
COUNTRY table, and defines a UNIQUE constraint on CAPITAL:

ALTER TABLE COUNTRY

ADD CAPITAL VARCHAR(25) UNIQUE,

ADD LARGEST_CITY VARCHAR(25) NOT NULL;

� Adding new table constraints
You can use ALTER TABLE to add a new table-level constraint. The syntax is:

ALTER TABLE name ADD [CONSTRAINTconstraint] <tconstraint_opt> ;

where tconstraint_opt is a PRIMARY KEY, FOREIGN KEY, UNIQUE, or CHECK constraint. For
example:

ALTER TABLE EMPLOYEE

ADD CONSTRAINT DEPT_NO UNIQUE(PHONE_EXT);

ALTERING TABLES

DATA DEFINITION GUIDE 115

� Dropping an existing column from a table
You can use ALTER TABLE to delete a column definition and its data from a table. A column
can be dropped only by the owner of the table. If another user is accessing a table when
you attempt to drop a column, the other user’s transaction will continue to have access
to the table until that transaction completes. InterBase postpones the drop until the table
is no longer in use.

The syntax for dropping a column with ALTER TABLE is:

ALTER TABLE name DROP colname [, colname ...];

For example, the following statement drops the EMP_NO column from the EMPLOYEE table:

ALTER TABLE EMPLOYEE DROP EMP_NO;

Multiple columns can be dropped with a single ALTER TABLE statement.

ALTER TABLE EMPLOYEE

DROP EMP_NO,

DROP FULL_NAME;

IMPORTANT You cannot delete a column that is part of a UNIQUE, PRIMARY KEY, or FOREIGN KEY
constraint. In the previous example, EMP_NO is the PRIMARY KEY for the EMPLOYEE table,
so you cannot drop this column unless you first drop the PRIMARY KEY constraint.

� Dropping existing constraints from a column
You must drop constraints from a column in the correct sequence. See the following
CREATE TABLE example. Because there is a foreign key in the PROJECT table that references
the primary key (EMP_NO) of the EMPLOYEE table, you must first drop the foreign key
reference before you can drop the PRIMARY KEY constraint in the EMPLOYEE table.

CREATE TABLE PROJECT

(PROJ_ID PROJNO NOT NULL,

PROJ_NAME VARCHAR(20) NOT NULL UNIQUE,

PROJ_DESC BLOB(800,1),

TEAM_LEADER EMPNO,

PRODUCT PRODTYPE,

PRIMARY KEY (PROJ_ID),

CONSTRAINT TEAM_CONSTRT FOREIGN KEY (TEAM_LEADER) REFERENCES

EMPLOYEE (EMP_NO));

CHAPTER 6 WORKING WITH TABLES

116 INTERBASE 6

The proper sequence is:

ALTER TABLE PROJECT

DROP CONSTRAINT TEAM_CONSTRT;

ALTER TABLE EMPLOYEE

DROP CONSTRAINT EMP_NO_CONSTRT;

ALTER TABLE EMPLOYEE

DROP EMP_NO;

Note Constraint names are in the system table, RDB$RELATION_CONSTRAINTS.

In addition, you cannot delete a column if it is referenced by another column’s CHECK
constraint. To drop the column, first drop the CHECK constraint, then drop the column.

� Modifying columns in a table
The syntax for modifying a column with ALTER TABLE is:

ALTER TABLE table ALTER [COLUMN]simple_column_name alter_rel_field

alter_rel_field = new_col_name | new_col_type | new_col_pos

new_col_name = TO simple_column_name

new_col_type = TYPE datatype_or_domain

new_col_pos = POSITION integer

For the complete syntax of ALTER TABLE, see the Language Reference.

For example, the following statement moves a column, EMP_NO, from the third position
to the second position in the EMPLOYEE table:

ALTER TABLE EMPLOYEE ALTER EMP_NO POSITION 2;

You could also change the name of the EMP_NO column to EMP_NUM as in the following
example:

ALTER TABLE EMPLOYEE ALTER EMP_NO TO EMP_NUM;

The next example shows how to change the datatype of the EMP_NUM column to
CHAR(20):

ALTER TABLE EMPLOYEE ALTER EMP_NUM TYPE CHAR(20);

Conversions from non-character to character data will be allowed with the following
restrictions:

� Blob and array types are not convertible.

� Field types (character or numeric) cannot be shortened.

� The new field definition must be able to hold the existing data (for example, the new field
has too few CHARs or the datatype conversion is not supported) or an error is returned.

DROPPING TABLES

DATA DEFINITION GUIDE 117

Conversions from character data to non-character data is not allowed.

IMPORTANT Any changes to the field definitions may require the indexes to be rebuilt.

� Summary of ALTER TABLE arguments
When you use ALTER TABLE to add column definitions and constraints, you can specify all
of the same arguments that you use in CREATE TABLE; all column definitions, constraints,
and datatype arguments are the same, with the exception of the operation argument. The
following operations are available for ALTER TABLE.

� Add a new column definition with ADD col_def.

� Add a new table constraint with ADD table_constraint.

� Drop an existing column with DROP col.

� Drop an existing constraint with DROP CONSTRAINT constraint.

� Modify column names, datatypes, and positions

Dropping tables
Use DROP TABLE to delete an entire table from the database.

Note If you want to drop columns from a table, use ALTER TABLE.

Dropping a table
Use DROP TABLE to remove a table’s data, metadata, and indexes from a database. It also
drops any triggers that are based on the table. A table can be dropped by its creator, the
SYSDBA user, or any user with operating system root privileges.

You cannot drop a table that is referenced in a computed column, a view, integrity
constraint, or stored procedure. You cannot drop a table that is being used by an active
transaction until the table is no longer in use.

DROP TABLE fails and returns an error if:

� The person who attempts to drop the table is not the owner of the table.

� The table is in use when the drop is attempted. The drop is postponed until the table is
no longer in use.

CHAPTER 6 WORKING WITH TABLES

118 INTERBASE 6

� The table has a UNIQUE or PRIMARY KEY defined for it, and the PRIMARY KEY is referenced
by a FOREIGN KEY in another table. First drop the FOREIGN KEY constraints in the other
table, then drop the table.

� The table is used in a view, trigger, stored procedure, or computed column. Remove the
other elements before dropping the table.

� The table is referenced in another table’s CHECK constraint.

Note DROP TABLE does not delete external tables; it removes the table definition from the
database. You must explicitly delete the external file.

DROP TABLE syntax
DROP TABLEname;

The following statement drops the table, COUNTRY:

DROP TABLE COUNTRY;

DATA DEFINITION GUIDE 119

CHAPTER

7
Chapter 7Working with Indexes

This chapter explains the following:

� Index basics

� When and how to create indexes

� How to improve index performance

Index basics
An index is a mechanism that is used to speed the retrieval of records in response to
certain search conditions, and to enforce uniqueness constraints on columns. Just as you
search an index in a book for a list of page numbers to quickly find the pages that you
want to read, a database index serves as a logical pointer to the physical location
(address) of a row in a table. An index stores each value of the indexed column or
columns along with pointers to all of the disk blocks that contain rows with that column
value.

When executing a query, the InterBase engine first checks to see if any indexes exist for
the named tables. It then determines whether it is more efficient to scan the entire table,
or to use an existing index to process the query. If the engine decides to use an index, it
searches the index to find the key values requested, and follows the pointers to locate the
rows in the table containing the values.

CHAPTER 7 WORKING WITH INDEXES

120 INTERBASE 6

Data retrieval is fast because the values in the index are ordered, and the index is
relatively small. This allows the system to quickly locate the key value. Once the key value
is found, the system follows the pointer to the physical location of the associated data.
Using an index typically requires fewer page fetches than a sequential read of every row
in the table.

An index can be defined on a single column or on multiple columns of a table.
Multi-column indexes can be used for single-column lookups, as long as the column that
is being retrieved is the first in the index.

When to index
An index on a column can mean the difference between an immediate response to a
query and a long wait, as the length of time it takes to search the whole table is directly
proportional to the number of rows in the table. So why not index every column? The
main drawbacks are that indexes consume additional disk space, and inserting, deleting,
and updating data takes longer on indexed columns than on non-indexed columns. The
reason is that the index must be updated each time the data in the indexed column
changes, and each time a row is added to or deleted from the table.

Nevertheless, the overhead of indexes is usually outweighed by the boost in performance
for data retrieval queries. You should create an index on a column when:

� Search conditions frequently reference the column.

� Join conditions frequently reference the column.

� ORDER BY statements frequently use the column to sort data.

You do not need to create an index for:

� Columns that are seldom referenced in search conditions.

� Frequently updated non-key columns.

� Columns that have a small number of possible values.

Creating indexes
Indexes are either created by the user with the CREATE INDEX statement, or they are
created automatically by the system as part of the CREATE TABLE statement. InterBase
allows users to create as many as 64 indexes on a given table. To create indexes you must
have authority to connect to the database.

CREATING INDEXES

DATA DEFINITION GUIDE 121

Note To see all indexes defined for the current database, use the isql command SHOW
INDEX. To see all indexes defined for a specific table, use the command, SHOW INDEX
tablename. To view information about a specific index, use SHOW INDEX indexname.

InterBase automatically generates system-level indexes on a column or set of columns
when tables are defined using PRIMARY KEY, FOREIGN KEY, and UNIQUE constraints.
Indexes on PRIMARY KEY and FOREIGN KEY constraints preserve referential integrity.

Using CREATE INDEX
The CREATE INDEX statement creates an index on one or more columns of a table. A
single-column index searches only one column in response to a query, while a
multi-column index searches one or more columns. Options specify:

� The sort order for the index.

� Whether duplicate values are allowed in the indexed column.

Use CREATE INDEX to improve speed of data access. For faster response to queries that
require sorted values, use the index order that matches the query’s ORDER BY clause. Use
an index for columns that appear in a WHERE clause to speed searching.

To improve index performance, use SET STATISTICS to recompute index selectivity, or
rebuild the index by making it inactive, then active with sequential calls to ALTER INDEX.
For more information about improving performance, see “Using SET STATISTICS” on
page 125.

The syntax for CREATE INDEX is:

CREATE [UNIQUE] [ASC[ENDING] | DESC[ENDING]]

INDEX index ON table (col [, col ...]);

� Preventing duplicate entries
No two rows can be alike when a UNIQUE index is specified for a column or set of
columns. The system checks for duplicate values when the index is created, and each
time a row is inserted or updated. InterBase automatically creates a UNIQUE index on a
PRIMARY KEY column, forcing the values in that column to be unique identifiers for the
row. Unique indexes only make sense when uniqueness is a characteristic of the data
itself. For example, you would not define a unique index on a LAST_NAME column because
there is a high probability for duplication. Conversely, a unique index is a good idea on
a column containing a social security number.

CHAPTER 7 WORKING WITH INDEXES

122 INTERBASE 6

To define an index that disallows duplicate entries, include the UNIQUE keyword in
CREATE INDEX. The following statement creates a unique ascending index (PRODTYPEX)
on the PRODUCT and PROJ_NAME columns of the PROJECT table:

CREATE UNIQUE INDEX PRODTYPEX ON PROJECT (PRODUCT, PROJ_NAME);

Tip InterBase does not allow you to create a unique index on a column that already
contains duplicate values. Before defining a UNIQUE index, use a SELECT statement to
ensure there are no duplicate keys in the table. For example:

SELECT PRODUCT, PROJ_NAME FROM PROJECT

GROUP BY PRODUCT, PROJ_NAME

HAVING COUNT(*) > 1;

� Specifying index sort order
Specify a direction (low to high or high to low) by using the ASCENDING or DESCENDING
keyword. By default, InterBase creates indexes in ascending order. To make a descending
index on a column or group of columns, use the DESCENDING keyword to define the
index. The following statement creates a descending index (DESC_X) on the CHANGE_DATE
column of the SALARY_HISTORY table:

CREATE DESCENDING INDEX DESC_X ON SALARY_HISTORY (CHANGE_DATE);

Note To retrieve indexed data from this table in descending order, use ORDER BY
CHANGE_DATE DESCENDING in the SELECT statement.

If you intend to use both ascending and descending sort orders on a particular column,
define both an ascending and a descending index for the same column. The following
example illustrates this:

CREATE ASCENDING INDEX ASCEND_X ON SALARY_HISTORY (CHANGE_DATE);

CREATE DESCENDING INDEX DESC_X ON SALARY_HISTORY (CHANGE_DATE);

When to use a multi-column index
The main reason to use a multi-column index is to speed up queries that often access the
same set of columns. You do not have to create the query with the exact column list that
is defined in the index. InterBase will use a subset of the components of a multi-column
index to optimize a query if the:

CREATING INDEXES

DATA DEFINITION GUIDE 123

� Subset of columns used in the ORDER BY clause begins with the first column in the
multi-column index. Unless the query uses all prior columns in the list, InterBase cannot
use that index to optimize the search. For example, if the index column list is A1, A2, and
A3, a query using A1 and A2 would be optimized using the index, but a query using A2
and A3 would not.

� Order in which the query accesses the columns in an ORDER BY clause matches the order
of the column list defined in the index. (The query would not be optimized if its column
list were A2, A1.)

Tip If you expect to issue frequent queries against a table where the queries use the OR
operator, it is better to create a single-column index for each condition. Since
multi-column indices are sorted hierarchically, a query that is looking for any one of two
or more conditions would, of course, have to search the whole table, losing the
advantage of an index.

Examples using multi-column indexes
The first example creates a multi-column index, NAMEX, on the EMPLOYEE table:

CREATE INDEX NAMEX ON EMPLOYEE (LAST_NAME, FIRST_NAME);

The following query will be optimized against the index because the ORDER BY clause
references all of the indexed columns in the correct order:

SELECT LAST_NAME, SALARY FROM EMPLOYEE

WHERE SALARY > 40000

ORDER BY LAST_NAME, FIRST_NAME;

The next query will also process the following query with an index search (using
LAST_NAME from NAMEX) because although the ORDER BY clause only references one of
the indexed columns (LAST_NAME), it does so in the correct order.

SELECT LAST_NAME, SALARY FROM EMPLOYEE

WHERE SALARY > 40000

ORDER BY LAST_NAME;

Conversely, the following query will not be optimized against the index because the
ORDER BY clause uses FIRST_NAME, which is not the first indexed column in the NAMEX
column list.

SELECT LASTNAME, SALARY FROM EMP

WHERE SALARY > 40000

ORDER BY FIRST_NAME;

CHAPTER 7 WORKING WITH INDEXES

124 INTERBASE 6

The same rules that apply to the ORDER BY clause also apply to queries containing a
WHERE clause. The next example creates a multi-column index for the PROJECT table:

CREATE UNIQUE INDEX PRODTYPEX ON PROJECT (PRODUCT, PROJ_NAME);

The following query will be optimized against the PRODTYPEX index because the WHERE
clause references the first indexed column (PRODUCT) of the index:

SELECT * FROM PROJECT

WHERE PRODUCT ='software';

Conversely, the next query will not be optimized against the index because PROJ_NAME is
not the first indexed column in the column list of the PRODTYPEX index:

SELECT * FROM PROJECT

WHERE PROJ_NAME ='InterBase 4.0';

Improving index performance
Indexes can become unbalanced after many changes to the database. When this happens,
performance can be improved using one of the following methods:

� Rebuild the index with ALTER INDEX.

� Recompute index selectivity with SET STATISTICS.

� Delete and recreate the index with DROP INDEX and CREATE INDEX.

� Back up and restore the database with gbak.

Using ALTER INDEX
The ALTER INDEX statement deactivates and reactivates an index. Deactivating and
reactivating an index is useful when changes in the distribution of indexed data cause the
index to become unbalanced.

To rebuild the index, first use ALTER INDEX INACTIVE to deactivate the index, then ALTER
INDEX ACTIVE to reactivate it again. This method recreates and balances the index.

Note You can also rebuild an index by backing up and restoring the database with the
gbak utility. gbak stores only the definition of the index, not the data structure, so when
you restore the database, gbak rebuilds the indexes.

Tip Before inserting a large number of rows, deactivate a table’s indexes during the insert,
then reactivate the index to rebuild it. Otherwise, InterBase incrementally updates the
index each time a single row is inserted.

IMPROVING INDEX PERFORMANCE

DATA DEFINITION GUIDE 125

The syntax for ALTER INDEX is:

ALTER INDEX name {ACTIVE | INACTIVE};

The following statements deactivate and reactivate an index to rebuild it:

ALTER INDEX BUDGETX INACTIVE;

ALTER INDEX BUDGETX ACTIVE;

Note The following restrictions apply to altering an index:

� In order to alter an index, you must be the creator of the index, a SYSDBA user, or a user
with operating system root privileges.

� You cannot alter an index if it is in use in an active database. An index is in use if it is
currently being used by a compiled request to process a query. All requests using an index
must be released to make it available.

� You cannot alter an index that has been defined with a UNIQUE, PRIMARY KEY, or FOREIGN
KEY constraint. If you want to modify the constraints, you must use ALTER TABLE. For more
information about ALTER TABLE, see the Language Reference.

� You cannot use ALTER INDEX to add or drop index columns or keys. Use DROP INDEX to
delete the index and then redefine it with CREATE INDEX.

Using SET STATISTICS
For tables where the number of duplicate values in indexed columns radically increases
or decreases, periodically recomputing index selectivity can improve performance. SET
STATISTICS recomputes the selectivity of an index.

Index selectivity is a calculation that is made by the InterBase optimizer when a table is
accessed, and is based on the number of distinct rows in a table. It is cached in memory,
where the optimizer can access it to calculate the optimal retrieval plan for a given query.

The syntax for SET STATISTICS is:

SET STATISTICS INDEX name;

The following statement recomputes the selectivity for an index:

SET STATISTICS INDEX MINSALX;

Note The following restrictions apply to the SET STATISTICS statement:

� In order to use SET STATISTICS, you must be the creator of the index, a SYSDBA user, or a
user with operating system root privileges.

� SET STATISTICS does not rebuild an index. To rebuild an index, use ALTER INDEX.

CHAPTER 7 WORKING WITH INDEXES

126 INTERBASE 6

Using DROP INDEX
DROP INDEX removes a user-defined index from the database. System-defined indexes,
such as those created on columns defined with UNIQUE, PRIMARY KEY, and FOREIGN KEY
constraints cannot be dropped.

To alter an index, first use the DROP INDEX statement to delete the index, then use the
CREATE INDEX statement to recreate the index (using the same name) with the desired
characteristics.

The syntax for DROP INDEX is:

DROP INDEXname;

The following statement deletes an index:

DROP INDEX MINSALX;

Note The following restrictions apply to dropping an index:

� To drop an index, you must be the creator of the index, a SYSDBA user, or a user with
operating system root privileges.

� An index in use cannot be dropped until it is no longer in use. If you try to alter or drop
an index while transactions are being processed, the results depend on the type of
transaction in operation. In a WAIT transaction, the ALTER INDEX or DROP INDEX operation
waits until the index is not in use. In a NOWAIT transaction, InterBase returns an error.

� If an index was automatically created by the system on a column having a UNIQUE,
PRIMARY KEY, or FOREIGN KEY constraint, you cannot drop the index. To drop an index on
a column defined with those constraints, drop the constraint, the constrained column, or
the table. To modify the constraints, use ALTER TABLE. For more information about ALTER
TABLE, see the Language Reference.

DATA DEFINITION GUIDE 127

CHAPTER

8
Chapter 8Working with Views

This chapter describes:

� What views are and the reasons for using them

� How to create and drop views

� How to modify data through a view

Introduction
Database users typically need to access a particular subset of the data that is stored in the
database. Further, the data requirements within an individual user or group are often
quite consistent. Views provide a way to create a customized version of the underlying
tables that display only the clusters of data that a given user or group of users is interested
in.

Once a view is defined, you can display and operate on it as if it were an ordinary table.
A view can be derived from one or more tables, or from another view. Views look just like
ordinary database tables, but they are not physically stored in the database. The database
stores only the view definition, and uses this definition to filter the data when a query
referencing the view occurs.

CHAPTER 8 WORKING WITH VIEWS

128 INTERBASE 6

IMPORTANT It is important to understand that creating a view does not generate a copy of the data
stored in another table; when you change the data through a view, you are changing the
data in the actual underlying tables. Conversely, when the data in the base tables is
changed directly, the views that were derived from the base tables are automatically
updated to reflect the changes. Think of a view as a movable “window” or frame
through which you can see the actual data. The data definition is the “frame.” For
restrictions on operations using views, see “Types of views: read-only and updatable”
on page 131.

A view can be created from:

� A vertical subset of columns from a single table For example, the table, JOB, in the
employee.gdb database has 8 columns: JOB_CODE, JOB_GRADE, JOB_COUNTRY, JOB_TITLE,
MIN_SALARY, MAX_SALARY, JOB_REQUIREMENT, and LANGUAGE_REQ. The following view
displays a list of salary ranges (subset of columns) for all jobs (all rows) in the JOB table:

CREATE VIEW JOB_SALARY_RANGES AS

SELECT JOB_CODE, MIN_SALARY, MAX_SALARY FROM JOB;

� A horizontal subset of rows from a single table The next view displays all of the columns
in the JOB table, but only the subset of rows where the MAX_SALARY is less than $15,000:

CREATE VIEW LOW_PAY AS

SELECT * FROM JOB

WHERE MAX_SALARY < 15000;

� A combined vertical and horizontal subset of columns and rows from a single table The
next view displays only the JOB_CODE and JOB_TITLE columns and only those jobs where
MAX_SALARY is less than $15,000:

CREATE VIEW ENTRY_LEVEL_JOBS AS

SELECT JOB_CODE, JOB_TITLE FROM JOB

WHERE MAX_SALARY < 15000;

� A subset of rows and columns from multiple tables (joins) The next example shows a
view created from both the JOB and EMPLOYEE tables. The EMPLOYEE table contains 11
columns: EMP_NO, FIRST_NAME, LAST_NAME, PHONE_EXT, HIRE_DATE, DEPT_NO, JOB_CODE,
JOB_GRADE, JOB_COUNTRY, SALARY, FULL_NAME. It displays two columns from the JOB table,
and two columns from the EMPLOYEE table, and returns only the rows where SALARY is
less than $15,000:

CREATE VIEW ENTRY_LEVEL_WORKERS AS

SELECT JOB_CODE, JOB_TITLE, FIRST_NAME, LAST_NAME

FROM JOB, EMPLOYEE

WHERE JOB.JOB_CODE = EMPLOYEE.JOB_CODE AND SALARY < 15000;

ADVANTAGES OF VIEWS

DATA DEFINITION GUIDE 129

Advantages of views
The main advantages of views are:

� Simplified access to the data. Views enable you to encapsulate a subset of data from one
or more tables to use as a foundation for future queries without requiring you to repeat
the same set of SQL statements to retrieve the same subset of data.

� Customized access to the data. Views provide a way to tailor the database to suit a variety
of users with dissimilar skills and interests. You can focus on the information that
specifically concerns you without having to process extraneous data.

� Data independence. Views protect users from the effects of changes to the underlying
database structure. For example, if the database administrator decides to split one table
into two, a view can be created that is a join of the two new tables, thus shielding the
users from the change.

� Data security. Views provide security by restricting access to sensitive or irrelevant
portions of the database. For example, you might be able to look up job information, but
not be able to see associated salary information.

Creating views
The CREATE VIEW statement creates a virtual table based on one or more underlying tables
in the database. You can perform select, project, join, and union operations on views just
as if they were tables.

The user who creates a view is its owner and has all privileges for it, including the ability
to GRANT privileges to other users, triggers, and stored procedures. A user can be granted
privileges to a view without having access to its base tables.

The syntax for CREATE VIEW is:

CREATE VIEWname [(view_col [, view_col …])]

AS <select> [WITH CHECK OPTION];

Note You cannot define a view that is based on the result set of a stored procedure.

CHAPTER 8 WORKING WITH VIEWS

130 INTERBASE 6

Specifying view column names
� view_col names one or more columns for the view. Column names are optional unless

the view includes columns based on expressions. When specified, view column names
correspond in order and number to the columns listed in the SELECT statement, so you
must specify view column names for every column selected, or do not specify names at
all.

