
InterBase 6

Operations Guide

100 Enterprise Way, Scotts Valley, CA 95066 http://www.interbase.com

Borland/INPRISE

November 12, 1999 (C:\TechPubs60\60DocSet\Doc\OpGuide\OpGuideTitle.fm5)

Inprise/Borland may have patents and/or pending patent applications covering subject matter in this document.
The furnishing of this document does not convey any license to these patents.

Copyright 1999 Inprise/Borland. All rights reserved. All InterBase products are trademarks or registered
trademarks of Inprise/Borland. All Borland products are trademarks or registered trademarks of Inprise/Borland.
Other brand and product names are trademarks or registered trademarks of their respective holders.

1INT0055WW21002 6E1R0699

iii

Table of Contents

List of Tables . xiii

List of Figures . xv

CHAPTER 1 Introduction

Who should use this guide . 17

Topics covered in this guide . 18

System requirements and server sizing 18

Windows system requirements 19

UNIX system requirements 19

Primary InterBase features . 20

SQL support . 22

Multiuser database access 22

Transaction management 23

Multigenerational architecture 23

Optimistic row-level locking 23

Database administration 24

InterBase Specifications . 25

Overview of command-line tools 28

isql . 29

gbak . 29

gfix. 29