� Column names must be unique among all column names in the view. If column names
are not specified, the view takes the column names from the underlying table by default.

� If the view definition includes an expression, view_col names are required. A view_col
definition can contain one or more columns based on an expression.

Note isql does not support view definitions containing UNION clauses. You must write an
embedded application to create this type of view.

Using the SELECT statement
The SELECT statement specifies the selection criteria for the rows to be included in the
view. SELECT does the following:

� Lists the columns to be included from the base table. When SELECT * is used rather than
a column list, the view contains all of the column names from the base table, and displays
them in the order in which they appear in the base table. The following example creates
a view, MY_VIEW, that contains all of the columns in the EMPLOYEE table:

CREATE VIEW MY_VIEW AS

SELECT * FROM EMPLOYEE;

� Identifies the source tables in the FROM clause. In the MY_VIEW example, EMPLOYEE is the
source table.

� Specifies, if needed, row selection conditions in a WHERE clause. In the next example,
only the employees that work in the USA are included in the view:

CREATE VIEW USA_EMPLOYEES AS

SELECT * FROM EMPLOYEE

WHERE JOB_COUNTRY = 'USA';

� If WITH CHECK OPTION is specified, it prevents INSERT or UPDATE operations on an
updatable view if the operation violates the search condition specified in the WHERE
clause. For more information about using this option, see “Using WITH CHECK OPTION”
on page 133. For an explanation of updatable views, see “Types of views: read-only and
updatable” on page 131.

CREATING VIEWS

DATA DEFINITION GUIDE 131

IMPORTANT When creating views, the SELECT statement cannot include an ORDER BY clause.

Using expressions to define columns
An expression can be any SQL statement that performs a comparison or computation, and
returns a single value. Examples of expressions are concatenating character strings,
performing computations on numeric data, doing comparisons using comparison
operators (<, >, <=, and so on) or Boolean operators (AND, OR, NOT). The expression
must return a single value, and cannot be an array or return an array. Any columns used
in the value expression must exist before the expression can be defined.

For example, suppose you want to create a view that displays the salary ranges for all jobs
that pay at least $60,000. The view, GOOD_JOB, based on the JOB table, selects the
pertinent jobs and their salary ranges:

CREATE VIEW GOOD_JOB (JOB_TITLE, STRT_SALARY, TOP_SALARY) AS

SELECT JOB_TITLE, MIN_SALARY, MAX_SALARY FROM JOB

WHERE MIN_SALARY > 60000;

Suppose you want to create a view that assigns a hypothetical 10% salary increase to all
employees in the company. The next example creates a view that displays all of the
employees and their new salaries:

CREATE VIEW 10%_RAISE (EMPLOYEE, NEW_SALARY) AS

SELECT EMP_NO, SALARY *1.1 FROM EMPLOYEE;

Note Remember, unless the creator of the view assigns INSERT or UPDATE privileges, the
users of the view cannot affect the actual data in the underlying table.

Types of views: read-only and updatable
When you update a view, the changes are passed through to the underlying tables from
which the view was created only if certain conditions are met. If a view meets these
conditions, it is updatable. If it does not meet these conditions, it is read-only, meaning
that writes to the view are not passed through to the underlying tables.

Note The terms updatable and read-only refer to how you access the data in the
underlying tables, not to whether the view definition can be modified. To modify the view
definition, you must drop the view and then recreate it.

A view is updatable if all of the following conditions are met:

� It is a subset of a single table or another updatable view.

CHAPTER 8 WORKING WITH VIEWS

132 INTERBASE 6

� All base table columns excluded from the view definition allow NULL values.

� The view’s SELECT statement does not contain subqueries, a DISTINCT predicate, a HAVING
clause, aggregate functions, joined tables, user-defined functions, or stored procedures.

If the view definition does not meet all of these conditions, it is considered read-only.

Note Read-only views can be updated by using a combination of user-defined referential
constraints, triggers, and unique indexes. For information on how to update read-only
views using triggers, see Chapter 10, “Working with Triggers.”

� View privileges
The creator of the view must have the following privileges:

� To create a read-only view, the creator needs SELECT privileges for any underlying tables.

� To create an updatable view, the creator needs ALL privileges to the underlying tables.

For more information on SQL privileges, see Chapter 12, “Planning Security.”

� Examples of views
The following statement creates an updatable view:

CREATE VIEW EMP_MNGRS (FIRST, LAST, SALARY) AS

SELECT FIRST_NAME, LAST_NAME, SALARY

FROM EMPLOYEE

WHERE JOB_CODE = 'Mngr';

The next statement uses a nested query to create a view, so the view is read-only:

CREATE VIEW ALL_MNGRS AS

SELECT FIRST_NAME, LAST_NAME, JOB_COUNTRY FROM EMPLOYEE

WHERE JOB_COUNTRY IN

(SELECT JOB_COUNTRY FROM JOB

WHERE JOB_TITLE = 'manager');

The next statement creates a view that joins two tables, and so it is also read-only:

CREATE VIEW PHONE_LIST AS

SELECT EMP_NO, FIRST_NAME, LAST_NAME, PHONE_EXT, LOCATION, PHONE_NO

FROM EMPLOYEE, DEPARTMENT

WHERE EMPLOYEE.DEPT_NO = DEPARTMENT.DEPT_NO.

CREATING VIEWS

DATA DEFINITION GUIDE 133

Inserting data through a view
Rows can be inserted and updated through a view if the following conditions are met:

� The view is updatable

� A user or stored procedure has INSERT privilege for the view

� The view is created using WITH CHECK OPTION

Tip You can simulate updating a read-only view by writing triggers that perform the
appropriate writes to the underlying tables. For an example of this, see “Updating views
with triggers” on page 190.

� Using WITH CHECK OPTION

WITH CHECK OPTION specifies rules for modifying data through views. This option can be
included only if the views are updatable. Views that are created using WITH CHECK OPTION
enable InterBase to verify that a row inserted or updated through a view can be seen
through the view before allowing the operation to succeed. Values can only be inserted
through a view for those columns named in the view. InterBase stores NULL values for
unreferenced columns.

WITH CHECK OPTION prevents you from inserting or updating values that do not satisfy the
search condition specified in the WHERE clause of the SELECT portion of the CREATE VIEW
statement.

� Examples
Suppose you want to create a view that allows access to information about all
departments with budgets between $10,000 and $500,000. The view, SUB_DEPT, is defined
as follows:

CREATE VIEW SUB_DEPT (DEPT_NAME, DEPT_NO, SUB_DEPT_NO, LOW_BUDGET) AS

SELECT DEPARTMENT, DEPT_NO, HEAD_DEPT, BUDGET

FROM DEPARTMENT WHERE BUDGET BETWEEN 10000 AND 500000

WITH CHECK OPTION;

The SUB_DEPT view references a single table, DEPARTMENT. If you are the creator of the
view or have INSERT privileges, you can insert new data into the DEPARTMENT, DEPT_NO,
HEAD_DEPT, and BUDGET columns of the base table, DEPARTMENT. WITH CHECK OPTION
assures that all values entered through the view fall within the range prescribed for each
column in the WHERE clause of the SUB_DEPT view.

CHAPTER 8 WORKING WITH VIEWS

134 INTERBASE 6

The following statement inserts a new row for the Publications Department through the
SUB_DEPT view:

INSERT INTO SUB_DEPT (DEPT_NAME, DEPT_NO, SUB_DEPT_NO, LOW_BUDGET)

VALUES ('Publications', '7735', '670', 250000);

InterBase inserts NULL values for all other columns in the DEPARTMENT base table that are
not available directly through the view.

Dropping views
The DROP VIEW statement enables a view’s creator to remove a view definition from the
database. It does not affect the base tables associated with the view. You can drop a view
only if:

� You created the view.

� The view is not used in another view, a stored procedure, or CHECK constraint definition.
You must delete the associated database objects before dropping the view.

The syntax for DROP VIEW is:

DROP VIEWname;

The following statement removes a view definition:

DROP VIEW SUB_DEPT;

Note You cannot alter a view directly. To change a view, drop it and use the CREATE VIEW
statement to create a view with the same name and the features you want.

DATA DEFINITION GUIDE 135

CHAPTER

9
Chapter 9Working with

Stored Procedures

This chapter describes the following:

� How to create, alter, and drop procedures

� The InterBase procedure and trigger language

� How to use stored procedures

� How to create, alter, drop, and raise exceptions

� How to handle errors

Overview of stored procedures
A stored procedure is a self-contained program written in InterBase procedure and trigger
language, and stored as part of a the database metadata.

Once you have created a stored procedure, you can invoke it directly from an application,
or substitute the procedure for a table or view in a SELECT statement. Stored procedures
can receive input parameters from and return values to applications.

CHAPTER 9 WORKING WITH STORED PROCEDURES

136 INTERBASE 6

InterBase procedure and trigger language includes SQL data manipulation statements
and some powerful extensions, including IF … THEN … ELSE, WHILE … DO, FOR SELECT …
DO, exceptions, and error handling.

The advantages of using stored procedures include:

� Modular design

Applications that access the same database can share stored procedures, eliminating
duplicate code and reducing the size of the applications

� Streamlined maintenance

When a procedure is updated, the changes are automatically reflected in all applications
that use it without the need to recompile and relink them; applications are compiled and
optimized only once for each client

� Improved performance

Stored procedures are executed by the server, not the client, which reduces network
traffic, and improves performance—especially for remote client access

Working with procedures
With isql, you can create, alter, and drop procedures and exceptions. Each of these
operations is explained in the corresponding sections in this chapter.

There are two ways to create, alter, and drop procedures with isql:

� Interactively

� With an input file containing data definition statements

It is usually preferable to use data definition files, because they are easier to modify and
provide separate documentation of the procedure. For simple changes to existing
procedures or exceptions, the interactive interface can be convenient.

The user who creates a procedure is the owner of the procedure, and can grant the
privilege to execute the procedure to other users, triggers, and stored
procedures.

Using a data definition file
To create or alter a procedure through a data definition file, follow these steps:

WORKING WITH PROCEDURES

DATA DEFINITION GUIDE 137

1. Use a text editor to write the data definition file.

2. Save the file.

3. Process the file with isql. Use this command:

isql -input filename database_name

where filename is the name of the data definition file and database_name is the
name of the database to use. Alternatively, from within isql, you can process the file
using the command:

SQL> input filename ;

If you do not specify the database on the command line or interactively, the data
definition file must include a statement to create or open a database.

The data definition file can include:

� Statements to create, alter, or drop procedures. The file can also include statements to
create, alter, or drop exceptions. Exceptions must be created before they can be
referenced in procedures.

� Any other isql statements.

Calling stored procedures
Applications can call stored procedures from SQL and DSQL. You can also use stored
procedures in isql. For more information on calling stored procedures from applications,
see the Embedded SQL Guide.

There are two types of stored procedures:

� SELECT procedures that an application can use in place of a table or view in a SELECT
statement. A select procedure must be defined to return one or more values (output
parameters), or an error results.

� Executable procedures that an application can call directly with the EXECUTE PROCEDURE
statement. An executable procedure can optionally return values to the calling program.

Both kinds of procedures are defined with CREATE PROCEDURE and have essentially the
same syntax. The difference is in how the procedure is written and how it is intended to
be used. Select procedures can return more than one row, so that to the calling program
they appear as a table or view. Executable procedures are routines invoked by the calling
program, which can optionally return values.

CHAPTER 9 WORKING WITH STORED PROCEDURES

138 INTERBASE 6

In fact, a single procedure conceivably can be used as a select procedure or as an
executable procedure, but in general a procedure is written specifically to be used in a
SELECT statement (a select procedure) or to be used in an EXECUTE PROCEDURE statement
(an executable procedure).

Privileges for stored procedures
To use a stored procedure, a user must be the creator of the procedure or must be given
EXECUTE privilege for it. An extension to the GRANT statement assigns the EXECUTE
privilege, and an extension to the REVOKE statement eliminates the privilege.

Stored procedures themselves sometimes need access to tables or views for which a user
does not—or should not—have privileges. For more information about granting
privileges to users and procedures, see Chapter 12, “Planning Security.”

Creating procedures
You can define a stored procedure with the CREATE PROCEDURE statement in isql. You
cannot create stored procedures in embedded SQL. A stored procedure is composed of a
header and a body.

The header contains:

� The name of the stored procedure, which must be unique among procedure, view, and
table names in the database.

� An optional list of input parameters and their datatypes that a procedure receives from
the calling program.

� If the procedure returns values to the calling program, RETURNS followed by a list of
output parameters and their datatypes.

The procedure body contains:

� An optional list of local variables and their datatypes.

� A block of statements in InterBase procedure and trigger language, bracketed by BEGIN
and END. A block can itself include other blocks, so that there can be many levels of
nesting.

CREATING PROCEDURES

DATA DEFINITION GUIDE 139

IMPORTANT Because each statement in a stored procedure body must be terminated by a semicolon,
you must define a different symbol to terminate the CREATE PROCEDURE statement in isql.
Use SET TERM before CREATE PROCEDURE to specify a terminator other than a semicolon.
After the CREATE PROCEDURE statement, include another SET TERM to change the
terminator back to a semicolon.

CREATE PROCEDURE syntax
CREATE PROCEDUREname

[(param datatype [, param datatype …])]

[RETURNS (param datatype [, param datatype …])]

AS

<procedure_body> ;

<procedure_body > = [< variable_declaration_list >]

<block >

<variable_declaration_list > =

DECLARE VARIABLEvar datatype ;

[DECLARE VARIABLE var datatype; …]

<block> =

BEGIN

<compound_statement >

[< compound_statement > …]

END

<compound_statement > = { <block> | statement ;}

CHAPTER 9 WORKING WITH STORED PROCEDURES

140 INTERBASE 6

Procedure and trigger language
The InterBase procedure and trigger language is a complete programming language for
stored procedures and triggers. It includes:

� SQL data manipulation statements: INSERT, UPDATE, DELETE, and singleton SELECT. Cursors
are allowed.

� SQL operators and expressions, including UDFs linked with the database server and
generators.

� Powerful extensions to SQL, including assignment statements, control-flow statements,
context variables, event-posting statements, exceptions, and error-handling statements.

Argument Description

name Name of the procedure; must be unique among procedure, table, and view
names in the database

param datatype Input parameters that the calling program uses to pass values to the procedure

param: Name of the input parameter, unique for variables in the procedure

datatype: An InterBase datatype

RETURNS
param datatype

Output parameters that the procedure uses to return values to the calling
program

param: Name of the output parameter, unique for variables within the
procedure

datatype: An InterBase datatype

The procedure returns the values of output parameters when it reaches a
SUSPEND statement in the procedure body.

AS Keyword that separates the procedure header and the procedure body

DECLARE VARIABLE
var datatype

Declares local variables used only in the procedure

Each declaration must be preceded by DECLARE VARIABLE and followed by a
semicolon (;).

var: Name of the local variable, unique for variables in the procedure

statement Any single statement in InterBase procedure and trigger language

Each statement except BEGIN and END must be followed by a semicolon (;).

TABLE 9.1 Arguments of the CREATE PROCEDURE statement

CREATING PROCEDURES

DATA DEFINITION GUIDE 141

Although stored procedures and triggers are used in different ways and for different
purposes, they both use the procedure and trigger language. Both triggers and stored
procedures can use any statements in the procedure and trigger language, with some
exceptions:

� Context variables are unique to triggers.

� Input and output parameters, and the SUSPEND and EXIT statements, which return values
and are unique to stored procedures.

The following table summarizes the language extensions for stored procedures.

Statement Description

BEGIN … END Defines a block of statements that executes as one; the BEGIN
keyword starts the block, the END keyword terminates it.
Neither should be followed by a semicolon.

variable = expression Assignment statement which assigns the value of
expression to variable, a local variable, input parameter, or
output parameter

/* comment_text */ Programmer’s comment, where comment_text can be any
number of lines of text

EXCEPTION
exception_name

Raises the named exception

Exception: A user-defined error that can be handled with WHEN

EXECUTE PROCEDURE
proc_name [var [, var …]]
[RETURNING_VALUES
var [, var …]]

Executes stored procedure, proc_name, with the input
arguments listed following the procedure name, returning
values in the output arguments listed following
RETURNING_VALUES

Enables nested procedures and recursion

Input and output parameters must be variables defined within
the procedure.

EXIT Jumps to the final END statement in the procedure

FOR select_statement DO
compound_statement

Repeats the statement or block following DO for every
qualifying row retrieved by select_statement

select_statement: a normal SELECT statement, except that the
INTO clause is required and must come last

compound_statement Either a single statement in procedure and trigger language or
a block of statements bracketed by BEGIN and END

TABLE 9.2 Procedure and trigger language extensions

CHAPTER 9 WORKING WITH STORED PROCEDURES

142 INTERBASE 6

� Using SET TERM in stored procedures
CREATE PROCEDURE is a statement that must end with a terminator, just as all other SQL
statements must. But the CREATE PROCEDURE statement contains other statements within
it and these “contained” statements must also end with the terminator. If isql were to
interpret semicolons as statement terminators, then procedures and triggers would
execute during their creation, rather than when they are called.

A script file containing CREATE PROCEDURE or CREATE TRIGGER definitions should include
one SET TERM command before the procedure or trigger definitions and a corresponding
SET TERM after the definitions. The beginning SET TERM defines a new termination
character; the ending SET TERM restores the semicolon (;) as the default.

IF (condition)
THEN compound_statement
[ELSE compound_statement]

Tests condition and if it is TRUE, performs the statement or block
following THEN. Otherwise, performs the statement or block
following ELSE, if present.

condition: a Boolean expression (TRUE, FALSE, or UNKNOWN),
generally two expressions as operands of a comparison
operator.

POST_EVENT event_name Posts the event, event_name.

SUSPEND In a SELECT procedure:

Suspends execution of procedure until next FETCH is issued by
the calling application

Returns output values, if any, to the calling application.

Not recommended for executable procedures.

WHILE (condition)
DO compound_statement

While condition is TRUE, keep performing
compound_statement. First condition is tested, and if it is TRUE,
then compound_statement is performed. This sequence is
repeated until condition is no longer TRUE.

WHEN
{error [, error …] | ANY}
DO compound_statement

Error-handling statement. When one of the specified errors
occurs, performs compound_statement. WHEN statements, if
present, must come at the end of a block, just before END.

error: EXCEPTION exception_name, SQLCODE errcode or GDSCODE
number.

ANY: Handles any errors.

Statement Description

TABLE 9.2 Procedure and trigger language extensions (continued)

CREATING PROCEDURES

DATA DEFINITION GUIDE 143

The following example shows a text file that uses SET TERM in creating a procedure. The
first SET TERM defines “##” as the termination characters. The matching SET TERM restores
“;” as the termination character.

SET TERM ## ;

CREATE PROCEDURE ADD_EMP_PROJ (EMP_NO SMALLINT, PROJ_ID CHAR(5))

AS

BEGIN

BEGIN

INSERT INTO EMPLOYEE_PROJECT (EMP_NO, PROJ_ID)

VALUES (:emp_no, :proj_id);

WHEN SQLCODE -530 DO

EXCEPTION UNKNOWN_EMP_ID;

END

RETURN;

END ##

SET TERM ; ##

There must be a space after SET TERM. Each SET TERM is itself terminated with the current
terminator.

� Syntax errors in stored procedures
InterBase generates errors during parsing if there is incorrect syntax in a CREATE
PROCEDURE statement. Error messages look similar to this:

Statement failed, SQLCODE = -104

Dynamic SQL Error

-SQL error code = -104

-Token unknown - line 4, char 9

-tmp

The line numbers are counted from the beginning of the CREATE PROCEDURE statement,
not from the beginning of the data definition file. Characters are counted from the left,
and the unknown token indicated is either the source of the error, or immediately to the
right of the source of the error. When in doubt, examine the entire line to determine the
source of the syntax error.

The procedure header
Everything before AS in the CREATE PROCEDURE statement forms the procedure header.
The header contains:

CHAPTER 9 WORKING WITH STORED PROCEDURES

144 INTERBASE 6

� The name of the stored procedure, which must be unique among procedure and table
names in the database.

� An optional list of input parameters and their datatypes. The procedure receives the
values of the input parameters from the calling program.

� Optionally, the RETURNS keyword followed by a list of output parameters and their
datatypes. The procedure returns the values of the output parameters to the calling
program.

� Declaring input parameters
Use input parameters to pass values from an application to a procedure. Any input
parameters are given in a comma-delimited list enclosed in parentheses immediately after
the procedure name, as follows:

CREATE PROCEDUREname

(var datatype [, var datatype …])

. . .

Each input parameter declaration has two parts: a name and a datatype. The name of the
parameter must be unique within the procedure, and the datatype can be any standard
SQL datatype except BLOB and arrays of datatypes. The name of an input parameter need
not match the name of any host parameter in the calling program.

Note No more than 1,400 input parameters can be passed to a stored procedure.

� Declaring output parameters
Use output parameters to return values from a procedure to an application. The RETURNS
clause in the procedure header specifies a list of output parameters. The syntax of the
RETURNS clause is:

. . .

[RETURNS (var datatype [, var datatype …])]

AS

. . .

Each output parameter declaration has two parts: a name and a datatype. The name of
the parameter must be unique within the procedure, and the datatype can be any
standard SQL datatype except BLOB and arrays.

CREATING PROCEDURES

DATA DEFINITION GUIDE 145

The procedure body
Everything following the AS keyword in the CREATE PROCEDURE statement forms the
procedure body. The body consists of an optional list of local variable declarations
followed by a block of statements.

A block is composed of statements in the InterBase procedure and trigger language,
bracketed by BEGIN and END. A block can itself include other blocks, so that there can be
many levels of nesting.

InterBase procedure and trigger language includes all standard InterBase SQL statements
except data definition and transaction statements, plus statements unique to procedure
and trigger language.

Features of InterBase procedure and trigger language include:

� Assignment statements, to set values of local variables and input/output parameters.

� SELECT statements, to retrieve column values. SELECT statements must have an INTO clause
as the last clause.

� Control-flow statements, such as FOR SELECT … DO, IF … THEN, and WHILE … DO, to
perform conditional or looping tasks.

� EXECUTE PROCEDURE statements, to invoke other procedures. Recursion is allowed.

� Comments to annotate procedure code.

� Exception statements, to return error messages to applications, and WHEN statements to
handle specific error conditions.

� SUSPEND and EXIT statements, that return control—and return values of output
parameters—to the calling application.

� BEGIN … END statements
Each block of statements in the procedure body starts with a BEGIN statement and ends
with an END statement. BEGIN and END are not followed by a semicolon. In isql, the final
END in the procedure body is followed by the terminator that you specified in the SET
TERM statement.

� Using variables
There are three types of variables that can be used in the body of a procedure:

� Input parameters, used to pass values from an application to a stored procedure.

� Output parameters, used to pass values from a stored procedure back to the calling
application.

CHAPTER 9 WORKING WITH STORED PROCEDURES

146 INTERBASE 6

� Local variables, used to hold values used only within a procedure.

Any of these types of variables can be used in the body of a stored procedure where an
expression can appear. They can be assigned a literal value, or assigned a value derived
from queries or expression evaluations.

Note In SQL statements, precede variables with a colon (:) to signify that they are
variables rather than column names. In procedure and trigger language extension
statements, you need not precede variables with a colon.

LOCAL VARIABLES

Local variables are declared and used within a stored procedure. They have no effect
outside the procedure.

Local variables must be declared at the beginning of a procedure body before they can
be used. Declare a local variable as follows:

DECLARE VARIABLEvar datatype ;

where var is the name of the local variable, unique within the procedure, and datatype
is the datatype, which can be any SQL datatype except BLOB or an array. Each local
variable requires a separate DECLARE VARIABLE statement, followed by a semicolon (;).

The following header declares the local variable, ANY_SALES:

CREATE PROCEDURE DELETE_EMPLOYEE (EMP_NUM INTEGER)

AS

DECLARE VARIABLE ANY_SALES INTEGER;

BEGIN

. . .

INPUT PARAMETERS

Input parameters are used to pass values from an application to a procedure. They are
declared in a comma-delimited list in parentheses following the procedure name. Once
declared, they can be used in the procedure body anywhere an expression can appear.

Input parameters are passed by value from the calling program to a stored procedure.
This means that if the procedure changes the value of an input parameter, the change
has effect only within the procedure. When control returns to the calling program, the
input parameter still has its original value.

The following procedure header declares two input parameters, EMP_NO and
PROJ_ID:

CREATE PROCEDURE ADD_EMP_PROJ (EMP_NO SMALLINT, PROJ_ID CHAR(5))

AS

. . .

CREATING PROCEDURES

DATA DEFINITION GUIDE 147

For more information on declaring input parameters in stored procedures, see
“Declaring input parameters” on page 144.

OUTPUT PARAMETERS

Output parameters are used to return values from a procedure to the calling application.
Declare them in a comma-delimited list in parentheses following the RETURNS keyword
in the procedure header. Once declared, they can be used in the procedure body
anywhere an expression can appear. For example, the following procedure header
declares five output parameters, HEAD_DEPT, DEPARTMENT, MNGR_NAME, TITLE, and
EMP_CNT:

CREATE PROCEDURE ORG_CHART

RETURNS (HEAD_DEPT CHAR(25), DEPARTMENT CHAR(25),

MNGR_NAME CHAR(20), TITLE CHAR(5), EMP_CNT INTEGER)

If you declare output parameters in the procedure header, the procedure must assign
them values to return to the calling application. Values can be derived from any valid
expression in the procedure.

For more information on declaring output parameters in stored procedures, see
“Declaring output parameters” on page 144.

A procedure returns output parameter values to the calling application with a SUSPEND
statement. For more information about SUSPEND, see “Using SUSPEND, EXIT, and END” on
page 153.

In a SELECT statement that retrieves values from a procedure, the column names must
match the names and datatypes of the procedure’s output parameters. In an EXECUTE
PROCEDURE statement, the output parameters need not match the names of the
procedure’s output parameters, but the datatypes must match.

� Using assignment statements
A procedure can assign values to variables with the syntax:

variable = expression ;

where expression is any valid combination of variables, operators, and expressions, and
can include user-defined functions (UDFs) and generators.

A colon need not precede the variable name in an assignment statement. For example,
the following statement assigns a value of zero to the local variable, ANY_SALES:

any_sales = 0;

CHAPTER 9 WORKING WITH STORED PROCEDURES

148 INTERBASE 6

Variables should be assigned values of the datatype that they are declared to be. Numeric
variables should be assigned numeric values, and character variables assigned character
values. InterBase provides automatic type conversion. For example, a character variable
can be assigned a numeric value, and the numeric value is automatically converted to a
string. For more information on type conversion, see the Embedded SQL Guide.

� Using SELECT statements
In a stored procedure, use the SELECT statement with an INTO clause to retrieve a single
row value from the database and assign it to a host variable. The SELECT statement must
return at most one row from the database, like a standard singleton SELECT. The INTO
clause is required and must be the last clause in the statement.

For example, the following statement is a standard singleton SELECT statement in an
application:

EXEC SQL

SELECT SUM(BUDGET), AVG(BUDGET)

INTO :tot_budget, :avg_budget

FROM DEPARTMENT

WHERE HEAD_DEPT = :head_dept;

To use this SELECT statement in a procedure, move the INTO clause to the end as follows:

SELECT SUM(BUDGET), AVG(BUDGET)

FROM DEPARTMENT

WHERE HEAD_DEPT = :head_dept

INTO :tot_budget, :avg_budget;

For a complete discussion of SELECT statement syntax, see the Language Reference.

� Using FOR SELECT … DO statements
To retrieve multiple rows in a procedure, use the FOR SELECT … DO statement. The syntax
of FOR SELECT is:

FOR

<select_expr >

DO

<compound_statement >;

FOR SELECT differs from a standard SELECT as follows:

� It is a loop statement that retrieves the row specified in the select_expr and performs the
statement or block following DO for each row retrieved.

� The INTO clause in the select_expr is required and must come last. This syntax allows FOR
… SELECT to use the SQL UNION clause, if needed.

CREATING PROCEDURES

DATA DEFINITION GUIDE 149

For example, the following statement from a procedure selects department numbers into
the local variable, RDNO, which is then used as an input parameter to the DEPT_BUDGET
procedure:

FOR SELECT DEPT_NO

FROM DEPARTMENT

WHERE HEAD_DEPT = :DNO

INTO :RDNO

DO

BEGIN

EXECUTE PROCEDURE DEPT_BUDGET :RDNO RETURNS :SUMB;

TOT = TOT + SUMB;

END

… ;

� Using WHILE … DO statements
WHILE … DO is a looping statement that repeats a statement or block of statements as long
as a condition is true. The condition is tested at the start of each loop. WHILE … DO uses
the following syntax:

WHILE (<condition>) DO

<compound_statement >

<compound_statement> =

{< block > | statement ;}

The compound_statement is executed as long as condition remains TRUE.
A block is one or more compound statements enclosed by BEGIN and END.

For example, the following procedure uses a WHILE … DO loop to compute the sum of all
integers from one up to the input parameter, I:

ISET TERM !!;

CREATE PROCEDURE SUM_INT (I INTEGER) RETURNS (S INTEGER)

AS

BEGIN

s = 0;

WHILE (i > 0) DO

BEGIN

s = s + i;

i = i - 1;

END

END!!

SET TERM ; !!

CHAPTER 9 WORKING WITH STORED PROCEDURES

150 INTERBASE 6

If this procedure is called from isql with the command:

EXECUTE PROCEDURE SUM_INT 4;

then the results will be:

S

==========

10

� Using IF … THEN … ELSE statements
The IF … THEN … ELSE statement selects alternative courses of action by testing a specified
condition. The syntax of IF … THEN … ELSE is as follows:

IF (<condition>)

THEN <compound_statement >

[ELSE <compound_statement>]

<compound_statement> = {< block > | statement ;}

The condition clause is an expression that must evaluate to TRUE to execute the statement
or block following THEN. The optional ELSE clause specifies an alternative statement or
block to be executed if condition is FALSE.

The following lines of code illustrate the use of IF … THEN, assuming the variables LINE2,
FIRST, and LAST have been previously declared:

. . .

IF (FIRST IS NOT NULL)

THEN LINE2 = FIRST || ' ' || LAST;

ELSE LINE2 = LAST;

. . .

� Using event alerters
To use an event alerter in a stored procedure, use the following syntax:

POST_EVENT<event_name> ;

The parameter, event_name, can be either a quoted literal or string variable.

Note Variable names do not need to be—and must not be—preceded by a colon in
stored procedures except in SELECT, INSERT, UPDATE, and DELETE clauses where they would
be interpreted as column names without the colon.

CREATING PROCEDURES

DATA DEFINITION GUIDE 151

When the procedure is executed, this statement notifies the event manager, which alerts
applications waiting for the named event. For example, the following statement posts an
event named “new_order”:

POST_EVENT 'new_order';

Alternatively, a variable can be used for the event name:

POST_EVENT event_name;

So, the statement can post different events, depending on the value of the string variable,
event_name.

For more information on events and event alerters, see the Embedded SQL Guide.

� Adding comments
Stored procedure code should be commented to aid debugging and application
development. Comments are especially important in stored procedures since they are
global to the database and can be used by many different application developers.

Comments in stored procedure definitions are exactly like comments in standard C code,
and use the following syntax:

/* comment_text */

comment_text can be any number of lines of text. A comment can appear on the same
line as code. For example:

x = 42; /* Initialize value of x. */

� Creating nested and recursive procedures
A stored procedure can itself execute a stored procedure. Each time a stored procedure
calls another procedure, the call is said to be nested because it occurs in the context of a
previous and still active call to the first procedure. A stored procedure called by another
stored procedure is known as a nested procedure.

If a procedure calls itself, it is recursive. Recursive procedures are useful for tasks that
involve repetitive steps. Each invocation of a procedure is referred to as an instance, since
each procedure call is a separate entity that performs as if called from an application,
reserving memory and stack space as required to perform its tasks.

Note Stored procedures can be nested up to 1,000 levels deep. This limitation helps to
prevent infinite loops that can occur when a recursive procedure provides no absolute
terminating condition. Nested procedure calls can be restricted to fewer than 1,000 levels
by memory and stack limitations of the server.

CHAPTER 9 WORKING WITH STORED PROCEDURES

152 INTERBASE 6

The following example illustrates a recursive procedure, FACTORIAL, which calculates
factorials. The procedure calls itself recursively to calculate the factorial of NUM, the input
parameter.

SET TERM !!;

CREATE PROCEDURE FACTORIAL (NUM INT)

RETURNS (N_FACTORIAL DOUBLE PRECISION)

AS

DECLARE VARIABLE NUM_LESS_ONE INT;

BEGIN

IF (NUM = 1) THEN

BEGIN /**** BASE CASE: 1 FACTORIAL IS 1 ****/

N_FACTORIAL = 1;

SUSPEND;

END

ELSE

BEGIN /**** RECURSION: NUM FACTORIAL = NUM * (NUM-1) FACTORIAL ****/

NUM_LESS_ONE = NUM - 1;

EXECUTE PROCEDURE FACTORIAL NUM_LESS_ONE

RETURNING_VALUES N_FACTORIAL;

N_FACTORIAL = N_FACTORIAL * NUM;

SUSPEND;

END

END!!

SET TERM ;!!

The following C code demonstrates how a host-language program would call FACTORIAL:

. . .

printf('\nCalculate factorial for what value? ');

scanf('%d', &pnum);

EXEC SQL

EXECUTE PROCEDURE FACTORIAL :pnum RETURNING_VALUES :pfact;

printf('%d factorial is %d.\n', pnum, pfact);

. . .

Recursion nesting restrictions would not allow this procedure to calculate
factorials for numbers greater than 1,001. Arithmetic overflow, however, occurs for much
smaller numbers.

CREATING PROCEDURES

DATA DEFINITION GUIDE 153

� Using SUSPEND, EXIT, and END

The SUSPEND statement suspends execution of a select procedure, passes control back to
the program, and resumes execution from the next statement when the next FETCH is
executed. SUSPEND also returns values in the output parameters of a stored procedure.

SUSPEND should not be used in executable procedures, since the statements that follow it
will never execute. Use EXIT instead to indicate to the reader explicitly that the statement
terminates the procedure.

In a select procedure, the SUSPEND statement returns current values of output parameters
to the calling program and continues execution. If an output parameter has not been
assigned a value, its value is unpredictable, which can lead to errors. A procedure should
ensure that all output parameters are assigned values before a SUSPEND.

In both select and executable procedures, EXIT jumps program control to the final END
statement in the procedure.

What happens when a procedure reaches the final END statement depends on the type
of procedure:

� In a select procedure, the final END statement returns control to the application and sets
SQLCODE to 100, which indicates there are no more rows to retrieve.

� In an executable procedure, the final END statement returns control and values of output
parameters, if any, to the calling application.

The behavior of these statements is summarized in the following table:

Procedure type SUSPEND EXIT END

Select procedure Suspends execution of
procedure until next FETCH

Returns values

Jumps to final END Returns control to application

Sets SQLCODE to 100

Executable procedure Jumps to final END

Not Recommended

Jumps to final END Returns values

Returns control to application

TABLE 9.3 SUSPEND, EXIT, and END

CHAPTER 9 WORKING WITH STORED PROCEDURES

154 INTERBASE 6

Consider the following procedure:

SET TERM !!;

CREATE PROCEDURE P RETURNS (R INTEGER)

AS

BEGIN

R = 0;

WHILE (R < 5) DO

BEGIN

R = R + 1;

SUSPEND;

IF (R = 3) THEN

EXIT;

END

END;

SET TERM ;!!

If this procedure is used as a select procedure, for example:

SELECT * FROM P;

then it returns values 1, 2, and 3 to the calling application, since the SUSPEND statement
returns the current value of R to the calling application. The procedure terminates when
it encounters EXIT.

If the procedure is used as an executable procedure, for example:

EXECUTE PROCEDURE P;

then it returns 1, since the SUSPEND statement terminates the procedure and returns the
current value of R to the calling application. This is not recommended, but is included
here for comparison.

Note If a select procedure has executable statements following the last SUSPEND in the
procedure, all of those statements are executed, even though no more rows are returned
to the calling program. The procedure terminates with the final END statement.

ERROR BEHAVIOR

When a procedure encounters an error—either an SQLCODE error, GDSCODE error, or
user-defined exception—all statements since the last SUSPEND are undone.

Since select procedures can have multiple SUSPENDs, possibly inside a loop statement,
only the actions since the last SUSPEND are undone. Since executable procedures should
not use SUSPEND, when an error occurs the entire executable procedure is undone (if EXIT
is used, as recommended).

ALTERING AND DROPPING STORED PROCEDURES

DATA DEFINITION GUIDE 155

Altering and dropping stored procedures
This section describes techniques and issues for changing and deleting procedures.

Tip To see a list of database procedures and their dependencies, use the isql command:

SHOW PROCEDURES;

Altering stored procedures
To change a stored procedure, use ALTER PROCEDURE. This statement changes the
definition of an existing stored procedure while preserving its dependencies according to
which metadata objects reference the stored procedure, and which objects the stored
procedure references.

Changes made to a procedure are transparent to all client applications that use the
procedure; you do not have to rebuild the applications. However, see “Altering and
dropping procedures in use” on page 157 for issues of managing versions of stored
procedures.

Only SYSDBA and the owner of a procedure can alter it.

IMPORTANT Be careful about changing the type, number, and order of input and output parameters
to a procedure, since existing code might assume that the procedure has its original
format.

When you alter a procedure, the new procedure definition replaces the old one. To alter
a procedure, follow these steps:

1. Copy the original data definition file used to create the procedure.
Alternatively, use isql -extract to extract a procedure from the database to a file.

2. Edit the file, changing CREATE to ALTER, and changing the procedure
definition as desired. Retain whatever is still useful.

CHAPTER 9 WORKING WITH STORED PROCEDURES

156 INTERBASE 6

Alter procedure syntax
The syntax for ALTER PROCEDURE is similar to CREATE PROCEDURE as shown in the
following syntax:

ALTER PROCEDUREname

[(var datatype [, var datatype …])]

[RETURNS (var datatype [, var datatype …])]

AS

procedure_body ;

The procedure name must be the name of an existing procedure. The arguments of the
ALTER PROCEDURE statement are the same as those for CREATE PROCEDURE (see
“Arguments of the CREATE PROCEDURE statement” on page 140).

Dropping procedures
The DROP PROCEDURE statement deletes an existing stored procedure from the database.
DROP PROCEDURE can be used interactively with isql or in a data definition file.

The following restrictions apply to dropping procedures:

� Only SYSDBA and the owner of a procedure can drop it.

� You can’t drop a procedure used by other procedures, triggers, or views; alter the other
metadata object so that it does not reference the procedure, then drop the procedure.

� You can’t drop a procedure that is recursive or in a cyclical dependency with another
procedure; you must alter the procedure to remove the cyclical dependency, then drop
the procedure.

� You can’t drop a procedure that is currently in use by an active transaction; commit the
transaction, then drop the procedure.

� You can’t drop a procedure with embedded SQL; use dynamic SQL.

If you attempt to drop a procedure and receive an error, make sure you have entered the
procedure name correctly.

ALTERING AND DROPPING STORED PROCEDURES

DATA DEFINITION GUIDE 157

Drop procedure syntax
The syntax for dropping a procedure is:

DROP PROCEDUREname;

The procedure name must be the name of an existing procedure. The following
statement deletes the ACCOUNTS_BY_CLASS procedure:

DROP PROCEDURE ACCOUNTS_BY_CLASS;

Altering and dropping procedures in use
You must make special considerations when making changes to stored procedures that
are currently in use by other requests. A procedure is in use when it is currently
executing, or if it has been compiled internally to the metadata cache by a request.

Changes to procedures are not visible to client applications until they disconnect and
reconnect to the database; triggers and procedures that invoke altered procedures don’t
have access to the new version until there is a point in which all clients are disconnected.

To simplify the task of altering or dropping stored procedures, it is highly recommended
to perform this task during a maintenance period when no client applications are
connected to the database. By doing this, all client applications see the same version of
a stored procedure before and after you make an alteration.

Tip You can minimize the maintenance period by performing the procedure alteration while
the database is in use, and then briefly closing all client applications. It is safe to alter
procedures while the database is in use.

Internals of the technology

Below is a detailed description of the internal maintenance of stored procedure versions,
to help explain the behavior of the technology.

When any request invokes a stored procedure, the current definition for that stored
procedure is copied at that moment to a metadata cache. This copy persists for the
lifetime of the request that invoked the stored procedure.

A request is one of the following:

� A client application that executes the stored procedure directly

� A trigger that executes the stored procedure; this includes system triggers that are part of
referential integrity or check constraints

� Another stored procedure that executes the stored procedure

CHAPTER 9 WORKING WITH STORED PROCEDURES

158 INTERBASE 6

Altering or dropping a stored procedure takes effect immediately; new requests that
invoke the altered stored procedure see the latest version. However, outstanding requests
continue to see the version of the stored procedure that they first saw, even if a newer
version has been created after the request’s first invocation of the stored procedure. There
is no method to force these outstanding requests to update their metadata cache.

A trigger or stored procedure request persists in the metadata cache while there are one
or more clients connected to the database, regardless of whether the client makes use of
the trigger or stored procedure. These requests never update as long as any client is
connected to the database. These requests are emptied from the metadata cache only
when the last client disconnects from the database.

IMPORTANT The only way to guarantee that all copies of a stored procedure are purged from the
metadata cache is for all connections to the database to terminate. Only then are all
metadata objects emptied from the metadata cache. Subsequent connections and
triggers spawned by them are new requests, and they see the newest version of the
stored procedure.

Using stored procedures
Stored procedures can be used in applications in a variety of ways. Select procedures are
used in place of a table or view in a SELECT statement. Executable procedures are used
with an EXECUTE PROCEDURE statement.

Both kinds of procedures are defined with CREATE PROCEDURE and have the same syntax.
The difference is in how the procedure is written and how it is intended to be used. Select
procedures always return one or more rows, so that to the calling program they appear
as a table or view. Executable procedures are simply routines invoked by the calling
program and only optionally return values.

In fact, a single procedure can be used as a select procedure or an executable procedure,
but this is not recommended. A procedure should be written specifically to be used in a
SELECT statement (a select procedure) or to be used in an EXECUTE PROCEDURE statement
(an executable procedure).

During application development, create and test stored procedures in isql. Once a stored
procedure has been created, tested, and refined, it can be used in applications. For more
information on using stored procedures in applications, see the Embedded SQL Guide.

USING STORED PROCEDURES

DATA DEFINITION GUIDE 159

Using executable procedures in isql
An executable procedure is invoked with EXECUTE PROCEDURE. It can return at most one
row. To execute a stored procedure in isql, use the following syntax:

EXECUTE PROCEDUREname [(] [param [, param …]] [)];

The procedure name must be specified, and each param is an input parameter value (a
constant). All input parameters required by the procedure must be supplied.

IMPORTANT In isql, do not supply output parameters or use RETURNING_VALUES in the EXECUTE
PROCEDURE statement, even if the procedure returns values. isql automatically displays
output parameters.

To execute the procedure, DEPT_BUDGET, from isql, use:

EXECUTE PROCEDURE DEPT_BUDGET 110;

isql displays this output:

TOT

====================

1700000.00

Using select procedures in isql
A select procedure is used in place of a table or view in a SELECT statement and can return
a single row or multiple rows.

The advantages of select procedures over tables or views are:

� They can take input parameters that can affect the output.

� They can contain logic not available in normal queries or views.

� They can return rows from multiple tables using UNION.

The syntax of SELECT from a procedure is:

SELECT <col_list > from name ([param [, param …]])

WHERE <search_condition >

ORDER BY <order_list >;

The procedure name must be specified, and in isql each param is a constant passed to
the corresponding input parameter. All input parameters required by the procedure must
be supplied. The col_list is a comma-delimited list of output parameters returned by the
procedure, or * to select all rows.

CHAPTER 9 WORKING WITH STORED PROCEDURES

160 INTERBASE 6

The WHERE clause specifies a search_condition that selects a subset of rows to return.
The ORDER BY clause specifies how to order the rows returned. For more information on
SELECT, see the Language Reference.

The following code defines the procedure, GET_EMP_PROJ, which returns EMP_PROJ, the
project numbers assigned to an employee, when it is passed the employee number,
EMP_NO, as the input parameter.

SET TERM !! ;

CREATE PROCEDURE GET_EMP_PROJ (EMP_NO SMALLINT)

RETURNS (EMP_PROJ SMALLINT) AS

BEGIN

FOR SELECT PROJ_ID

FROM EMPLOYEE_PROJECT

WHERE EMP_NO = :EMP_NO

INTO :EMP_PROJ

DO

SUSPEND;

END !!

The following statement selects from GET_EMP_PROJ in isql:

SELECT * FROM GET_EMP_PROJ(24);

The output is:

PROJ_ID

=======

DGPII

GUIDE

The following select procedure, ORG_CHART, displays an organizational chart:

CREATE PROCEDURE ORG_CHART

RETURNS (HEAD_DEPT CHAR(25), DEPARTMENT CHAR(25),

MNGR_NAME CHAR(20), TITLE CHAR(5), EMP_CNT INTEGER)

AS

DECLARE VARIABLE MNGR_NO INTEGER;

DECLARE VARIABLE DNO CHAR(3);

BEGIN

FOR SELECT H.DEPARTMENT, D.DEPARTMENT, D.MNGR_NO, D.DEPT_NO

FROM DEPARTMENT D

LEFT OUTER JOIN DEPARTMENT H ON D.HEAD_DEPT = H.DEPT_NO

ORDER BY D.DEPT_NO

INTO :HEAD_DEPT, :DEPARTMENT, :MNGR_NO, :DNO

DO

USING STORED PROCEDURES

DATA DEFINITION GUIDE 161

BEGIN

IF (:MNGR_NO IS NULL) THEN

BEGIN

MNGR_NAME = '--TBH--';

TITLE = '';

END

ELSE

SELECT FULL_NAME, JOB_CODE

FROM EMPLOYEE

WHERE EMP_NO = :MNGR_NO

INTO :MNGR_NAME, :TITLE;

SELECT COUNT(EMP_NO)

FROM EMPLOYEE

WHERE DEPT_NO = :DNO

INTO :EMP_CNT;

SUSPEND;

END

END !!

ORG_CHART is invoked from isql as follows:

SELECT * FROM ORG_CHART;

For each department, the procedure displays the department name, the department’s
“head department” (managing department), the department manager’s name and title,
and the number of employees in the department.

HEAD_DEPT DEPARTMENT MNGR_NAME TITLE EMP_CNT

================ =============== ============= ===== ======

Corporate
Headquarters

Bender, Oliver H. CEO 2

Corporate
Headquarters

Sales and Marketing MacDonald, Mary S. VP 2

Sales and Marketing Pacific Rim
Headquarters

Baldwin, Janet Sales 2

Pacific Rim
Headquarters

Field Office: Japan Yamamoto, Takashi SRep 2

Pacific Rim
Headquarters

Field Office:
Singapore

—TBH— 0

CHAPTER 9 WORKING WITH STORED PROCEDURES

162 INTERBASE 6

ORG_CHART must be used as a select procedure to display the full organization. If called
with EXECUTE PROCEDURE, then the first time it encounters the SUSPEND statement, the
procedure terminates, returning the information for Corporate Headquarters only.

SELECT can specify columns to retrieve from a procedure. For example, if ORG_CHART is
invoked as follows:

SELECT DEPARTMENT FROM ORG_CHART;

then only the second column, DEPARTMENT, is displayed.

� Using WHERE and ORDER BY clauses
A SELECT from a stored procedure can contain WHERE and ORDER BY clauses, just as in a
SELECT from a table or view.

The WHERE clause limits the results returned by the procedure to rows matching the
search condition. For example, the following statement returns only those rows where
the HEAD_DEPT is Sales and Marketing:

SELECT * FROM ORG_CHART WHERE HEAD_DEPT = 'Sales and Marketing';

The stored procedure then returns only the matching rows, for example:

The ORDER BY clause can be used to order the results returned by the procedure. For
example, the following statement orders the results by EMP_CNT, the number of
employees in each department, in ascending order (the default):

SELECT * FROM ORG_CHART ORDER BY EMP_CNT;

� Selecting aggregates from procedures
In addition to selecting values from a procedure, you can use aggregate functions. For
example, to use ORG_CHART to display a count of the number of departments, use the
following statement:

SELECT COUNT(DEPARTMENT) FROM ORG_CHART;

The results are:

HEAD_DEPT DEPARTMENT MNGR_NAME TITLE EMP_CNT

================= ================ ============= ==== =====

Sales and Marketing Pacific Rim
Headquarters

Baldwin, Janet Sales 2

Sales and Marketing European Headquarters Reeves, Roger Sales 3

Sales and Marketing Field Office: East
Cost

Weston, K. J. SRep 2

USING STORED PROCEDURES

DATA DEFINITION GUIDE 163

COUNT

============

24

Similarly, to use ORG_CHART to display the maximum and average number of employees
in each department, use the following statement:

SELECT MAX(EMP_CNT), AVG(EMP_CNT) FROM ORG_CHART;

The results are:

MAX AVG

========== =========

5 2

If a procedure encounters an error or exception, the aggregate functions do not return
the correct values, since the procedure terminates before all rows are processed.

Viewing arrays with stored procedures
If a table contains columns defined as arrays, you cannot view the data in the column
with a simple SELECT statement, since only the array ID is stored in the table. Arrays can
be used to display array values, as long as the dimensions and datatype of the array
column are known in advance.

For example, in the employee database, the JOB table has a column named LANGUAGE_REQ
containing the languages required for the position. The column is defined as an array of
five VARCHAR(15).

In isql, if you perform a simple SELECT statement, such as:

SELECT JOB_CODE, JOB_GRADE, JOB_COUNTRY, LANGUAGE_REQ FROM JOB;

part of the results look like this:

JOB_CODE JOB_GRADE JOB_COUNTRY LANGUAGE_REQ

========== =========== ============== ==============

. . .

Sales 3 USA <null>

Sales 3 England 20:af

SRep 4 USA 20:b0

SRep 4 England 20:b2

SRep 4 Canada 20:b4

CHAPTER 9 WORKING WITH STORED PROCEDURES

164 INTERBASE 6

To view the contents of the LANGUAGE_REQ column, use a stored procedure, such as the
following:

SET TERM !! ;

CREATE PROCEDURE VIEW_LANGS

RETURNS (code VARCHAR(5), grade SMALLINT, cty VARCHAR(15),

lang VARCHAR(15))

AS

DECLARE VARIABLE i INTEGER;

BEGIN

FOR SELECT JOB_CODE, JOB_GRADE, JOB_COUNTRY

FROM JOB

WHERE LANGUAGE_REQ IS NOT NULL

INTO :code, :grade, :cty

DO

BEGIN

i = 1;

WHILE (i <= 5) DO

BEGIN

SELECT LANGUAGE_REQ[:i] FROM JOB

WHERE ((JOB_CODE = :code) AND (JOB_GRADE = :grade)

AND (JOB_COUNTRY = :cty)) INTO :lang;

i = i + 1;

SUSPEND;

END

END

END!!

SET TERM ; !!

This procedure, VIEW_LANGS, uses a FOR … SELECT loop to retrieve each row from JOB for
which LANGUAGE_REQ is not NULL. Then a WHILE loop retrieves each element of the
LANGUAGE_REQ array and returns the value to the calling application (in this case, isql).

For example, if this procedure is invoked with:

SELECT * FROM VIEW_LANGS;

the output is:

CODE GRADE CTY LANG

===== ===== ============ =========

Eng 3 Japan Japanese

Eng 3 Japan Mandarin

Eng 3 Japan English

Eng 3 Japan

EXCEPTIONS

DATA DEFINITION GUIDE 165

Eng 3 Japan

Eng 4 England English

Eng 4 England German

Eng 4 England French

. . .

This procedure can easily be modified to return only the language requirements for a
particular job, when passed JOB_CODE, JOB_GRADE, and JOB_COUNTRY as input
parameters.

Exceptions
An exception is a named error message that can be raised from a stored procedure.
Exceptions are created with CREATE EXCEPTION, modified with ALTER EXCEPTION, and
dropped with DROP EXCEPTION. A stored procedure raises an exception with EXCEPTION
name.

When raised, an exception returns an error message to the calling program and
terminates execution of the procedure that raised it, unless the exception is handled by
a WHEN statement.

IMPORTANT Like procedures, exceptions are created and stored in a database, where they can be
used by any procedure that needs them. Exceptions must be created and committed
before they can be raised.

For more information on raising and handling exceptions, see “Raising an exception in
a stored procedure” on page 167.

Creating exceptions
To create an exception, use the following CREATE EXCEPTION syntax:

CREATE EXCEPTIONname ' <message> ';

For example, the following statement creates an exception named
REASSIGN_SALES:

CREATE EXCEPTION REASSIGN_SALES 'Reassign the sales records

before deleting this employee.';

CHAPTER 9 WORKING WITH STORED PROCEDURES

166 INTERBASE 6

Altering exceptions
To change the message returned by an exception, use the following syntax:

ALTER EXCEPTIONname ' <message> ';

Only the creator of an exception can alter it. For example, the following statement
changes the text of the exception created in the previous section:

ALTER EXCEPTION REASSIGN_SALES 'Can’t delete employee--Reassign

Sales';

You can alter an exception even though a database object depends on it. If the exception
is raised by a trigger, you cannot drop the exception unless you first drop the trigger or
stored procedure. Use ALTER EXCEPTION instead.

Dropping exceptions
To delete an exception, use the following syntax:

DROP EXCEPTIONname;

For example, the following statement drops the exception, REASSIGN_SALES:

DROP EXCEPTION REASSIGN_SALES;

The following restrictions apply to dropping exceptions:

� Only the creator of an exception can drop it.

� Exceptions used in existing procedures and triggers cannot be dropped.

� Exceptions currently in use cannot be dropped.

Tip In isql, SHOW PROCEDURES displays a list of dependencies, the procedures, exceptions,
and tables which the stored procedure uses. SHOW PROCEDURE name displays the body
and header information for the named procedure. SHOW TRIGGERS table displays the
triggers defined for table. SHOW TRIGGER name displays the body and header
information for the named trigger.

HANDLING ERRORS

DATA DEFINITION GUIDE 167

Raising an exception in a stored procedure
To raise an exception in a stored procedure, use the following syntax:

EXCEPTION name;

where name is the name of an exception that already exists in the database.

When an exception is raised, it does the following:

� Terminates the procedure in which it was raised and undoes any actions performed
(directly or indirectly) by the procedure.

� Returns an error message to the calling application. In isql, the error message is displayed
on the screen.

Note If an exception is handled with a WHEN statement, it behaves differently. For more
information on exception handling, see “Handling exceptions” on page 168.

The following statements raise the exception, REASSIGN_SALES:

IF (any_sales > 0) THEN

EXCEPTION REASSIGN_SALES;

Handling errors
Procedures can handle three kinds of errors with a WHEN … DO statement:

� Exceptions raised by EXCEPTION statements in the current procedure, in a nested
procedure, or in a trigger fired as a result of actions by such a procedure.

� SQL errors reported in SQLCODE.

� InterBase errors reported in GDSCODE.

The WHEN ANY statement handles any of the three types of errors.

For more information about InterBase error codes and SQLCODE values, see the Language
Reference.

The syntax of the WHEN … DO statement is:

WHEN {<error > [, < error > …] | ANY}

DO <compound_statement>

<error > =

{EXCEPTION exception_name | SQLCODE number | GDSCODEerrcode }

CHAPTER 9 WORKING WITH STORED PROCEDURES

168 INTERBASE 6

IMPORTANT If used, WHEN must be the last statement in a BEGIN … END block. It should come after
SUSPEND, if present.

Handling exceptions
Instead of terminating when an exception occurs, a procedure can respond to and
perhaps correct the error condition by handling the exception. When an exception is
raised, it does the following:

� Seeks a WHEN statement that handles the exception. If one is not found, it terminates
execution of the BEGIN … END block containing the exception and undoes any actions
performed in the block.

� Backs out one level to the surrounding BEGIN … END block and seeks a WHEN statement
that handles the exception, and continues backing out levels until one is found. If no
WHEN statement is found, the procedure is terminated and all its actions are undone.

� Performs the ensuing statement or block of statements specified by the WHEN statement
that handles the exception.

� Returns program control to the block in the procedure following the WHEN statement.

Note An exception that is handled does not return an error message.

Handling SQL errors
Procedures can also handle error numbers returned in SQLCODE. After each SQL
statement executes, SQLCODE contains a status code indicating the success or failure of
the statement. SQLCODE can also contain a warning status, such as when there are no
more rows to retrieve in a FOR SELECT loop.

For example, if a procedure attempts to insert a duplicate value into a column defined as
a PRIMARY KEY, InterBase returns SQLCODE -803. This error can be handled in a procedure
with the following statement:

WHEN SQLCODE -803

DO

BEGIN

. . .

HANDLING ERRORS

DATA DEFINITION GUIDE 169

The following procedure includes a WHEN statement to handle SQLCODE -803 (attempt to
insert a duplicate value in a UNIQUE key column). If the first column in TABLE1 is a UNIQUE
key, and the value of parameter A is the same as one already in the table, then SQLCODE
-803 is generated, and the WHEN statement sets an error message returned by the
procedure.

SET TERM !!;

CREATE PROCEDURE NUMBERPROC (A INTEGER, B INTEGER)

RETURNS (E CHAR(60)) AS

BEGIN

BEGIN

INSERT INTO TABLE1 VALUES (:A, :B);

WHEN SQLCODE -803 DO

E = 'Error Attempting to Insert in TABLE1 - Duplicate Value.';

END;

END!!

SET TERM; !!

For more information about SQLCODE, see the Language Reference.

Handling InterBase errors
Procedures can also handle InterBase errors. For example, suppose a statement in a
procedure attempts to update a row already updated by another transaction, but not yet
committed. In this case, the procedure might receive an InterBase error LOCK_CONFLICT.
If the procedure retries its update, the other transaction might have rolled back its
changes and released its locks. By using a WHEN GDSCODE statement, the procedure can
handle lock conflict errors and retry its operation.

To handle InterBase error codes, use the following syntax:

WHEN GDSCODEerrcode DO <compound_statement> ;

For more information about InterBase error codes, see the Language Reference.

CHAPTER 9 WORKING WITH STORED PROCEDURES

170 INTERBASE 6

Examples of error behavior and handling
When a procedure encounters an error—either an SQLCODE error, GDSCODE error, or
user-defined exception—the statements since the last SUSPEND are undone.

SUSPEND should not be used in executable procedures. EXIT should be used to terminate
the procedure. If this recommendation is followed, then when an executable procedure
encounters an error, the entire procedure is undone. Since select procedures can have
multiple SUSPENDs, possibly inside a loop statement, only the actions since the last
SUSPEND are undone.

For example, here is a simple executable procedure that attempts to insert the same
values twice into the PROJECT table.

SET TERM !! ;

CREATE PROCEDURE NEW_PROJECT

(id CHAR(5), name VARCHAR(20), product VARCHAR(12))

RETURNS (result VARCHAR(80))

AS

BEGIN

INSERT INTO PROJECT (PROJ_ID, PROJ_NAME, PRODUCT)

VALUES (:id, :name, :product);

result = 'Values inserted OK.';

INSERT INTO PROJECT (PROJ_ID, PROJ_NAME, PRODUCT)

VALUES (:id, :name, :product);

result = 'Values Inserted Again.';

EXIT;

WHEN SQLCODE -803 DO

BEGIN

result = 'Could Not Insert Into Table - Duplicate Value';

EXIT;

END

END!!

SET TERM ; !!

This procedure can be invoked with a statement such as:

EXECUTE PROCEDURE NEW_PROJECT 'XXX', 'Project X', 'N/A';

The second INSERT generates an error (SQLCODE -803, “invalid insert—no two rows can
have duplicate values.”). The procedure returns the string, “Could Not Insert Into Table
- Duplicate Value,” as specified in the WHEN clause, and the entire procedure is undone.

HANDLING ERRORS

DATA DEFINITION GUIDE 171

The next example is written as a select procedure, and invoked with the SELECT statement
that follows it:

. . .

INSERT INTO PROJECT (PROJ_ID, PROJ_NAME, PRODUCT)

VALUES (:id, :name, :product);

result = 'Values inserted OK.';

SUSPEND;

INSERT INTO PROJECT (PROJ_ID, PROJ_NAME, PRODUCT)

VALUES (:id, :name, :product);

result = 'Values Inserted Again.';

SUSPEND;

WHEN SQLCODE -803 DO

BEGIN

result = 'Could Not Insert Into Table - Duplicate Value';

EXIT;

END

SELECT * FROM SIMPLE('XXX', 'Project X', 'N/A');

The first INSERT is performed, and SUSPEND returns the result string, “Values Inserted OK.”
The second INSERT generates the error because there have been no statements performed
since the last SUSPEND, and no statements are undone. The WHEN statement returns the
string, “Could Not Insert Into Table - Duplicate Value”, in addition to the previous result
string.

The select procedure successfully performs the insert, while the executable procedure
does not.

The next example is a more complex stored procedure that demonstrates SQLCODE error
handling and exception handling. It is based on the previous example of a select
procedure, and does the following:

� Accepts a project ID, name, and product type, and ensures that the ID is in all capitals,
and the product type is acceptable.

� Inserts the new project data into the PROJECT table, and returns a string confirming the
operation, or an error message saying the project is a duplicate.

� Uses a FOR … SELECT loop with a correlated subquery to get the first three employees not
assigned to any project and assign them to the new project using the ADD_EMP_PROJ
procedure.

� If the CEO’s employee number is selected, raises the exception, CEO, which is handled
with a WHEN statement that assigns the CEO’s administrative assistant (employee number
28) instead to the new project.

CHAPTER 9 WORKING WITH STORED PROCEDURES

172 INTERBASE 6

Note that the exception, CEO, is handled within the FOR … SELECT loop, so that only the
block containing the exception is undone, and the loop and procedure continue after the
exception is raised.

CREATE EXCEPTION CEO 'Can’t Assign CEO to Project.';

SET TERM !! ;

CREATE PROCEDURE NEW_PROJECT

(id CHAR(5), name VARCHAR(20), product VARCHAR(12))

RETURNS (result VARCHAR(30), num smallint)

AS

DECLARE VARIABLE emp_wo_proj smallint;

DECLARE VARIABLE i smallint;

BEGIN

id = UPPER(id); /* Project id must be in uppercase. */

INSERT INTO PROJECT (PROJ_ID, PROJ_NAME, PRODUCT)

VALUES (:id, :name, :product);

result = 'New Project Inserted OK.';

SUSPEND;

/* Add Employees to the new project */

i = 0;

result = 'Project Got Employee Number:';

FOR SELECT EMP_NO FROM EMPLOYEE

WHERE EMP_NO NOT IN (SELECT EMP_NO FROM EMPLOYEE_PROJECT)

INTO :emp_wo_proj

DO

BEGIN

IF (i < 3) THEN

BEGIN

IF (emp_wo_proj = 5) THEN

EXCEPTION CEO;

EXECUTE PROCEDURE ADD_EMP_PROJ :emp_wo_proj, :id;

num = emp_wo_proj;

SUSPEND;

END

ELSE

EXIT;

i = i + 1;

WHEN EXCEPTION CEO DO

BEGIN

EXECUTE PROCEDURE ADD_EMP_PROJ 28, :id;

num = 28;

SUSPEND;

HANDLING ERRORS

DATA DEFINITION GUIDE 173

END

END

/* Error Handling */

WHEN SQLCODE -625 DO

BEGIN

IF ((:product <> 'software') OR (:product <> 'hardware') OR

(:product <> 'other') OR (:product <> 'N/A')) THEN

result = 'Enter product: software, hardware, other, or N/A';

END

WHEN SQLCODE -803 DO

result = 'Could not insert into table - Duplicate Value';

END!!

SET TERM ; !!

This procedure can be called with a statement such as:

SELECT * FROM NEW_PROJECT('XYZ', 'Alpha project', 'software');

With results (in isql) such as:

RESULT NUM

=========================== ======

New Project Inserted OK. <null>

Project Got Employee Number: 28

Project Got Employee Number: 29

Project Got Employee Number: 36

CHAPTER 9 WORKING WITH STORED PROCEDURES

174 INTERBASE 6

DATA DEFINITION GUIDE 175

CHAPTER

10
Chapter 10Working with Triggers

This chapter covers the following topics:

� What triggers are, and the advantages of using them

� How to create, modify, and drop triggers

� How to use triggers

� How to raise exceptions in triggers

About triggers
A trigger is a self-contained routine associated with a table or view that automatically
performs an action when a row in the table or view is inserted, updated, or deleted.

A trigger is never called directly. Instead, when an application or user attempts to INSERT,
UPDATE, or DELETE a row in a table, any triggers associated with that table and operation
are automatically executed, or fired.

Triggers can make use of exceptions, named messages called for error handling. When
an exception is raised by a trigger, it returns an error message, terminates the trigger, and
undoes any changes made by the trigger, unless the exception is handled with a WHEN
statement in the trigger.

The advantages of using triggers are:

CHAPTER 10 WORKING WITH TRIGGERS

176 INTERBASE 6

� Automatic enforcement of data restrictions, to make sure users enter only valid values
into columns.

� Reduced application maintenance, since changes to a trigger are automatically reflected
in all applications that use the associated table without the need to recompile and relink.

� Automatic logging of changes to tables. An application can keep a running log of
changes with a trigger that fires whenever a table is modified.

� Automatic notification of changes to the database with event alerters in triggers.

Working with triggers
With isql, you can create, alter, and drop triggers and exceptions. Each of these operations
is explained in this chapter. There are two ways to create, alter, and drop triggers with isql:

� Interactively

� With an input file containing data definition statements

It is preferable to use data definition files, because it is easier to modify these files and
provide a record of the changes made to the database. For simple changes to existing
triggers or exceptions, the interactive interface can be convenient.

Using a data definition file
To create or alter a trigger through a data definition file, follow these steps:

1. Use a text editor to write the data definition file.

2. Save the file.

3. Process the file with isql. Use the command:

isql -input filename database_name

where filename is the name of the data definition file and database_name is the
name of the database used. Alternatively, from within isql, you can interactively
process the file using the command:

SQL> input filename ;

Note If you do not specify the database on the command line or interactively, the data
definition file must include a statement to create or open a database.

The data definition file may include:

CREATING TRIGGERS

DATA DEFINITION GUIDE 177

� Statements to create, alter, or drop triggers. The file can also include statements to create,
alter, or drop procedures and exceptions. Exceptions must be created and committed
before they can be referenced in procedures and triggers.

� Any other isql statements.

Creating triggers
A trigger is defined with the CREATE TRIGGER statement, which is composed of a header
and a body. The trigger header contains:

� A trigger name, unique within the database.

� A table name, identifying the table with which to associate the trigger.

� Statements that determine when the trigger fires.

The trigger body contains:

� An optional list of local variables and their datatypes.

� A block of statements in InterBase procedure and trigger language, bracketed by BEGIN
and END. These statements are performed when the trigger fires. A block can itself include
other blocks, so that there may be many levels of nesting.

IMPORTANT Because each statement in the trigger body must be terminated by a semicolon, you
must define a different symbol to terminate the trigger body itself. In isql, include a SET
TERM statement before CREATE TRIGGER to specify a terminator other than a semicolon.
After the body of the trigger, include another SET TERM to change the terminator back to
a semicolon.

CREATE TRIGGER syntax
The syntax of CREATE TRIGGER is:

CREATE TRIGGERname FOR {table | view }

[ACTIVE | INACTIVE]

{BEFORE | AFTER} {DELETE | INSERT | UPDATE}

[POSITION number]

AS <trigger_body >

<trigger_body > = [< variable_declaration_list >] < block >

<variable_declaration_list > =DECLARE VARIABLEvariable datatype ;

[DECLARE VARIABLE variable datatype ; …]

CHAPTER 10 WORKING WITH TRIGGERS

178 INTERBASE 6

<block > =

BEGIN

<compound_statement > [< compound_statement > …]

END

<compound_statement > = {< block > | statement ;}

Argument Description

name Name of the trigger. The name must be unique in the database.

table Name of the table or view that causes the trigger to fire when the
specified operation occurs on the table or view.

ACTIVE|INACTIVE Optional. Specifies trigger action at transaction end:

ACTIVE: (Default). Trigger takes effect.

INACTIVE: Trigger does not take effect.

BEFORE|AFTER Required. Specifies whether the trigger fires:

BEFORE: Before associated operation.

AFTER: After associated operation.

Associated operations are DELETE, INSERT, or UPDATE.

DELETE|INSERT | UPDATE Specifies the table operation that causes the trigger to fire.

POSITION number Specifies firing order for triggers before the same action or after the same
action. number must be an integer between 0 and 32,767, inclusive.
Lower-number triggers fire first. Default: 0 = first trigger to fire.

Triggers for a table need not be consecutive. Triggers on the same action
with the same position number will fire in alphabetic order by name.

DECLARE VARIABLE var
<datatype>

Declares local variables used only in the trigger. Each declaration must be
preceded by DECLARE VARIABLE and followed by a semicolon (;).

var: Local variable name, unique in the trigger.

<datatype>: The datatype of the local variable.

statement Any single statement in InterBase procedure and trigger language. Each
statement except BEGIN and END must be followed by a semicolon (;).

terminator Terminator defined by the SET TERM statement which signifies the end of
the trigger body. Used in isql only.

TABLE 10.1 Arguments of the CREATE TRIGGER statement

CREATING TRIGGERS

DATA DEFINITION GUIDE 179

InterBase procedure and trigger language
InterBase procedure and trigger language is a complete programming language for
stored procedures and triggers. It includes:

� SQL data manipulation statements: INSERT, UPDATE, DELETE, and singleton SELECT.

� SQL operators and expressions, including UDFs that are linked with the database server
and generators.

� Powerful extensions to SQL, including assignment statements, control-flow statements,
context variables, event-posting statements, exceptions, and error-handling statements.

Although stored procedures and triggers are used in entirely different ways and for
different purposes, they both use procedure and trigger language. Both triggers and
stored procedures may use any statements in procedure and trigger language, with some
exceptions:

� Context variables are unique to triggers.

� Input and output parameters, and the SUSPEND and EXIT statements which return values
are unique to stored procedures.

The following table summarizes the language extensions for triggers:

Statement Description

BEGIN … END Defines a block of statements that executes as one. The BEGIN
keyword starts the block; the END keyword terminates it.
Neither should be followed by a semicolon.

variable = expression Assignment statement which assigns the value of
expression to local variable, variable.

/* comment_text */ Programmer’s comment, where comment_text can be any
number of lines of text.

EXCEPTION exception_name Raises the named exception. An exception is a user-defined
error, which returns an error message to the calling application
unless handled by a WHEN statement.

EXECUTE PROCEDURE
proc_name [var [, var …]]
[RETURNING_VALUES
var [, var …]]

Executes stored procedure, proc_name, with the listed input
arguments, returning values in the listed output arguments.
Input and output arguments must be local variables.

TABLE 10.2 Procedure and trigger language extensions

CHAPTER 10 WORKING WITH TRIGGERS

180 INTERBASE 6

FOR select_statement
DO compound_statement

Repeats the statement or block following DO for every
qualifying row retrieved by select_statement.

select_statement: a normal SELECT statement, except the INTO
clause is required and must come last.

compound_statement Either a single statement in procedure and trigger language or
a block of statements bracketed by BEGIN and END.

IF (condition)
THEN compound_statement
[ELSE compound_statement]

Tests condition, and if it is TRUE, performs the statement or
block following THEN, otherwise performs the statement or
block following ELSE, if present.

condition: a Boolean expression (TRUE, FALSE, or UNKNOWN),
generally two expressions as operands of a comparison
operator.

NEW.column New context variable that indicates a new column value in an
INSERT or UPDATE operation.

OLD.column Old context variable that indicates a column value before an
UPDATE or DELETE operation.

POST_EVENT event_name Posts the event, event_name.

WHILE (condition)
DO compound_statement

While condition is TRUE, keep performing
compound_statement. First condition is tested, and if it is TRUE,
then compound_statement is performed. This sequence is
repeated until condition is no longer TRUE.

WHEN
{error [, error …]|ANY}
DO compound_statement

Error-handling statement. When one of the specified errors
occurs, performs compound_statement. WHEN statements, if
present, must come at the end of a block, just before END.

error: EXCEPTION exception_name, SQLCODE errcode or GDSCODE
number.

ANY: handles any errors.

Statement Description

TABLE 10.2 Procedure and trigger language extensions (continued)

CREATING TRIGGERS

DATA DEFINITION GUIDE 181

� Using SET TERM in isql
Because each statement in a trigger body must be terminated by a semicolon, you must
define a different symbol to terminate the trigger body itself. In isql, include a SET TERM
statement before CREATE TRIGGER to specify a terminator other than a semicolon. After
the body of the trigger, include another SET TERM to change the terminator back to a
semicolon.

The following example illustrates the use of SET TERM for a trigger. The terminator is
temporarily set to a double exclamation point (!!).

SET TERM !! ;

CREATE TRIGGER SIMPLE FOR EMPLOYEE

AFTER UPDATE AS

BEGIN

…

END !!

SET TERM ; !!

There must be a space after SET TERM. Each SET TERM is itself terminated with the current
terminator.

� Syntax errors in triggers
InterBase may generate errors during parsing if there is incorrect syntax in the CREATE
TRIGGER statement. Error messages look similar to this:

Statement failed, SQLCODE = -104

Dynamic SQL Error

-SQL error code = -104

-Token unknown - line 4, char 9

-tmp

The line numbers are counted from the beginning of the CREATE TRIGGER statement, not
from the beginning of the data definition file. Characters are counted from the left, and
the unknown token indicated will either be the source of the error or immediately to the
right of the source of the error. When in doubt, examine the entire line to determine the
source of the syntax error.

CHAPTER 10 WORKING WITH TRIGGERS

182 INTERBASE 6

The trigger header
Everything before the AS clause in the CREATE TRIGGER statement forms the trigger
header. The header must specify the name of the trigger and the name of the associated
table or view. The table or view must exist before it can be referenced in CREATE TRIGGER.

The trigger name must be unique among triggers in the database. Using the name of an
existing trigger or a system-supplied constraint name results in an error.

The remaining clauses in the trigger header determine when and how the trigger fires:

� The trigger status, ACTIVE or INACTIVE, determines whether a trigger is activated when the
specified operation occurs. ACTIVE is the default, meaning the trigger fires when the
operation occurs. Setting status to INACTIVE with ALTER TRIGGER is useful when
developing and testing applications and triggers.

� The trigger time indicator, BEFORE or AFTER, determines when the trigger fires relative to
the specified operation. BEFORE specifies that trigger actions are performed before the
operation. AFTER specifies that trigger actions are performed after the operation.

� The trigger statement indicator specifies the SQL operation that causes the trigger to fire:
INSERT, UPDATE, or DELETE. Exactly one indicator must be specified. To use the same
trigger for more than one operation, duplicate the trigger with another name and specify
a different operation.

� The optional sequence indicator, POSITION number, specifies the order in which the
trigger fires in relation to other triggers on the same table and event. number can be any
integer between zero and 32,767. The default is zero. Lower-numbered triggers fire first.
Multiple triggers can have the same position number; they will fire in random order.

The following example demonstrates how the POSITION clause determines trigger firing
order. Here are four headers of triggers for the ACCOUNTS table:

CREATE TRIGGER A FOR ACCOUNTS BEFORE UPDATE POSITION 5 AS …

CREATE TRIGGER B FOR ACCOUNTS BEFORE UPDATE POSITION 0 AS …

CREATE TRIGGER C FOR ACCOUNTS AFTER UPDATE POSITION 5 AS …

CREATE TRIGGER D FOR ACCOUNTS AFTER UPDATE POSITION 3 AS …

When this update takes place:

UPDATE ACCOUNTS SET C = 'canceled' WHERE C2 = 5;

The following sequence of events happens: trigger B fires, A fires, the update occurs,
trigger D fires, then C fires.

CREATING TRIGGERS

DATA DEFINITION GUIDE 183

The trigger body
Everything following the AS keyword in the CREATE TRIGGER statement forms the
procedure body. The body consists of an optional list of local variable declarations
followed by a block of statements.

A block is composed of statements in the InterBase procedure and trigger language,
bracketed by BEGIN and END. A block can itself include other blocks, so that there may
be many levels of nesting.

InterBase procedure and trigger language includes all standard InterBase SQL statements
except data definition and transaction statements, plus statements unique to procedure
and trigger language.

Statements unique to InterBase procedure and trigger language include:

� Assignment statements, to set values of local variables.

� Control-flow statements, such as IF … THEN, WHILE … DO, and FOR SELECT … DO, to
perform conditional or looping tasks.

� EXECUTE PROCEDURE statements to invoke stored procedures.

� Exception statements, to return error messages, and WHEN statements, to handle specific
error conditions.

� NEW and OLD context variables, to temporarily hold previous (old) column values and to
insert or update (new) values.

� Generators, to generate unique numeric values for use in expressions. Generators can be
used in procedures and applications as well as triggers, but they are particularly useful
in triggers for inserting unique column values. In read-only databases, generators can
return their current value but cannot increment.

Note All of these statements (except context variables) can be used in both triggers and
stored procedures. For a full description of these statements, see Chapter 9, “Working
with Stored Procedures.”

� NEW and OLD context variables
Triggers can use two context variables, OLD, and NEW. The OLD context variable refers to
the current or previous values in a row being updated or deleted. OLD is not used for
inserts. NEW refers to a new set of INSERT or UPDATE values for a row. NEW is not used for
deletes. Context variables are often used to compare the values of a column before and
after it is modified.

The syntax for context variables is as follows:

CHAPTER 10 WORKING WITH TRIGGERS

184 INTERBASE 6

NEW.column

OLD.column

where column is any column in the affected row. Context variables can be used anywhere
a regular variable can be used.

New values for a row can only be altered before actions. A trigger that fires after INSERT
and tries to assign a value to NEW.column will have no effect. The actual column values
are not altered until after the action, so triggers that reference values from their target
tables will not see a newly inserted or updated value unless they fire after UPDATE or
INSERT.

For example, the following trigger fires after the EMPLOYEE table is updated, and
compares an employee’s old and new salary. If there is a change in salary, the trigger
inserts an entry in the SALARY_HISTORY table.

SET TERM !! ;

CREATE TRIGGER SAVE_SALARY_CHANGE FOR EMPLOYEE

AFTER UPDATE AS

BEGIN

IF (old.salary <> new.salary) THEN

INSERT INTO SALARY_HISTORY (EMP_NO, CHANGE_DATE,

UPDATER_ID, OLD_SALARY, PERCENT_CHANGE)

VALUES (old.emp_no, 'now', USER, old.salary,

(new.salary - old.salary) * 100 / old.salary);

END !!

SET TERM ; !!

Note Context variables are never preceded by a colon, even in SQL statements.

� Using generators
In a read-write database, a generator is a database object that automatically increments
each time the special function, GEN_ID(), is called.

IMPORTANT Generators cannot be used in read-only databases.

GEN_ID() can be used in a statement anywhere that a variable can be used. Generators
are typically used to ensure that a number inserted into a column is unique, or in
sequential order. Generators can be used in procedures and applications as well as in
triggers, but they are particularly useful in triggers for inserting unique column values.

Use the CREATE GENERATOR statement the create a generator and SET GENERATOR to
initialize it. If not otherwise initialized, a generator starts with a value of one. For more
information about creating and initializing a generator, see CREATE GENERATOR and SET
GENERATOR in the Language Reference.

ALTERING TRIGGERS

DATA DEFINITION GUIDE 185

A generator must be created with CREATE GENERATOR before it can be called by GEN_ID().
The syntax for using GEN_ID() in a SQL statement is:

GEN_ID(genname, step)

genname must be the name of an existing generator, and step is the amount by which
the current value of the generator is incremented. step can be an integer or an expression
that evaluates to an integer.

The following trigger uses GEN_ID() to increment a new customer number before values
are inserted into the CUSTOMER table:

SET TERM !! ;

CREATE TRIGGER SET_CUST_NO FOR CUSTOMER

BEFORE INSERT AS

BEGIN

NEW.CUST_NO = GEN_ID(CUST_NO_GEN, 1);

END !!

SET TERM ; !!

Note This trigger must be defined to fire before the insert, since it assigns values to
NEW.CUST_NO.

Altering triggers
To update a trigger definition, use ALTER TRIGGER. A trigger can be altered only by its
creator.

ALTER TRIGGER can change:

� Only trigger header information, including the trigger activation status, when it performs
its actions, the event that fires the trigger, and the order in which the trigger fires
compared to other triggers.

� Only trigger body information, the trigger statements that follow the AS clause.

� Both trigger header and trigger body information. In this case, the new trigger definition
replaces the old trigger definition.

To alter a trigger defined automatically by a CHECK constraint on a table, use ALTER TABLE
to change the table definition. For more information on the ALTER TABLE statement, see
Chapter 6, “Working with Tables.”

The ALTER TRIGGER syntax is as follows:

ALTER TRIGGERname

[ACTIVE | INACTIVE]

CHAPTER 10 WORKING WITH TRIGGERS

186 INTERBASE 6

[{BEFORE | AFTER} {DELETE | INSERT | UPDATE}]

[POSITION number]

AS <trigger_body >;

The syntax of ALTER TRIGGER is the same as CREATE TRIGGER, except:

� The CREATE keyword is replaced by ALTER.

� FOR table is omitted. ALTER TRIGGER cannot be used to change the table with which the
trigger is associated.

� The statement need only include parameters that are to be altered in the existing trigger,
with certain exceptions listed in the following sections.

Altering a trigger header
When used to change only a trigger header, ALTER TRIGGER requires at least one altered
setting after the trigger name. Any setting omitted from ALTER TRIGGER remains
unchanged.

The following statement makes the trigger, SAVE_SALARY_CHANGE, inactive:

ALTER TRIGGER SAVE_SALARY_CHANGE INACTIVE;

If the time indicator (BEFORE or AFTER) is altered, then the operation (UPDATE, INSERT, or
DELETE) must also be specified. For example, the following statement reactivates the
trigger, VERIFY_FUNDS, and specifies that it fire before an UPDATE instead of after:

ALTER TRIGGER SAVE_SALARY_CHANGE

ACTIVE

BEFORE UPDATE;

Altering a trigger body
When a trigger body is altered, the new body definition replaces the old definition. When
used to change only a trigger body, ALTER TRIGGER need contain any header information
other than the trigger’s name.

To make changes to a trigger body:

1. Copy the original data definition file used to create the trigger. Alternatively,
use isql -extract to extract a trigger from the database to a file.

2. Edit the file, changing CREATE to ALTER, and delete all trigger header
information after the trigger name and before the AS keyword.

DROPPING TRIGGERS

DATA DEFINITION GUIDE 187

3. Change the trigger definition as desired. Retain whatever is still useful. The
trigger body must remain syntactically and semantically complete.

For example, the following ALTER statement modifies the previously introduced trigger,
SET_CUST_NO, to insert a row into the (assumed to be previously defined) table,
NEW_CUSTOMERS, for each new customer.

SET TERM !! ;

ALTER TRIGGER SET_CUST_NO

BEFORE INSERT AS

BEGIN

new.cust_no = GEN_ID(CUST_NO_GEN, 1);

INSERT INTO NEW_CUSTOMERS(new.cust_no, TODAY)

END !!

SET TERM ; !!

Dropping triggers
During database design and application development, a trigger may no longer be useful.
To permanently remove a trigger, use DROP TRIGGER.

The following restrictions apply to dropping triggers:

� Only the creator of a trigger can drop it.

� Triggers currently in use cannot be dropped.

To temporarily remove a trigger, use ALTER TRIGGER and specify INACTIVE in the header.

The DROP TRIGGER syntax is as follows:

DROP TRIGGERname;

The trigger name must be the name of an existing trigger. The following example drops
the trigger, SET_CUST_NO:

DROP TRIGGER SET_CUST_NO;

Note You cannot drop a trigger if it is in use by a CHECK constraint (a system-defined
trigger). Use ALTER TABLE to remove or modify the CHECK clause that defines the trigger.

Using triggers
Triggers are a powerful feature with a variety of uses. Among the ways that triggers can
be used are:

CHAPTER 10 WORKING WITH TRIGGERS

188 INTERBASE 6

� To make correlated updates. For example, to keep a log file of changes to a database or
table.

� To enforce data restrictions, so that only valid data is entered in tables.

� Automatic transformation of data. For example, to automatically convert text input to
uppercase.

� To notify applications of changes in the database using event alerters.

� To perform cascading referential integrity updates.

Triggers are stored as part of a database, like stored procedures and exceptions. Once
defined to be ACTIVE, they remain active until deactivated with ALTER TRIGGER or removed
from the database with DROP TRIGGER.

A trigger is never explicitly called. Rather, an active trigger automatically fires when the
specified action occurs on the specified table.

IMPORTANT If a trigger performs an action that causes it to fire again—or fires another trigger that
performs an action that causes it to fire—an infinite loop results. For this reason, it is
important to ensure that a trigger’s actions never cause the trigger to fire, even
indirectly. For example, an endless loop will occur if a trigger fires on INSERT to a table
and then performs an INSERT into the same table.

Triggers and transactions
Triggers operate within the context of the transaction in the program where they are
fired. Triggers are considered part of the calling program’s current unit of work.

If triggers are fired in a transaction, and the transaction is rolled back, then any actions
performed by the triggers are also rolled back.

Triggers and security
Triggers can be granted privileges on tables, just as users or procedures can be granted
privileges. Use the GRANT statement, but instead of using TO username, use TO TRIGGER
trigger_name. Triggers’ privileges can be revoked similarly using REVOKE. For more
information about GRANT and REVOKE, see Chapter 12, “Planning Security.”

When a user performs an action that fires a trigger, the trigger will have privileges to
perform its actions if:

� The trigger has privileges for the action.

USING TRIGGERS

DATA DEFINITION GUIDE 189

� The user has privileges for the action.

So, for example, if a user performs an UPDATE of table A, which fires a trigger, and the
trigger performs an INSERT on table B, the INSERT will occur if the user has INSERT
privileges on the table or the trigger has insert privileges on the table.

If there are insufficient privileges for a trigger to perform its actions, InterBase will set
the appropriate SQLCODE error number. The trigger can handle this error with a WHEN
clause. If it does not handle the error, an error message will be returned to the
application, and the actions of the trigger and the statement which fired it will be undone.

Triggers as event alerters
Triggers can be used to post events when a specific change to the database occurs. For
example, the following trigger, POST_NEW_ORDER, posts an event named “NEW_ORDER”
whenever a new record is inserted in the SALES table:

SET TERM !! ;

CREATE TRIGGER POST_NEW_ORDER FOR SALES

AFTER INSERT AS

BEGIN

POST_EVENT 'NEW_ORDER';

END !!

SET TERM ; !!

In general, a trigger can use a variable for the event name:

POST_EVENT :EVENT_NAME;

The parameter EVENT_NAME is declared as a string variable, the statement could post
different events, depending on the value of the string variable, EVENT_NAME. Then, for
example, an application can wait for the event to occur, if the event has been declared
with EVENT INIT and then instructed to wait for it with EVENT WAIT:

EXEC SQL

EVENT INIT ORDER_WAIT EMPDB ('NEW_ORDER');

EXEC SQL

EVENT WAIT ORDER_WAIT;

For more information on event alerters, see the Embedded SQL Guide.

CHAPTER 10 WORKING WITH TRIGGERS

190 INTERBASE 6

Updating views with triggers
Views that are based on joins—including reflexive joins—and on aggregates cannot be
updated directly. You can, however, write triggers that will perform the correct writes to
the base tables when a DELETE, UPDATE, or INSERT is performed on the view. This
InterBase feature turns non-updatable views into updatable views.

Tip You can specify nondefault behavior for updatable views, as well. InterBase does not
perform writethroughs on any view that has one or more triggers defined on it. This
means that you can have complete control of what happens to any base table when
users modify a view based on it.

For more information about updating and read-only views, see “Types of views:
read-only and updatable” on page 131.

The following example creates two tables, creates a view that is a join of the two tables,
and then creates three triggers—one each for DELETE, UPDATE, and INSERT—that will pass
all updates on the view through to the underlying base tables.

CREATE TABLE Table1 (

ColA INTEGER NOT NULL,

ColB VARCHAR(20),

CONSTRAINT pk_table PRIMARY KEY(ColA)

);

CREATE TABLE Table2 (

ColA INTEGER NOT NULL,

ColC VARCHAR(20),

CONSTRAINT fk_table2 FOREIGN KEY REFERENCES Table1(ColA)

);

CREATE VIEW TableView AS

SELECT Table1.ColA, Table1.ColB, Table2.ColC

FROM Table1, Table2

WHERE Table1.ColA = Table2.ColA;

CREATE TRIGGER TableView_Delete FOR TableView BEFORE DELETE AS

BEGIN

DELETE FROM Table1

WHERE ColA = OLD.ColA;

DELETE FROM Table2

WHERE ColA = OLD.ColA;

END;

EXCEPTIONS

DATA DEFINITION GUIDE 191

CREATE TRIGGER TableView_Update FOR TableView BEFORE UPDATE AS

BEGIN

UPDATE Table1

SET ColB = NEW.ColB

WHERE ColA = OLD.ColA;

UPDATE Table2

SET ColC = NEW.ColC

WHERE ColA = OLD.ColA;

END;

CREATE TRIGGER TableView_Insert FOR TableView BEFORE INSERT AS

BEGIN

INSERT INTO Table1 values (NEW.ColA,NEW.ColB);

INSERT INTO Table2 values (NEW.ColA,NEW.ColC);

END;

Exceptions
An exception is a named error message that can be raised from a trigger or a stored
procedure. Exceptions are created with CREATE EXCEPTION, modified with ALTER
EXCEPTION, and removed from the database with DROP EXCEPTION. For more information
about these statements, see Chapter 9, “Working with Stored Procedures.”

When raised in a trigger, an exception returns an error message to the calling program
and terminates the trigger, unless the exception is handled by a WHEN statement in the
trigger. For more information on error handling with WHEN, see Chapter 9, “Working
with Stored Procedures.”

For example, a trigger that fires when the EMPLOYEE table is updated might compare the
employee’s old salary and new salary, and raise an exception if the salary increase
exceeds 50%. The exception could return an message such as:

New salary exceeds old by more than 50%. Cannot update record.

IMPORTANT Like procedures and triggers, exceptions are created and stored in a database, where
they can be used by any procedure or trigger in the database. Exceptions must be
created and committed before they can be used in triggers.

CHAPTER 10 WORKING WITH TRIGGERS

192 INTERBASE 6

Raising an exception in a trigger
To raise an existing exception in a trigger, use the following syntax:

EXCEPTION name;

where name is the name of an exception that already exists in the database. Raising an
exception:

� Terminates the trigger, undoing any changes caused (directly or indirectly) by the trigger.

� Returns the exception message to the application which performed the action that fired
the trigger. If an isql command fired the trigger, the error message is displayed on the
screen.

Note If an exception is handled with a WHEN statement, it will behave differently. For
more information on exception handling, see Chapter 9, “Working with
Stored Procedures.”

For example, suppose an exception is created as follows:

CREATE EXCEPTION RAISE_TOO_HIGH 'New salary exceeds old by

more than 50%. Cannot update record.';

The trigger, SAVE_SALARY_CHANGE, might raise the exception as follows:

SET TERM !! ;

CREATE TRIGGER SAVE_SALARY_CHANGE FOR EMPLOYEE

AFTER UPDATE AS

DECLARE VARIABLE PCNT_RAISE;

BEGIN

PCNT_RAISE = (NEW.SALARY - OLD.SALARY) * 100 / OLD.SALARY;

IF (OLD.SALARY <> NEW.SALARY)

THEN

IF (PCNT_RAISE > 50)

THEN EXCEPTION RAISE_TOO_HIGH;

ELSE

BEGIN

INSERT INTO SALARY_HISTORY (EMP_NO, CHANGE_DATE,

UPDATER_ID, OLD_SALARY, PERCENT_CHANGE)

VALUES (OLD.EMP_NO, 'NOW', USER, OLD.SALARY,

PCNT_RAISE);

END

END !!

SET TERM ; !!

EXCEPTIONS

DATA DEFINITION GUIDE 193

Error handling in triggers
Errors and exceptions that occur in triggers may be handled using the WHEN statement.
If an exception is handled with WHEN, the exception does not return a message to the
application and does not necessarily terminate the trigger.

Error handling in triggers works the same as for stored procedures: the actions performed
in the blocks up to the error-handling (WHEN) statement are undone and the statements
specified by the WHEN statement are performed.

For more information on error handling with WHEN, see Chapter 9, “Working with
Stored Procedures.”

CHAPTER 10 WORKING WITH TRIGGERS

194 INTERBASE 6

DATA DEFINITION GUIDE 195

CHAPTER

11
Chapter 11Working with Generators

This chapter covers the following topics:

� What a generator is

� How to create, modify, and drop generators

� Using generators

About generators
A generator is a mechanism that creates a unique, sequential number that is
automatically inserted into a column in a read-write database when SQL data
manipulation operations such as INSERT or UPDATE occur. Generators are typically used
to produce unique values that can be inserted into a column that is used as a PRIMARY
KEY. For example, a programmer writing an application to log and track invoices may
want to ensure that each invoice number entered into the database is unique. The
programmer can use a generator to create the invoice numbers automatically, rather than
writing specific application code to accomplish this task.

Any number of generators can be defined for a database, as long as each generator has
a unique name. A generator is global to the database where it is declared. Any transaction
that activates the generator can use or update the current sequence number. InterBase
will not assign duplicate generator values across transactions.

CHAPTER 11 WORKING WITH GENERATORS

196 INTERBASE 6

Creating generators
To create a unique number generator in the database, use the CREATE GENERATOR
statement. CREATE GENERATOR declares a generator to the database and sets its starting
value to zero (the default). If you want to set the starting value for the generator to a
number other than zero, use SET GENERATOR to specify the new value.

The syntax for CREATE GENERATOR is:

CREATE GENERATORname;

The following statement creates the generator, EMPNO_GEN:

CREATE GENERATOR EMPNO_GEN;

Note Once defined, a generator cannot be deleted.

Setting or resetting generator values
SET GENERATOR sets a starting value for a newly created generator, or resets the value of
an existing generator. The new value for the generator, int, can be an integer from –264
to 264– 1. When the GEN_ID() function is called, that value is int plus the increment
specified in the GEN_ID() step parameter.

The syntax for SET GENERATOR is:

SET GENERATOR NAME TO int;

The following statement sets a generator value to 1,000:

SET GENERATOR CUST_NO_GEN TO 1000;

IMPORTANT Don’t reset a generator unless you are certain that duplicate numbers will not occur. For
example, a generators are often used to assign a number to a column that has PRIMARY
KEY or UNIQUE integrity constraints. If you reset such a generator so that it generates
duplicates of existing column values, all subsequent insertions and updates fail with a
“Duplicate key” error message.

USING GENERATORS

DATA DEFINITION GUIDE 197

Using generators
After creating the generator, the data definition statements that make the specific number
generator known to the database have been defined; no numbers have been generated
yet. To invoke the number generator, you must call the InterBase GEN_ID() function.
GEN_ID() takes two arguments: the name of the generator to call, which must already be
defined for the database, and a step value, indicating the amount by which the current
value should be incremented (or decremented, if the value is negative). GEN_ID() can be
called from within a trigger, a stored procedure, or an application whenever an INSERT,
UPDATE, or DELETE operation occurs.

The syntax for GEN_ID() is:

GEN_ID(genname, step);

GEN_ID() can be called directly from within an application or stored procedure using
INSERT, UPDATE, or DELETE statements. For example, the following statement uses
GEN_ID() to call the generator G to increment a purchase order number in the SALES table
by one:

INSERT INTO SALES (PO_NUMBER) VALUES (GEN_ID(G,1));

A number is generated by the following sequence of events:

1. The generator is created and stored in the database.

2. A trigger, stored procedure, or application references the generator with a call
to GEN_ID().

3. A generator returns a value when a trigger fires, or when a stored procedure
or application executes. It is up to the trigger, stored procedure, or
application to use the value. For example, a trigger can insert the value into
a column.s

IMPORTANT Generators return a 64-bit value. You should define the column that holds the generated
value as an ISC_INT64 variable (DECIMAL or NUMERIC datatype).

For more information on using generators in triggers, see Chapter 10, “Working with
Triggers.” For more information on using generators in stored procedures, see Chapter
9, “Working with Stored Procedures.”

To stop inserting a generated number in a database column, delete or modify the trigger,
stored procedure, or application so that it no longer invokes GEN_ID().

Note There is no “drop generator” statement. To remove a generator, delete it from the
system table. For example:

DELETE FROM RDB$GENERATORS WHERE RDB$GENERATORS_NAME = ‘EMP_NO’;

CHAPTER 11 WORKING WITH GENERATORS

198 INTERBASE 6

DATA DEFINITION GUIDE 199

CHAPTER

12
Chapter 12Planning Security

This chapter discusses the following topics:

� SQL access privileges

� Granting access to a table

� Granting privileges to execute stored procedures

� Granting access to views

� Revoking access to tables and views

� Using views to restrict data access

� Additional security measures

Overview of SQL access privileges
SQL security is controlled at the table level with access privileges, a list of operations that
a user is allowed to perform on a given table or view. The GRANT statement assigns access
privileges for a table or view to specified users, to a role, or to objects such as stored
procedures or triggers. GRANT can also enable users or stored procedures to execute
stored procedures through the EXECUTE privilege and can grant roles to users. Use REVOKE
to remove privileges assigned through GRANT.

GRANT can be used in the following ways:

CHAPTER 12 PLANNING SECURITY

200 INTERBASE 6

� Grant SELECT, INSERT, UPDATE, DELETE, and REFERENCES privileges for a table to users,
triggers, stored procedures, or views (optionally WITH GRANT OPTION)

� Grant SELECT, INSERT, UPDATE, and DELETE privileges for a view to users, triggers, stored
procedures, or views (optionally WITH GRANT OPTION)

� Grant SELECT, INSERT, UPDATE, DELETE, and REFERENCES privileges for a table to a role

� Grant SELECT, INSERT, UPDATE, and DELETE privileges for a view to a role

� Grant a role to users (optionally WITH ADMIN OPTION)

� Grant EXECUTE permission on a stored procedure to users, triggers, stored procedures, or
views (optionally WITH GRANT OPTION)

Default security and access
All tables and stored procedures are secured against unauthorized access when they are
created. Initially, only a table’s creator, its owner, has access to a table, and only its owner
can use GRANT to assign privileges to other users or to procedures. Only a procedure’s
creator, its owner, can execute or call the procedure, and only its owner can assign
EXECUTE privilege to other users or to other procedures.

InterBase also supports a SYSDBA user who has access to all database objects;
furthermore, on platforms that support the concept of a superuser, or user with root or
locksmith privileges, such a user also has access to all database objects.

OVERVIEW OF SQL ACCESS PRIVILEGES

DATA DEFINITION GUIDE 201

Privileges available
The following table lists the SQL access privileges that can be granted and revoked:

The ALL keyword provides a mechanism for assigning SELECT, DELETE, INSERT, UPDATE,
and REFERENCES privileges using a single keyword. ALL does not grant a role or the
EXECUTE privilege. SELECT, DELETE, INSERT, UPDATE, and REFERENCES privileges can also be
granted or revoked singly or in combination.

Note Statements that grant or revoke either the EXECUTE privilege or a role cannot grant
or revoke other privileges.

SQL ROLES
InterBase 6 implements features for assigning SQL privileges to groups of users, fully
supporting SQL group-level security as described in the ISO-ANSI Working Draft for
Database Language SQL sections 11.54. role definition, 11.53. GRANT statement, 11.58.
REVOKE statement, and 11.57. DROP ROLE statement. It partially supports section 11.55
GRANT ROLE and 11.56 REVOKE ROLE.

Note These features replace the Security Classes feature in past versions of InterBase. In
the past, group privileges could be granted only through the InterBase-proprietary GDML
language. In Version 5, new SQL features have been added to assist in migrating InterBase
users from GDML to SQL.

Privilege Access

ALL Select, insert, update, delete data, and reference a primary key from a foreign key

SELECT Read data

INSERT Write new data

UPDATE Modify existing data

DELETE Delete data

EXECUTE Execute or call a stored procedure

REFERENCES Reference a primary key with a foreign key

role All privileges assigned to the role

TABLE 12.1 SQL access privileges

CHAPTER 12 PLANNING SECURITY

202 INTERBASE 6

Using roles

Implementing roles is a four-step process.

1. Create a role using the CREATE ROLE statement.

2. Assign privileges to the role using GRANT privilege TO rolename.

3. Grant the role to users using GRANT rolename TO user.

4. Specify the role when attaching to a database.

These steps are described in detail in this chapter. In addition, the CONNECT, CREATE ROLE,
GRANT, and REVOKE statements are described in the Language Reference.

Granting privileges
You can grant access privileges on an entire table or view or to only certain columns of
the table or view. This section discusses the basic operation of granting privileges.

� Granting multiple privileges at one time, or granting privileges to groups of users is
discussed in “Multiple privileges and multiple grantees” on page 205.

� “Using roles to grant privileges” on page 207 discusses both how to grant privileges to
roles and how to grant roles to users.

� You can grant access privileges to views, but there are limitations. See “Granting access
to views” on page 211.

� The power to grant GRANT authority is discussed in “Granting users the right to grant
privileges” on page 209.

� Granting EXECUTE privileges on stored procedures is discussed in “Granting privileges
to execute stored procedures” on page 211.

Granting privileges to a whole table
Use GRANT to give a user or object privileges to a table, view, or role. At a minimum,
GRANT requires the following parameters:

� An access privilege

� The table to which access is granted

� The name of a user to whom the privilege is granted

GRANTING PRIVILEGES

DATA DEFINITION GUIDE 203

The access privileges can be one or more of SELECT, INSERT, UPDATE, DELETE, REFERENCE.
The privilege granted can also be a role to which one or more privileges have been
assigned.

The user name is typically a user is the InterBase security database, isc4.gdb, but on UNIX
systems can also be a user who is in /etc/password on both the server and client machines.
In addition, you can grant privileges to a stored procedure, trigger, or role.

The syntax for granting privileges to a table is:

GRANT{

<privileges > ON [TABLE] { tablename | viewname }

TO {<object > | <userlist > | GROUP UNIX_group }

| < role_granted> TO {PUBLIC | < role_grantee_list> }};

<privileges > = {ALL [PRIVILEGES] | < privilege_list >}

<privilege_list > = {

SELECT

| DELETE

| INSERT

| UPDATE [(col [, col …])]

| REFERENCES [(col [, col …])]

[, < privilege_list > …]}}

<object> = {

PROCEDUREprocname

| TRIGGER trigname

| VIEW viewname

| PUBLIC

[, <object> …]}

<userlist> = {

[USER] username

| rolename

| UNIX_user }

[, <userlist > …]

[WITH GRANT OPTION]

<role_granted> = rolename [, rolename …]

<role_grantee_list> = [USER] username [, [USER] username …]

[WITH ADMIN OPTION]

Notice that this syntax includes the provisions for restricting UPDATE or REFERENCES to
certain columns, discussed on the next section, “Granting access to columns in a table”

CHAPTER 12 PLANNING SECURITY

204 INTERBASE 6

The following statement grants SELECT privilege for the DEPARTMENTS table to a user, EMIL:

GRANT SELECT ON DEPARTMENTS TO EMIL;

The next example grants REFERENCES privileges on DEPARTMENTS to EMIL, permitting EMIL
to create a foreign key that references the primary key of the DEPARTMENTS table, even
though he doesn’t own that table:

GRANT REFERENCES ON DEPARTMENTS(DEPT_NO) TO EMIL;

Tip Views offer a way to further restrict access to tables, by restricting either the columns or
the rows that are visible to the user. See Chapter 8, “Working with Views” for more
information.

Granting access to columns in a table
In addition to assigning access rights for an entire table, GRANT can assign UPDATE or
REFERENCES privileges for certain columns of a table or view. To specify the columns,
place the comma-separated list of columns in parentheses following the privileges to be
granted in the GRANT statement.

The following statement assigns UPDATE access to all users for the CONTACT and PHONE
columns in the CUSTOMERS table:

GRANT UPDATE (CONTACT, PHONE) ON CUSTOMERS TO PUBLIC;

You can add to the rights already assigned to users at the table level, but you cannot
subtract from them. To restrict user access to a table, use the REVOKE statement.

Granting privileges to a stored procedure or trigger
A stored procedure, view, or trigger sometimes needs privileges to access a table or view
that has a different owner. To grant privileges to a stored procedure, put the PROCEDURE
keyword before the procedure name. Similarly, to grant privileges to a trigger or view, put
the TRIGGER or VIEW keyword before the object name.

IMPORTANT When a trigger, stored procedure or view needs to access a table or view, it is sufficient
for either the accessing object or the user who is executing it to have the necessary
permissions.

The following statement grants the INSERT privilege for the ACCOUNTS table to the
procedure, MONEY_TRANSFER:

GRANT INSERT ON ACCOUNTS TO PROCEDURE MONEY_TRANSFER;

MULTIPLE PRIVILEGES AND MULTIPLE GRANTEES

DATA DEFINITION GUIDE 205

Tip As a security measure, privileges to tables can be granted to a procedure instead of to
individual users. If a user has EXECUTE privilege on a procedure that accesses a table,
then the user does not need privileges to the table.

Multiple privileges and multiple grantees
This section discusses ways to grant several privileges at one time, and ways to grant one
or more privileges to multiple users or objects.

Granting multiple privileges
To give a user several privileges on a table, separate the granted privileges with commas
in the GRANT statement. For example, the following statement assigns INSERT and UPDATE
privileges for the DEPARTMENTS table to a user, LI:

GRANT INSERT, UPDATE ON DEPARTMENTS TO LI;

To grant a set of privileges to a procedure, place the PROCEDURE keyword before the
procedure name. Similarly, to grant privileges to a trigger or view, precede the object
name with the TRIGGER or VIEW keyword.

The following statement assigns INSERT and UPDATE privileges for the ACCOUNTS table to
the MONEY_TRANSFER procedure:

GRANT INSERT, UPDATE ON ACCOUNTS TO PROCEDURE MONEY_TRANSFER;

The GRANT statement can assign any combination of SELECT, DELETE, INSERT, UPDATE, and
REFERENCES privileges. EXECUTE privileges must be assigned in a separate statement.

Note REFERENCES privileges cannot be assigned for views.

Granting all privileges
The ALL privilege combines the SELECT, DELETE, INSERT, UPDATE, and REFERENCES privileges
for a table in a single expression. It is a shorthand way to assign that group of privileges
to a user or procedure. For example, the following statement grants all access privileges
for the DEPARTMENTS table to a user, SUSAN:

GRANT ALL ON DEPARTMENTS TO SUSAN;

SUSAN can now perform SELECT, DELETE, INSERT, UPDATE, and REFERENCES operations on
the DEPARTMENTS table.

CHAPTER 12 PLANNING SECURITY

206 INTERBASE 6

Procedures can be assigned ALL privileges. When a procedure is assigned privileges, the
PROCEDURE keyword must precede its name. For example, the following statement grants
all privileges for the ACCOUNTS table to the procedure, MONEY_TRANSFER:

GRANT ALL ON ACCOUNTS TO PROCEDURE MONEY_TRANSFER;

Granting privileges to multiple users
There are a number of techniques available for granting privileges to multiple users. You
can grant the privileges to a list of users, to a UNIX group, or to all users (PUBLIC). In
addition, you can assign privileges to a role, which you then assign to a user list, a UNIX
group, or to PUBLIC.

� Granting privileges to a list of users
To assign the same access privileges to a number of users at the same time, provide a
comma-separated list of users in place of the single user name. For example, the
following statement gives INSERT and UPDATE privileges for the DEPARTMENTS table to
users FRANCIS, BEATRICE, and HELGA:

GRANT INSERT, UPDATE ON DEPARTMENTS TO FRANCIS, BEATRICE, HELGA;

� Granting privileges to a UNIX group
OS-level account names are implicit in InterBase security on UNIX. A client running as a
UNIX user adopts that user identity in the database, even if the account is not defined in
the InterBase security database (isc4.gdb). Now OS-level groups share this behavior, and
database administrators can assign SQL privileges to UNIX groups through SQL
GRANT/REVOKE statements. This allows any OS-level account that is a member of the
group to inherit the privileges that have been given to the group. For example:

GRANT UPDATE ON table1 TO GROUPgroup_name ;

where group_name is a UNIX-level group defined in /etc/group.

Note Integration of UNIX groups with database security is not an SQL standard feature.

� Granting privileges to all users
To assign the same access privileges for a table to all users, use the PUBLIC keyword rather
than listing users individually in the GRANT statement.

The following statement grants SELECT, INSERT, and UPDATE privileges on the
DEPARTMENTS table to all users:

GRANT SELECT, INSERT, UPDATE ON DEPARTMENTS TO PUBLIC;

USING ROLES TO GRANT PRIVILEGES

DATA DEFINITION GUIDE 207

IMPORTANT PUBLIC grants privileges only to users, not to stored procedures, triggers, roles, or views.
Privileges granted to users with PUBLIC can only be revoked from PUBLIC.

Granting privileges to a list of procedures
To assign privileges to a several procedures at once, provide a comma-separated list of
procedures following the word PROCEDURE in the GRANT statement.

The following statement gives INSERT and UPDATE privileges for the DEPARTMENTS table to
the procedures, ACCT_MAINT, and MONEY_TRANSFER:

GRANT INSERT, UPDATE ON DEPARTMENTS TO PROCEDURE ACCT_MAINT,

MONEY_TRANSFER;

Using roles to grant privileges
In InterBase 6, you can assign privileges through the use of ROLEs. Acquiring privileges
through a role is a four-step process.

1. Create a role using the CREATE ROLE statement.

CREATE ROLErolename;

2. Assign one or more privileges to that role using GRANT.

GRANTprivilegelist TO rolename;

3. Use the GRANT statement once again to grant the role to one or more users.

GRANTrolename ON table TO userlist;

The role can be granted WITH ADMIN OPTION, which allows users to grant the role to
others, just as the WITH GRANT OPTION allows users to grant privileges to others.

4. At connection time, specify the role whose privileges you want to acquire for
that connection.

CONNECT 'database ' USER ' username ' PASSWORD 'password '

ROLE 'rolename ';

Use REVOKE to remove privileges that have been granted to a role or to remove roles that
have been granted to users.

See the Language Reference for more information on CONNECT, CREATE ROLE, GRANT, and
REVOKE.

CHAPTER 12 PLANNING SECURITY

208 INTERBASE 6

Granting privileges to a role
Once a role has been defined, you can grant privileges to that role, just as you would to
a user.

The syntax is as follows:

GRANT <privileges > ON [TABLE] { tablename | viewname }

TO rolename ;

<privileges > = {ALL [PRIVILEGES] | < privilege_list >}

<privilege_list > = {

SELECT

| DELETE

| INSERT

| UPDATE [(col [, col …])]

| REFERENCES [(col [, col …])]

[, < privilege_list > …]}}

See the following section “Granting a role to users” for an example of creating a role,
granting privileges to it, and then granting the role to users.

Granting a role to users
When a role has been defined and has been granted privileges, you can grant that role
to one or more users, who then acquire the privileges that have been assigned to the role.

To permit users to grant the role to others, add WITH ADMIN OPTION to the GRANT
statement when you grant the role to the users.

The syntax is as follows:

GRANT {rolename [, rolename …]} TO {PUBLIC

| {[USER] username [, [USER] username …]} }[WITH ADMIN OPTION];

The following example creates the DOITALL role, grants ALL privileges on DEPARTMENTS to
this role, and grants the DOITALL role to RENEE, who then has SELECT, DELETE, INSERT,
UPDATE, and REFERENCES privileges on DEPARTMENTS.

CREATE ROLE DOITALL;

GRANT ALL ON DEPARTMENTS TO DOITALL;

GRANT DOITALL TO RENEE;

GRANTING USERS THE RIGHT TO GRANT PRIVILEGES

DATA DEFINITION GUIDE 209

Granting users the right to grant privileges
Initially, only the owner of a table or view can grant access privileges on the object to
other users. The WITH GRANT OPTION clause transfers the right to grant privileges to other
users.

To assign grant authority to another user, add the WITH GRANT OPTION clause to the end
of a GRANT statement.

The following statement assigns SELECT access to user EMIL and allows EMIL to grant
SELECT access to other users:

GRANT SELECT ON DEPARTMENTS TO EMIL WITH GRANT OPTION;

Note You cannot assign the WITH GRANT OPTION to a stored procedure.

WITH GRANT OPTION clauses are cumulative, even if issued by different users. For
example, EMIL can be given grant authority for SELECT by one user, and grant authority
for INSERT by another user. For more information about cumulative privileges, see “Grant
authority implications” on page 210.

Grant authority restrictions
There are only three conditions under which a user can grant access privileges (SELECT,
DELETE, INSERT, UPDATE, and REFERENCES) for tables to other users or objects:

� Users can grant privileges to any table or view that they own.

� Users can grant any privileges on another owner’s table or view when they have been
assigned those privileges WITH GRANT OPTION.

� Users can grant privileges that they have acquired by being granted a role WITH ADMIN
OPTION.

For example, in an earlier GRANT statement, EMIL was granted SELECT access to the
DEPARTMENTS table WITH GRANT OPTION. EMIL can grant SELECT privilege to other users.
Suppose EMIL is now given INSERT access as well, but without the WITH GRANT OPTION:

GRANT INSERT ON DEPARTMENTS TO EMIL;

EMIL can SELECT from and INSERT to the DEPARTMENTS table. He can grant SELECT
privileges to other users, but cannot assign INSERT privileges.

CHAPTER 12 PLANNING SECURITY

210 INTERBASE 6

To change a user’s existing privileges to include grant authority, issue a second GRANT
statement that includes the WITH GRANT OPTION clause. For example, to allow EMIL to
grant INSERT privileges on DEPARTMENTS to others, reissue the GRANT statement and
include the WITH GRANT OPTION clause:

GRANT INSERT ON DEPARTMENTS TO EMIL WITH GRANT OPTION;

Grant authority implications
Consider every extension of grant authority with care. Once other users are permitted
grant authority on a table, they can grant those same privileges, as well as grant authority
for them, to other users.

As the number of users with privileges and grant authority for a table increases, the
likelihood that different users can grant the same privileges and grant authority to any
single user also increases.

SQL permits duplicate privilege and authority assignment under the assumption that it is
intentional. Duplicate privilege and authority assignments to a single user have
implications for subsequent revocation of that user’s privileges and authority. For more
information about revoking privileges, see “Revoking user access” on page 213.

For example, suppose two users to whom the appropriate privileges and grant authority
have been extended, GALENA and SUDHANSHU, both issue the following statement:

GRANT INSERT ON DEPARTMENTS TO SPINOZA WITH GRANT OPTION;

Later, GALENA revokes the privilege and grant authority for SPINOZA:

REVOKE INSERT ON DEPARTMENTS FROM SPINOZA;

GALENA now believes that SPINOZA no longer has INSERT privilege and grant authority for
the DEPARTMENTS table. The immediate net effect of the statement is negligible because
SPINOZA retains the INSERT privilege and grant authority assigned by SUDHANSHU.

When full control of access privileges on a table is desired, grant authority should not be
assigned indiscriminately. In cases where privileges must be universally revoked for a
user who might have received rights from several users, there are two options:

� Each user who assigned rights must issue an appropriate REVOKE statement.

� The table’s owner must issue a REVOKE statement for all users of the table, then issue
GRANT statements to reestablish access privileges for the users who should not lose their
rights.

For more information about the REVOKE statement, see “Revoking user access” on
page 213.

GRANTING PRIVILEGES TO EXECUTE STORED PROCEDURES

DATA DEFINITION GUIDE 211

Granting privileges to execute stored procedures
To use a stored procedure, users or other stored procedures must have
EXECUTE privilege for it, using the following GRANT syntax:

GRANT EXECUTE ON PROCEDUREprocname TO {<object > | <userlist >}

<object> = {

PROCEDUREprocname

| TRIGGER trigname

| VIEW viewname

| PUBLIC

[, <object> …]}

<userlist> = {

[USER] username

| rolename

| UNIX_user }

[, <userlist > …]

[WITH GRANT OPTION]

You must give EXECUTE privileges on a stored procedure to any procedure or trigger that
calls that stored procedure if the caller’s owner is not the same as the owner of the called
procedure.

Note If you grant privileges to PUBLIC, you cannot specify additional users or objects as
grantees in the same statement.

The following statement grants EXECUTE privilege for the FUND_BALANCE procedure to two
users, NKOMO, and SUSAN, and to two procedures, ACCT_MAINT, and MONEY_TRANSFER:

GRANT EXECUTE ON PROCEDURE FUND_BALANCE TO NKOMO, SUSAN, PROCEDURE

ACCT_MAINT, MONEY_TRANSFER;

Granting access to views
To a user, a view looks—and often acts—just like a table. However, there are significant
differences: the contents of a view are not stored anywhere in the database. All that is
stored is the query on the underlying base tables. Because of this, any UPDATE, DELETE,
INSERT to a view is actually a write to the table on which the view is based.

Any view that is based on a join or an aggregate is considered to be a read-only or
non-updatable view, since it is not directly updateable. Views that are based on a single
table which have no aggregates or reflexive joins are often updatable. See “Types of
views: read-only and updatable” on page 131 for more information about this topic.

CHAPTER 12 PLANNING SECURITY

212 INTERBASE 6

IMPORTANT It is meaningful to grant INSERT, UPDATE, and DELETE privileges for a view only if the
view is updatable. Although you can grant the privileges to a read-only view without
receiving an error message, any actual write operation fails because the view is
read-only. SELECT privileges can be granted on a view just as they are on a table, since
reading data from a view does not change anything.

You cannot assign REFERENCES privileges to views.

Tip If you are creating a view for which you plan to grant INSERT and UPDATE privileges, use
the WITH CHECK OPTION constraint so that users can update only base table rows that are
accessible through the view.

Updatable views
You can assign SELECT, UPDATE, INSERT, and DELETE privileges to updatable views, just as
you can to tables. UPDATES, INSERTS, and DELETES to a view are made to the view’s base
tables. You cannot assign REFERENCES privileges to a view.

The syntax for granting privileges to a view is:

GRANT{<privileges > ON viewname

TO {<object > | <userlist > | GROUP UNIX_group };

<privileges > = {SELECT

| DELETE

| INSERT

| UPDATE [(col [, col …])]

[, < privilege_list > …]}}

<object> = {

PROCEDUREprocname

| TRIGGER trigname

| VIEW viewname

| PUBLIC

[, <object> …]}

<userlist> = {

[USER] username

| rolename

| UNIX_user }

[, <userlist > …]

[WITH GRANT OPTION]

REVOKING USER ACCESS

DATA DEFINITION GUIDE 213

When a view is based on a single table, data changes are made directly to the view’s
underlying base table.

For UPDATE, changes to the view affect only the base table columns selected through the
view. Values in other columns are invisible to the view and its users and are never
changed. Views created using the WITH CHECK OPTION integrity constraint can be updated
only if the UPDATE statement fulfills the constraint’s requirements.

For DELETE, removing a row from the view, and therefore from the base table removes all
columns of the row, even those not visible to the view. If SQL integrity constraints or
triggers exist for any column in the underlying table and the deletion of the row violates
any of those constraints or trigger conditions, the DELETE statement fails.

For INSERT, adding a row to the view necessarily adds a row with all columns to the base
table, including those not visible to the view. Inserting a row into a view succeeds only
when:

� Data being inserted into the columns visible to the view meet all existing integrity
constraints and trigger conditions for those columns.

� All other columns of the base table are allowed to contain NULL values.

For more information about working with views, see Chapter 8, “Working with Views.”

Read-only views
When a view definition contains a join of any kind or an aggregate, it is no longer a
legally updatable view, and InterBase cannot directly update the underlying tables.

Note You can use triggers to simulate updating a read-only view. Be aware, however, that
any triggers you write are subject to all the integrity constraints on the base tables. To see
an example of how to use triggers to “update” a read-only view, see “Updating views
with triggers” on page 190.

For more information about integrity constraints and triggers, see Chapter 10, “Working
with Triggers.”

Revoking user access
Use the REVOKE statement to remove privileges that were assigned with the GRANT
statement.

At a minimum, REVOKE requires parameters that specify the following:

� One access privilege to remove

CHAPTER 12 PLANNING SECURITY

214 INTERBASE 6

� The table or view to which the privilege revocation applies

� The name of the grantee for which the privilege is revoked.

In its full form, REVOKE removes all the privileges that GRANT can assign.

REVOKE <privileges > ON [TABLE] { tablename | viewname }

FROM {<object > | <userlist > | GROUP UNIX_group};

<privileges > = {ALL [PRIVILEGES] | < privilege_list >}

<privilege_list > = {

SELECT

| DELETE

| INSERT

| UPDATE [(col [, col …])]

| REFERENCES [(col [, col …])]

[, < privilege_list > …]}}

<object > ={

PROCEDUREprocname

| TRIGGER trigname

| VIEW viewname

| PUBLIC

[, <object >]}

<userlist > = [USER] username [, [USER] username …]

The following statement removes the SELECT privilege for the user, SUSAN, on the
DEPARTMENTS table:

REVOKE SELECT ON DEPARTMENTS FROM SUSAN;

The following statement removes the UPDATE privilege for the procedure,
MONEY_TRANSFER, on the ACCOUNTS table:

REVOKE UPDATE ON ACCOUNTS FROM PROCEDURE MONEY_TRANSER;

The next statement removes EXECUTE privilege for the procedure, ACCT_MAINT, on the
MONEY_TRANSFER procedure:

REVOKE EXECUTE ON PROCEDURE MONEY_TRANSER FROM PROCEDURE ACCT_MAINT;

For the complete syntax of REVOKE, see the Language Reference.

Revocation restrictions
The following restrictions and rules of scope apply to the REVOKE statement:

REVOKING USER ACCESS

DATA DEFINITION GUIDE 215

� Privileges can be revoked only by the user who granted them.

� Other privileges assigned by other users are not affected.

� Revoking a privilege for a user, A, to whom grant authority was given, automatically
revokes that privilege for all users to whom it was subsequently assigned by user A.

� Privileges granted to PUBLIC can only be revoked for PUBLIC.

Revoking multiple privileges
To remove some, but not all, of the access privileges assigned to a user or procedure, list
the privileges to remove, separating them with commas. For example, the following
statement removes the INSERT and UPDATE privileges for the DEPARTMENTS table from a
user, LI:

REVOKE INSERT, UPDATE ON DEPARTMENTS FROM LI;

The next statement removes INSERT and DELETE privileges for the ACCOUNTS table from a
stored procedure, MONEY_TRANSFER:

REVOKE INSERT, DELETE ON ACCOUNTS FROM PROCEDURE MONEY_TRANSFER;

Any combination of previously assigned SELECT, DELETE, INSERT, and UPDATE privileges
can be revoked.

Revoking all privileges
The ALL privilege combines the SELECT, DELETE, INSERT, and UPDATE privileges for a table
in a single expression. It is a shorthand way to remove all SQL table access privileges from
a user or procedure. For example, the following statement revokes all access privileges
for the DEPARTMENTS table for a user, SUSAN:

REVOKE ALL ON DEPARTMENTS FROM SUSAN;

Even if a user does not have all access privileges for a table, ALL can still be used. Using
ALL in this manner is helpful when a current user’s access rights are unknown.

Note ALL does not revoke EXECUTE privilege.

CHAPTER 12 PLANNING SECURITY

216 INTERBASE 6

Revoking privileges for a list of users
Use a comma-separated list of users to REVOKE access privileges for a number of users at
the same time.

The following statement revokes INSERT and UPDATE privileges on the DEPARTMENTS table
for users FRANCIS, BEATRICE, and HELGA:

REVOKE INSERT, UPDATE ON DEPARTMENTS FROM FRANCIS, BEATRICE, HELGA;

Revoking privileges for a role
If you have granted privileges to a role or granted a role to users, you can use REVOKE to
remove the privileges or the role.

To remove privileges from a role:

REVOKEprivileges ON table FROMrolenamelist ;

To revoke a role from users:

REVOKErole_granted FROM {PUBLIC | role_grantee_list };

The following statement revokes UPDATE privileges from the DOITALL role:

REVOKE UPDATE ON DEPARTMENTS FROM DOITALL;

Now, users who were granted the DOITALL role no longer have UPDATE privileges on
DEPARTMENTS, although they retain the other privileges—SELECT, INSERT, DELETE, and
REFERENCES—that they acquired with this role.

IMPORTANT If you drop a role using the DROP ROLE statement, all privileges that were conferred by
that role are revoked.

Revoking a role from users
Use REVOKE to remove a role that you assigned to users.

The following statement revokes the DOITALL role from RENEE.

REVOKE DOITALL FROM RENEE;

RENEE no longer has any of the access privileges that she acquired as a result of
membership in the DOITALL role. However, if any others users have granted the same
privileges to her, she still has them.

REVOKING USER ACCESS

DATA DEFINITION GUIDE 217

Revoking EXECUTE privileges
Use REVOKE to remove EXECUTE privileges on a stored procedure. The syntax for revoking
EXECUTE privileges is as follows:

REVOKE EXECUTE ON PROCEDUREprocname FROM {<object > | <userlist >}

<object > ={

PROCEDUREprocname

| TRIGGER trigname

| VIEW viewname

| PUBLIC

[, <object >]}

<userlist > = [USER] username [, [USER] username …]

The following statement removes EXECUTE privilege for user EMIL on the
MONEY_TRANSFER procedure:

REVOKE EXECUTE ON PROCEDURE MONEY_TRANSFER FROM EMIL;

Revoking privileges from objects
REVOKE can remove the access privileges for one or more procedures, triggers, or views.
Precede each type of object by the correct keyword (PROCEDURE, TRIGGER, or VIEW) and
separate lists of one object type with commas.

The following statement revokes INSERT and UPDATE privileges for the ACCOUNTS table
from the MONEY_TRANSFER and ACCT_MAINT procedures and from the SHOW_USER trigger.

REVOKE INSERT, UPDATE ON ACCOUNTS FROM PROCEDURE MONEY_TRANSFER,

ACCT_MAINT TRIGGER SHOW_USER;

Revoking privileges for all users
To revoke privileges granted to all users as PUBLIC, use REVOKE with PUBLIC. For example,
the following statement revokes SELECT, INSERT, and UPDATE privileges on the
DEPARTMENTS table for all users:

REVOKE SELECT, INSERT, UPDATE ON DEPARTMENTS FROM PUBLIC;

When this statement is executed, only the table’s owner retains full access privileges to
DEPARTMENTS.

CHAPTER 12 PLANNING SECURITY

218 INTERBASE 6

IMPORTANT PUBLIC does not revoke privileges for stored procedures. PUBLIC cannot be used to strip
privileges from users who were granted them as individual users.

Revoking grant authority
To revoke a user’s grant authority for a given privilege, use the following REVOKE syntax:

REVOKE GRANT OPTION FORprivilege [, privilege …] ON table

FROMuser ;

For example, the following statement revokes SELECT grant authority on the DEPARTMENTS
table from a user, EMIL:

REVOKE GRANT OPTION FOR SELECT ON DEPARTMENTS FROM EMIL;

Using views to restrict data access
In addition to using GRANT and REVOKE to control access to database tables, you can use
views to restrict data access. A view is usually created as a subset of columns and rows
from one or more underlying tables. Because it is only a subset of its underlying tables,
a view already provides a measure of access security.

For example, suppose an EMPLOYEES table contains the columns, LAST_NAME, FIRST_NAME,
JOB, SALARY, DEPT, and PHONE. This table contains much information that is useful to all
employees. It also contains employee information that should remain confidential to
almost everyone: SALARY. Rather than allow all employees access to the EMPLOYEES table,
a view can be created which allows access to other columns in the EMPLOYEES table, but
which excludes SALARY:

CREATE VIEW EMPDATA AS

SELECT LAST_NAME, FIRST_NAME, DEPARTMENT, JOB, PHONE

FROM EMPLOYEES;

Access to the EMPLOYEES table can now be restricted, while SELECT access to the view,
EMPDATA, can be granted to everyone.

Note Be careful when creating a view from base tables that contain sensitive information.
Depending on the data included in a view, it may be possible for users to recreate or infer
the missing data.

DATA DEFINITION GUIDE 219

CHAPTER

13
Chapter 13Character Sets and

Collation Orders

This chapter discusses the following topics:

� Available character sets and their corresponding collation orders

� Character set storage requirements

� Specifying default character set for an entire database

� Specifying an alternative character set for a particular column in a table

� Specifying a client application character set that the server should use when translating
data between itself and the client

� Specifying the collation order for a column

� Specifying the collation order for a value in a comparison operation

� Specifying the collation order in an ORDER BY clause

� Specifying the collation order in a GROUP BY clause

CHAPTER 13 CHARACTER SETS AND COLLATION ORDERS

220 INTERBASE 6

About character sets and collation orders
CHAR, VARCHAR, and text BLOB columns in InterBase can use many different character
sets. A character set defines the symbols that can be entered as text in a column, and its
also defines the maximum number of bytes of storage necessary to represent each
symbol. In some character sets, such as ISO8859_1, each symbol requires only a single
byte of storage. In others, such as UNICODE_FSS, each symbol requires from 1 to 3 bytes
of storage.

Each character set also has an implicit collation order that specifies how its symbols are
sorted and ordered. Some character sets also support alternative collation orders. In all
cases, choice of character set limits choice of collation orders.

Character set storage requirements
It is important to know the storage requirements of a particular character set because
InterBase restricts the maximum amount of storage in each field of a CHAR column to
32,767 bytes. VARCHAR columns are restricted to 32,765 bytes.

For character sets that require only a single byte of storage, the maximum number of
symbols that can be stored in a single field corresponds to the number of bytes. For
character sets that require up to three bytes per symbol, the maximum number of
symbols that can be safely stored in a field is 1/3 of the maximum number of bytes for
the datatype. For example, for a CHAR column defined to use the UNICODE_FSS character
set, the maximum number of characters that can be specified is 10,922 (32,767/3).

. . .

CHAR(10922) CHARACTER SET UNICODE_FSS,

. . .

INTERBASE CHARACTER SETS

DATA DEFINITION GUIDE 221

InterBase character sets
The following table lists each character set that can be used in InterBase. For each
character set, the minimum and maximum number of bytes used to store each symbol is
listed, and all collation orders supported for that character set are also listed. The first
collation order for a given character set is that set’s implicit collation, the one that is used
if no COLLATE clause specifies an alternative order. The implicit collation order cannot be
specified in the COLLATE clause.

Character set
Character
set ID

Maximum
character size

Minimum
character size Collation orders

ASCII 2 1 byte 1 byte ASCII

BIG_5 56 2 bytes 1 byte BIG_5

CYRL 50 1 byte 1 byte CYRL
DB_RUS
PDOX_CYRL

DOS437 10 1 byte 1 byte DOS437
DB_DEU437
DB_ESP437
DB_FIN437
DB_FRA437
DB_ITA437
DB_NLD437
DB_SVE437
DB_UK437
DB_US437
PDOX_ASCII
PDOX_INTL
PDOX_SWEDFIN

TABLE 13.1 Character sets and collation orders

CHAPTER 13 CHARACTER SETS AND COLLATION ORDERS

222 INTERBASE 6

DOS850 11 1 byte 1 byte DOS850
DB_DEU850
DB_ESP850
DB_FRA850
DB_FRC850
DB_ITA850
DB_NLD850
DB_PTB850
DB_SVE850
DB_UK850
DB_US850

DOS852 45 1 byte 1 byte DOS852
DB_CSY
DB_PLK
DB_SLO
PDOX_CSY
PDOX_HUN
PDOX_PLK
PDOX_SLO

DOS857 46 1 byte 1 byte DOS857
DB_TRK

DOS860 13 1 byte 1 byte DOS860
DB_PTG860

DOS861 47 1 byte 1 byte DOS861
PDOX_ISL

DOS863 14 1 byte 1 byte DOS863
DB_FRC863

DOS865 12 1 byte 1 byte DOS865
DB_DAN865
DB_NOR865
PDOX_NORDAN4

EUCJ_0208 6 2 bytes 1 byte EUJC_0208

GB_2312 57 2 bytes 1 byte GB_2312

Character set
Character
set ID

Maximum
character size

Minimum
character size Collation orders

TABLE 13.1 Character sets and collation orders (continued)

INTERBASE CHARACTER SETS

DATA DEFINITION GUIDE 223

ISO8859_1 21 1 byte 1 byte ISO8859_1
DA_DA
DE_DE
DU_NL
EN_UK
EN_US
ES_ES
FI_FI
FR_CA
FR_FR
IS_IS
IT_IT
NO_NO
PT_PT
SV_SV

KSC_5601 44 2 bytes 1 byte KSC_5601

KSC_DICTIONARY

NEXT 19 1 byte 1 byte NEXT
NXT_DEU
NXT_FRA
NXT_ITA
NXT_US

NONE 0 1 byte 1 byte NONE

OCTETS 1 1 byte 1 byte OCTETS

SJIS_0208 5 2 bytes 1 byte SJIS_0208

UNICODE_FSS 3 3 bytes 1 byte UNICODE_FSS

WIN1250 51 1 byte 1 byte WIN1250
PXW_CSY
PXW_HUNDC
PXW_PLK
PXW_SLO

WIN1251 52 1 byte 1 byte WIN1251
PXW_CYRL

Character set
Character
set ID

Maximum
character size

Minimum
character size Collation orders

TABLE 13.1 Character sets and collation orders (continued)

CHAPTER 13 CHARACTER SETS AND COLLATION ORDERS

224 INTERBASE 6

Character sets for DOS
The following character sets correspond to MS-DOS code pages, and should be used to
specify character sets for InterBase databases that are accessed by Paradox for DOS and
dBASE for DOS:

WIN1252 53 1 byte 1 byte WIN1252
PXW_INTL
PXW_INTL850
PXW_NORDAN4
PXW_SPAN
PXW_SWEDFIN

WIN1253 54 1 byte 1 byte WIN1253
PXW_GREEK

WIN1254 55 1 byte 1 byte WIN1254
PXW_TURK

Character set DOS code page

DOS437 437

DOS850 850

DOS852 852

DOS857 857

DOS860 860

DOS861 861

DOS863 863

DOS865 865

TABLE 13.2 Character sets corresponding to DOS code pages

Character set
Character
set ID

Maximum
character size

Minimum
character size Collation orders

TABLE 13.1 Character sets and collation orders (continued)

CHARACTER SETS FOR DOS

DATA DEFINITION GUIDE 225

The names of collation orders for these character sets that are specific to Paradox begin
“PDOX”. For example, the DOS865 character set for DOS code page 865 supports a
Paradox collation order for Norwegian and Danish called “PDOX_NORDAN4”.

The names of collation orders for these character sets that are specific to dBASE begin
“DB”. For example, the DOS437 character set for DOS code page 437 supports a dBASE
collation order for Spanish called “DB_ESP437”.

For more information about DOS code pages, and Paradox and dBASE collation orders,
see the appropriate Paradox and dBASE documentation and driver books.

Character sets for Microsoft Windows
There are five character sets that support Windows client applications, such as Paradox
for Windows. These character sets are: WIN1250, WIN1251, WIN1252, WIN1253, and
WIN1254.

The names of collation orders for these character sets that are specific to Paradox for
Windows begin “PXW”. For example, the WIN1250 character set supports a Paradox for
Windows collation order for Norwegian and Danish called “PXW_NORDAN4”.

For more information about Windows character sets and Paradox for Windows collation
orders, see the appropriate Paradox for Windows documentation and driver books.

Additional character sets and collations
Support for additional character sets and collation orders is constantly being added to
InterBase. To see if additional character sets and collations are available for a newly
created database, connect to the database with isql, then use the following set of queries
to generate a list of available character sets and collations:

SELECT RDB$CHARACTER_SET_NAME, RDB$CHARACTER_SET_ID

FROM RDB$CHARACTER_SETS

ORDER BY RDB$CHARACTER_SET_NAME;

SELECT RDB$COLLATION_NAME, RDB$CHARACTER_SET_ID

FROM RDB$COLLATIONS

ORDER BY RDB$COLLATION_NAME;

CHAPTER 13 CHARACTER SETS AND COLLATION ORDERS

226 INTERBASE 6

Specifying defaults
This section describes the mechanics of specifying character sets for databases, table
columns, and client connections. In addition, it describes how to specify collation orders
for columns, comparisons, ORDER BY clauses, and GROUP BY clauses.

Specifying a default character set for a database
A database’s default character set designation specifies the character set the server uses
to tag CHAR, VARCHAR, and text BLOB columns in the database when no other character
set information is provided. When data is stored in such columns without additional
character set information, the server uses the tag to determine how to store and
transliterate that data. A default character set should always be specified for a database
when it is created with CREATE DATABASE.

To specify a default character set, use the DEFAULT CHARACTER SET clause of CREATE
DATABASE. For example, the following statement creates a database that uses the
ISO8859_1 character set:

CREATE DATABASE 'europe.gdb' DEFAULT CHARACTER SET ISO8859_1;

IMPORTANT If you do not specify a character set, the character set defaults to NONE. Using character
set NONE means that there is no character set assumption for columns; data is stored and
retrieved just as you originally entered it. You can load any character set into a column
defined with NONE, but you cannot later move that data into another column that has
been defined with a different character set. In this case, no transliteration is performed
between the source and destination character sets, and errors may occur during
assignment.

For the complete syntax of CREATE DATABASE, see the Language Reference.

Specifying a character set for a column in a table
Character sets for individual columns in a table can be specified as part of the column’s
CHAR or VARCHAR datatype definition. When a character set is defined at the column level,
it overrides the default character set declared for the database. For example, the following
isql statements create a database with a default character set of ISO8859_1, then create a
table where two column definitions include a different character set specification:

CREATE DATABASE 'europe.gdb' DEFAULT CHARACTER SET ISO8859_1;

CREATE TABLE RUS_NAME(

SPECIFYING COLLATION ORDERS

DATA DEFINITION GUIDE 227

LNAME VARCHAR(30) NOT NULL CHARACTER SET CYRL,

FNAME VARCHAR(20) NOT NULL CHARACTER SET CYRL,);

For the complete syntax of CREATE TABLE, see the Language Reference.

Specifying a character set for a client connection
When a client application, such as isql, connects to a database, it may have its own
character set requirements. The server providing database access to the client does not
know about these requirements unless the client specifies them. The client application
specifies its character set requirement using the SET NAMES statement before it connects
to the database.

SET NAMES specifies the character set the server should use when translating data from
the database to the client application. Similarly, when the client sends data to the
database, the server translates the data from the client’s character set to the database’s
default character set (or the character set for an individual column if it differs from the
database’s default character set).

For example, the following isql command specifies that isql is using the DOS437 character
set. The next command connects to the europe database created above, in “Specifying a
Character Set for a Column in a Table”:

SET NAMES DOS437;

CONNECT 'europe.gdb' USER 'JAMES' PASSWORD 'U4EEAH';

For the complete syntax of SET NAMES, see the Language Reference. For the complete
syntax of CONNECT, see the Language Reference.

Specifying collation orders
This section describes how to use the COLLATE clause to specify collation order in
columns, comparison operations, ORDER BY clauses, and GROUP BY clauses.

Specifying collation order for a column
Use the COLLATE clause with either CREATE TABLE or ALTER TABLE to specify the collation
order for a CHAR or VARCHAR column. The COLLATE clause is especially useful for character
sets such as ISO8859_1 or DOS437 that support many different collation orders.

CHAPTER 13 CHARACTER SETS AND COLLATION ORDERS

228 INTERBASE 6

For example, the following isql ALTER TABLE statement adds a new column to a table, and
specifies both a character set and a collation order:

ALTER TABLE 'FR_CA_EMP'

ADD ADDRESS VARCHAR(40) CHARACTER SET ISO8859_1

NOT NULL

COLLATE FR_CA;

For the complete syntax of ALTER TABLE, see the Language Reference.

Specifying collation order in a comparison operation
When CHAR or VARCHAR values are compared in a WHERE clause, it is necessary to specify
a collation order for the comparisons if the values being compared use different collation
orders.

To specify the collation order to use for a value during a comparison, include a COLLATE
clause after the value. For example, in the following WHERE clause fragment from an
embedded application, the value to the left of the comparison operator is forced to be
compared using a specific collation:

WHERE LNAME COLLATE FR_CA = :lname_search;

For the complete syntax of the WHERE clause, see the Language Reference.

Specifying collation order in an ORDER BY clause
When CHAR or VARCHAR columns are ordered in a SELECT statement, it can be necessary
to specify a collation order for the ordering, especially if columns used for ordering use
different collation orders.

To specify the collation order to use for ordering a column in the ORDER BY clause,
include a COLLATE clause after the column name. For example, in the following ORDER BY
clause, the collation order for two columns is specified:

. . .

ORDER BY LNAME COLLATE FR_CA, FNAME COLLATE FR_CA;

For the complete syntax of the ORDER BY clause, see the Language Reference.

SPECIFYING COLLATION ORDERS

DATA DEFINITION GUIDE 229

Specifying collation order in a GROUP BY clause
When CHAR or VARCHAR columns are grouped in a SELECT statement, it can be necessary
to specify a collation order for the grouping, especially if columns used for grouping use
different collation orders.

To specify the collation order to use for grouping columns in the GROUP BY clause,
include a COLLATE clause after the column name. For example, in the following GROUP
BY clause, the collation order for two columns is specified:

. . .

GROUP BY LNAME COLLATE FR_CA, FNAME COLLATE FR_CA;

For the complete syntax of the GROUP BY clause, see the Language Reference.

CHAPTER 13 CHARACTER SETS AND COLLATION ORDERS

230 INTERBASE 6

DATA DEFINITION GUIDE 231

APPENDIX

A
Appendix AInterBase Document

Conventions

This appendix covers the following topics:

� The InterBase 6 documentation set

� The printing conventions used to display information in text

� The printing conventions used to display information in syntax, code, and examples

APPENDIX A INTERBASE DOCUMENT CONVENTIONS

232 INTERBASE 6

The InterBase documentation set
The InterBase documentation set is an integrated package designed for all levels of users.
It consists of six full-length printed books plus the Installation Guide. Each of these
books is also provided in Adobe Acrobat PDF format and is accessible on line. If Adobe
Acrobat is not already installed on your system, you can find it on the InterBase
distribution CD-ROM or at http//www.adobe.com/prodindex/acrobat/readstep.html. Acrobat is
available for Windows NT, Windows 95, and most flavors of UNIX.

Book Description

Operations Guide Provides an introduction to InterBase and an explanation of tools and
procedures for performing administrative tasks on databases and
database servers; also includes full reference on InterBase utilities,
including isql, gbak, gfix, and others

Data Definition Guide Explains how to create, alter, and delete database objects using the SQL
language

 Developer’s Guide Provides both reference and task-oriented material for users of the
Borland RAD tools (Delphi, C++ Builder, and JBuilder); includes chapters
on writing UDFs, driver configuration, developing embedded installation
applications, and using the new InterBase Data Access Components

Language Reference Describes the SQL language syntax and usage; includes references for
procedure and trigger language, InterBase keywords, functions in the
InterBase UDF library, error codes, character sets, and the system tables

Embedded SQL Guide (formerly called the Programmer’s Guide) Describes how to write
embedded SQL database applications in a host language, precompiled
through gpre

API Guide Explains how to write database applications using the InterBase API

TABLE A.1 Books in the InterBase 6 documentation set

PRINTING CONVENTIONS

DATA DEFINITION GUIDE 233

Printing conventions
The InterBase documentation set uses various typographic conventions to identify objects
and syntactic elements.

The following table lists typographic conventions used in text, and provides examples of
their use:

Convention Purpose Example

UPPERCASE SQL keywords, SQL functions, and names of
all database objects such as tables, columns,
indexes, and stored procedures

• the SELECT statement retrieves data from the CITY column
in the CITIES table

• can be used in CHAR, VARCHAR, and BLOB text columns
• the CAST() function

italic New terms, emphasized words, all elements
from host languages, and all user-supplied
items

• isc_decode_date()
• the host variable, segment_length
• contains six variables, or data members

bold File names, menu picks, and all commands
that are entered at a system prompt,
including their switches, arguments, and
parameters

• gbak, isql, gsec. gfix
• specify the gpre -sqlda old switch
• a script, ib_udf.sql, in the examples subdirectory
• the employee.gdb database; the employee database
• the Session | Advanced Settings command

TABLE A.2 Text conventions

APPENDIX A INTERBASE DOCUMENT CONVENTIONS

234 INTERBASE 6

Syntax conventions
The following table lists the conventions used in syntax statements and sample code, and
provides examples of their use:

Convention Purpose Example

UPPERCASEKeywords that must be typed exactly as
they appear when used

•SET TERM !!;
•ADD [CONSTRAINT] CHECK

italic User-supplied parameters that cannot be
broken into smaller units

•CREATE TRIGGERname FOR table ;
•ALTER EXCEPTION name ' message '

<italic > Parameters in angle brackets can be
broken into smaller syntactic units; the
expansion syntax for these parameters
follows the current syntax statement

WHILE (<condition>) DO <compound_statement>

[] Optional syntax: you do not need to
include anything that is enclosed in
square brackets; when elements within
these brackets are separated by the pipe
symbol (|), you can choose only one

•CREATE [UNIQUE][ASCENDING | DESCENDING]

•[FILTER [FROM subtype] TO subtype]

{ } You must include one and only one of the
enclosed options, which are separated by
the pipe symbol (|)

{INTO | USING}

| You can choose only one of a group whose
elements are separated by this pipe
symbol

SELECT [DISTINCT | ALL]

... You can repeat the clause enclosed in
brackets with the “…” symbol as many
times as necessary

(<col> [,<col>…])

TABLE A.3 Syntax conventions

DATA DEFINITION GUIDE i

A
access privileges See security
actions See events
activating triggers See firing triggers
adding

See also inserting
columns 113–114
integrity constraints 114
secondary files 43, 48

aggregate functions 162
alerter (events) 150, 189
ALTER DATABASE 41, 48
ALTER DOMAIN 91
ALTER EXCEPTION 166
ALTER INDEX 124–125

restrictions 125
ALTER PROCEDURE 155
ALTER TABLE 16, 111–117

arguments 117
ALTER TRIGGER 185–187

syntax 186
altering

metadata 16
stored procedures 136, 155
triggers 176, 185–187
views 131

applications
See also DSQL applications
calling stored procedures 137, 158
character sets 226–227
collation orders 227–229
preprocessing See gpre
testing 182

arithmetic functions See aggregate functions
array elements 80
array slices 80
arrays 60, 80–82

See also error status array
defining 80

multi-dimensional 81
stored procedures and 144, 163–165
subscripts 81–82

ASCENDING keyword 122
assigning values to variables 147, 148, 153
assignment statements 147
AUTO mode 54

B
BEGIN keyword 145
BLOB columns 77
Blob data, storing 77
BLOB datatype 76–79, 220

defining 76–79
stored procedures and 144

BLOB filters 79
BLOB segments 77–78
BLOB subtypes 78–79
block (statements) 145, 183
buffers, database cache 39

C
cache buffers 39
calling stored procedures 137, 158
cascading integrity constraints 31, 33, 95, 102,

107
casting datatypes 96
changes, logging 176
CHAR datatype 72, 220

description 61
CHAR VARYING keyword 62
CHARACTER datatype 72, 74
CHARACTER keyword 61
CHARACTER SET 72–74, 97
character sets 220–229

additional 225
default 226
domains 90

Index

ii INTERBASE 6

retrieving 225
specifying 43, 226–227
table of 221

character string datatypes 72–76
CHARACTER VARYING datatype 72
CHARACTER VARYING keyword 62
CHECK constraints 32

defining 105–107
domains 89–90
triggers and 187

circular references 103–104
code

blocks 145, 183
comments in 151
lines, terminating 142, 181

code pages (MS-DOS) 224
COLLATE clause 90, 97
collation orders 74, 220

retrieving 225
specifying 227–229

column names
views 130

columns
adding 113–114
attributes 94–95
BLOB 77
circular references 103–104
computed 98
datatypes 95
default values 99
defining 31, 85, 94–107
domain-based 97
dropping 112–113, 115
inheritable characteristics 85
local 85, 86, 88
NULL status 31
NULL values 99
specifying character sets 226
specifying datatypes 95–96

comments 151
comparing values 183
composite keys 36
computed columns 98
conditional shadows 55
conditions, testing 149, 150

constraints
adding 114
declaring 104–105
defining 31–34, 100–107
dropping 115
triggers and 187

context variables 183
See also triggers

converting datatypes 82
CREATE DATABASE 16, 41, 43–47
CREATE DOMAIN 85–90, 97
CREATE EXCEPTION 165
CREATE GENERATOR 184, 196
CREATE INDEX 120–124
CREATE PROCEDURE 138–154

RETURNS clause 144
SET TERM and 181
syntax 139–140

CREATE SHADOW 41, 51–55
CREATE TABLE 16, 94–107

EXTERNAL FILE option 107–111
CREATE TRIGGER 177–184

POSITION clause 182
syntax 177–178

CREATE VIEW 129–134
creating metadata 16

D
data

dropping 117
exporting 110–111
importing 109–110
protecting See security
retrieving 148, 159

multiple rows 137, 148
saving 111
sorting 220
storing 220
updating 184

data definition 16
data definition files 18, 42

stored procedures and 136–137
triggers and 176

data entry, automating 175
data manipulation statements 16

DATA DEFINITION GUIDE iii

stored procedures and 140
triggers and 179

data model 22, 28
database cache buffers 39
database objects 22
databases

designing 21–40
multifile 44–46
normalization 22, 34–38
page size 42

changing 43, 46
default 46
overriding 46

read-only 48
shadowing 49–56
single-file 43–44
structure 16, 22

datatypes 60–83
casting 96
converting 82
domains 86–87
DSQL applications 66
floating point 68
precision 67
specifying 62
specifying for columns 95–96
stored procedures and 144, 148
XSQLVAR field 66

DATE datatype 70
description 61

debugging stored procedures 151
DECIMAL datatype 61, 64–67
declaring

input parameters 144, 146
integrity constraints 104–105
local variables 146
output parameters 144, 147
tables 93

default character set 226
default values

column 99
defining

arrays 80
columns 31, 85, 94–107
integrity constraints 31–34, 100–107

DELETE
triggers and 175

deleting See dropping
DESCENDING keyword 122
designing

databases 21–40
tables 28

domain-based columns 97
domains 31, 85–92

altering 91
attributes 86
creating 85–90
datatypes 86–87
dropping 92
NULL values 88
overriding defaults 87
specifying defaults 87–88

DOUBLE PRECISION datatype 61, 68–70
DROP DATABASE 41, 49
DROP DOMAIN 92
DROP EXCEPTION 166
DROP INDEX 126

restrictions 126
DROP PROCEDURE 156
DROP SHADOW 41, 55
DROP TABLE 16, 117–118
DROP TRIGGER 187
dropping

columns 112–113, 115
constraints 115
data 117
metadata 16
views 134

DSQL
stored procedures and 137

DSQL applications
datatypes 66

duplicating triggers 182
dynamic link libraries See DLLs
dynamic SQL See DSQL

E
END 153–154
END keyword 145
entities 22, 25, 28

iv INTERBASE 6

attributes 25
error codes 169
error messages 165, 191, 192

stored procedures 143
triggers 181

error-handling routines
SQL 168
stored procedures 167–173
triggers 191–193

errors 169
stored procedures 143, 153, 154, 170
syntax 143, 181
triggers 181, 182, 189, 193
user-defined See exceptions

events 150
See also triggers
posting 189

EXCEPTION 167
exceptions 165–167, 175

behavior 191
dropping 166
handling 168
in triggers 192
raising 192
triggers and 191–192

executable procedures 137, 159
terminating 153

EXECUTE PROCEDURE 147, 159
EXIT 153–154
exporting data 110–111
expression-based columns See computed columns
EXTERNAL FILE option 107–111

restrictions 108–109
external files 107
extracting metadata 41, 56–57

F
factorials 152
files

See also specific files
data definition 18, 42
exporting 110–111
external 107
importing 109–110
primary 43–44

secondary 43, 44–46, 48
firing triggers 178, 182, 188

security 188
fixed-decimal datatypes 64–67
FLOAT datatype 61, 68–70
floating-point datatypes 68–70
FOR SELECT . . . DO 148
FOREIGN KEY constraints 31–34, 101–102,

121
functions

user-defined See UDFs

G
gbak 124
GEN_ID() 184, 197
generators 184, 197

defined 195
resetting, caution 196

gpre
BLOB data 78

GRANT 199–213
multiple privileges 205–206
multiple users 206
privileges to roles 200, 203
REFERENCES 200
roles to user 200
specific columns 204
TO TRIGGER clause 188
WITH GRANT OPTION 209–210

grant authority
See also security
revoking 218

H
headers

procedures 138, 143–144, 147
triggers 177, 182

changing 186
host-language variables 148

I
I/O See input, output
IF . . . THEN . . . ELSE 150
importing data 109–110

DATA DEFINITION GUIDE v

in stored procedures 142
incorrect values 163
incremental values 184
index tree 42
indexes 38

activating/deactivating 124
altering 124–126

restrictions 125
creating 120–124

automatically 120
defined 119–120
dropping 126

restrictions 126
improving performance 124–126
multi-column 120, 121, 122–124
page size 38
preventing duplicate entries 121
rebalancing 124
rebuilding 124
recomputing selectivity 125
single-column 120, 121
sort order 121, 122
system-defined 121, 126
unique 121

initializing
generators 184

input parameters 144, 146
See also stored procedures

INSERT
triggers and 175, 183

inserting
unique column values 184

INTEGER datatype 61, 63
integer datatypes 63
integrity constraints

adding 114
declaring 104–105
defining 31–34, 100–107
dropping 115
on columns 95
triggers and 187

Interactive SQL See isql
intergrity constraints

cascading 31, 33, 95, 102, 107
international character sets 220–229

default 226
specifying 226–227

isc_decode_date() 71
isc_encode_date() 71
isql 16, 18, 19, 42

stored procedures and 136, 142, 159–163,
181

triggers and 176–177

J
joins

views and 128

K
key constraints See FOREIGN KEY constraints;

PRIMARY KEY constraints
keys

composite 36
removing dependencies 36

L
local columns 85, 86, 88
local variables 145, 146

assigning values 147
lock conflict errors 169
logging changes 176
loops See repetitive statements

M
MANUAL mode 54
metadata 16

altering 16
creating 16
dropping 16
extracting 41, 56–57
storing 16

modifying See altering;updating
MS-DOS code pages 224
multi-column indexes 120, 122–124

defined 121
multifile databases 44–46
multifile shadows 52
multiple triggers 182

vi INTERBASE 6

N
naming

stored procedures 138
triggers 182
variables 150

NATIONAL CHAR datatype 72, 74–75
NATIONAL CHAR VARYING datatype 72
NATIONAL CHARACTER datatype 72
NATIONAL CHARACTER VARYING datatype 72
NCHAR datatype 72, 75–76
NCHAR VARYING datatype 72
nested stored procedures 151–152
NEW context variables 183
NONE keyword 47, 73–74
normalization 22, 34–38
NOT NULL 88
NULL status 31
NULL values

columns 99
domains 88

numbers
incrementing 184

NUMERIC datatype 61, 64–67
numeric datatypes 63–70
numeric values See values

O
objects 22

relationships 32
OLD context variables 183
ON DELETE 33, 102
ON UPDATE 33, 102
optimizing

queries 122
ORDER BY clause 123
output 159
output parameters 144, 147, 153

See also stored procedures
viewing 159

owner
stored procedures 136

P
page size 42

indexes 38
shadowing 53

Paradox for Windows 225
parameters

input 144, 146
output 144, 147, 153

viewing 159
partial key dependencies, removing 36
passwords

See also security
specifying 43, 45–46

precision of datatypes 67
preprocessor See gpre
primary files 43–44
PRIMARY KEY constraints 28, 31–34, 100–101,

121
privileges See security
procedures See stored procedures
protecting data See security
PUBLIC keyword 206

Q
queries

See also SQL
optimizing 122

R
raising exceptions 167, 192
RDB$RELATION_CONSTRAINTS system

table 104
read-only databases 48
read-only views 131–132
recursive stored procedures 151–152
REFERENCES privilege 103, 204
referential integrity See integrity constraints
relational model 32
repeating groups, eliminating 34–35
repetitive statements 148, 149
retrieving data 148, 159

multiple rows 137, 148
return values, stored procedures 144, 147

incorrect 163
REVOKE 213–218

grant authority 218

DATA DEFINITION GUIDE vii

multiple privileges 215–218
multiple users 216
restrictions 214
stored procedures 217

roles 207, 216
granting 201, 203
granting privileges to 208
granting to users 208
revoking 216

routines 175
rows

retrieving 148, 159
multiple 137, 148

S
secondary files 44–46

adding 43, 48
security 39, 199–218

access privileges 199–201
granting 199–213
revoking 213–218
roles 207
triggers 188
UNIX groups 206
views 132, 218

REFERENCES privilege 204
stored procedures 138, 207, 211
triggers 204

SELECT 159
FOR SELECT vs. 148
ORDER BY clause 162
views 130
WHERE clause 162

select procedures
creating 159–163
suspending 153
terminating 153

SELECT statements
stored procedures and 147, 148

sequence indicator (triggers) 182
sequential values 184
SET GENERATOR 184, 196
SET NAMES 227
SET STATISTICS 125

restrictions 125

SET TERM 142, 181
in isql 181
in triggers 177

shadowing 49–56
advantages 50
automatic 54
limitations 50
page size 53

shadows
conditional 55
creating 51–55
defined 50
dropping 55
increasing size 56
modes

AUTO 54
MANUAL 54

multifile 52
single-file 52

SHOW DATABASE 52, 53
SHOW INDEX 121
SHOW PROCEDURES 155
SHOW TRIGGERS 166
single-column indexes 120

defined 121
single-file databases 43–44
single-file shadows 52
SMALLINT datatype 61, 63
sorting

data 220
specifying

character sets 43, 72–74, 227
collation orders 227–229
datatypes 62
domain defaults 87–88
passwords 43, 45–46
user names 43, 45–46

SQL
stored procedures and 137, 138, 140

dropping 156
specifying variables 146

triggers and 179, 184
SQL clients

specifying character sets 227
SQLCODE variable

viii INTERBASE 6

error-handling routines 168
statements

assignment 147
blocks 145, 183
repetitive 148, 149
stored procedures 141, 142, 181
triggers 179

status array See error status array
status, triggers 182
stored procedures 158–165

altering 136, 155
arrays and 144, 163–165
calling 137, 158
creating 136, 138, 138–154
data definition files and 136–137
dependencies

viewing 155
documenting 136, 151
dropping 156
error handling 167–173

exceptions 165–167, 168
events 150
exiting 153
headers 138, 143–144

output parameters 147
isql and 136, 142, 181
naming 138
nested 151, 152
overview 135–136
powerful SQL extensions 140
privileges 138
procedure body 138, 145–154

input parameters 144, 146
local variables 145, 147
output parameters 144, 147, 153

viewing 159
statements, terminating 142, 181

recursive 151, 152
retrieving data 137, 148, 159
return values 144, 147

incorrect 163
security 207, 211
suspending execution 153
syntax errors 143
testing conditions 149, 150

types, described 137
storing

Blob IDs 77
data 220

structures, database 16, 22
subscripts (arrays) 81–82
SUSPEND 153–154
syntax

assignment statements 147
context variables 183
generators 185
stored procedures 139–140

syntax errors
stored procedures 143
triggers 181

system tables 16
system-defined indexes 121, 126
system-defined triggers 187

T
tables 93–118

altering 111–117
caution 113

circular references 103–104
creating 94–107
declaring 93
defined 28
designing 28
dropping 117–118
external 107–111

terminators (syntax) 142, 181
testing

applications 182
triggers 182

text 220
time indicator (triggers) 182, 186
tokens, unknown 143, 181
transactions

triggers and 188
transitively-dependent columns,

removing 36–37
triggers 175–193

access privileges 188
altering 176, 185–187
creating 177–185

DATA DEFINITION GUIDE ix

data definition files and 176
dropping 187
duplicating 182
error handling 193
exceptions 191–192

raising 192
firing 178, 182, 188
headers 177, 182, 186
inserting unique values 184
isql and 176–177
multiple 182
naming 182
posting events 189
raising exceptions 166, 192
referencing values 183
status 182
syntax errors 181
system-defined 187
testing 182
transactions and 188
trigger body 177, 183–185, 186

context variables 183

U
UNIQUE constraints 28, 31, 100–101, 121
unique indexes 121
UNIX groups, granting access to 206
unknown tokens 143, 181
updatable views 131–132
UPDATE

triggers and 175, 183
updating

See also altering
data 184
views 128, 133–134

user names
specifying 43, 45–46

user-defined errors See exceptions
user-defined functions See UDFs

V
VALUE keyword 89
values

See also NULL values
assigning to variables 147, 148, 153
comparing 183
incremental 184
referencing 183
returned from procedures 144, 147, 163

incorrect 163
VARCHAR datatype 62, 72, 75–76, 220
variables

context 183
host-language 148
local 146, 147
names 150
stored procedures 145, 146

viewing
stored procedures 155

views 127–134
access privileges 132, 218
advantages 129
altering 131
column names 130
creating 129–134
defining columns 131
dropping 134
read-only 131–132
restricting data access 129
storing 127
updatable 131–132
updating 128, 133–134
with joins 128

virtual tables 129

W
WHEN 168, 169, 193
WHEN . . . DO 167
WHEN GDSCODE 169
WHILE . . . DO 149
Windows applications 225
Windows clients 227

X
XSQLVAR field 66

	Table of Contents
	List of Tables
	List of Figures
	Using the Data Definition�Guide
	What is data definition?
	Who should use this guide
	Related InterBase documentation
	Topics covered in this guide
	Using isql
	Using a data definition file

	Designing Databases
	Overview of design issues
	Database versus data model
	Design goals

	Design framework
	Analyzing requirements
	Collecting and analyzing data
	Identifying entities and attributes
	Designing tables
	Determining unique attributes
	Developing a set of rules
	Specifying a datatype
	Choosing international character sets
	Specifying domains
	Setting default values and NULL status
	Defining integrity constraints
	Defining CHECK constraints

	Establishing relationships between objects
	Enforcing referential integrity
	Normalizing the database
	Choosing indexes
	Increasing cache size
	Creating a multifile, distributed database

	Planning security

	Creating Databases
	What you should know
	Creating a database
	Using a data definition file
	Using CREATE DATABASE
	Read-only databases

	Altering a database
	Dropping a database
	Creating a database shadow
	Advantages of shadowing
	Limitations of shadowing
	Before creating a shadow
	Using CREATE SHADOW

	Dropping a shadow
	Expanding the size of a shadow
	Using isql to extract data definitions
	Extracting an InterBase 4.0 database
	Extracting a 3.x database

	Specifying Datatypes
	About InterBase datatypes
	Where to specify datatypes
	Defining numeric datatypes
	Integer datatypes
	Fixed-decimal datatypes
	Floating-point datatypes

	The DATE, TIME, and TIMESTAMP datatypes
	Converting to the DATE, TIME, and TIMESTAMP datatypes
	InterBase and the year 2000

	Character datatypes
	Specifying a character set
	Fixed-length character data
	Variable-length character data

	Defining BLOB datatypes
	BLOB columns
	BLOB segment length
	BLOB subtypes
	BLOB filters

	Defining arrays
	Multi-dimensional arrays
	Specifying subscript ranges for array dimensions

	Converting datatypes
	Implicit type conversions
	Explicit type conversions

	Working with Domains
	Creating domains
	Using CREATE DOMAIN
	Specifying the domain datatype
	Specifying domain defaults
	Specifying NOT NULL
	Specifying domain CHECK constraints
	Using the VALUE keyword
	Specifying domain collation order

	Altering domains with ALTER DOMAIN
	Dropping a domain

	Working with Tables
	Before creating a table
	Creating tables
	Defining columns
	Defining integrity constraints
	Defining a CHECK constraint
	Using the EXTERNAL FILE option

	Altering tables
	Before using ALTER TABLE
	Using ALTER TABLE

	Dropping tables
	Dropping a table
	DROP TABLE syntax

	Working with Indexes
	Index basics
	When to index
	Creating indexes
	Using CREATE INDEX
	When to use a multi-column index
	Examples using multi-column indexes

	Improving index performance
	Using ALTER INDEX
	Using SET STATISTICS
	Using DROP INDEX

	Working with Views
	Introduction
	Advantages of views
	Creating views
	Specifying view column names
	Using the SELECT statement
	Using expressions to define columns
	Types of views: read-only and updatable
	Inserting data through a view

	Dropping views

	Working with Stored�Procedures
	Overview of stored procedures
	Working with procedures
	Using a data definition file
	Calling stored procedures
	Privileges for stored procedures

	Creating procedures
	CREATE PROCEDURE syntax
	Procedure and trigger language
	The procedure header
	The procedure body

	Altering and dropping stored procedures
	Altering stored procedures
	Alter procedure syntax
	Dropping procedures
	Drop procedure syntax
	Altering and dropping procedures in use

	Using stored procedures
	Using executable procedures in isql
	Using select procedures in isql
	Viewing arrays with stored procedures

	Exceptions
	Creating exceptions
	Altering exceptions
	Dropping exceptions
	Raising an exception in a stored procedure

	Handling errors
	Handling exceptions
	Handling SQL errors
	Handling InterBase errors
	Examples of error behavior and handling

	Working with Triggers
	About triggers
	Working with triggers
	Using a data definition file

	Creating triggers
	CREATE TRIGGER syntax
	InterBase procedure and trigger language
	The trigger header
	The trigger body

	Altering triggers
	Altering a trigger header
	Altering a trigger body

	Dropping triggers
	Using triggers
	Triggers and transactions
	Triggers and security
	Triggers as event alerters
	Updating views with triggers

	Exceptions
	Raising an exception in a trigger
	Error handling in triggers

	Working with Generators
	About generators
	Creating generators
	Setting or resetting generator values
	Using generators

	Planning Security
	Overview of SQL access privileges
	Default security and access
	Privileges available
	SQL ROLES

	Granting privileges
	Granting privileges to a whole table
	Granting access to columns in a table
	Granting privileges to a stored procedure or trigger

	Multiple privileges and multiple grantees
	Granting multiple privileges
	Granting all privileges
	Granting privileges to multiple users
	Granting privileges to a list of procedures

	Using roles to grant privileges
	Granting privileges to a role
	Granting a role to users

	Granting users the right to grant privileges
	Grant authority restrictions
	Grant authority implications

	Granting privileges to execute stored procedures
	Granting access to views
	Updatable views
	Read-only views

	Revoking user access
	Revocation restrictions
	Revoking multiple privileges
	Revoking all privileges
	Revoking privileges for a list of users
	Revoking privileges for a role
	Revoking a role from users
	Revoking EXECUTE privileges
	Revoking privileges from objects
	Revoking privileges for all users
	Revoking grant authority

	Using views to restrict data access

	Character Sets and Collation�Orders
	About character sets and collation orders
	Character set storage requirements
	InterBase character sets
	Character sets for DOS
	Character sets for Microsoft Windows
	Additional character sets and collations

	Specifying defaults
	Specifying a default character set for a database
	Specifying a character set for a column in a table
	Specifying a character set for a client connection

	Specifying collation orders
	Specifying collation order for a column
	Specifying collation order in a comparison operation
	Specifying collation order in an ORDER BY clause
	Specifying collation order in a GROUP BY clause

	InterBase Document Conventions
	The InterBase documentation set
	Printing conventions
	Syntax conventions

	Index

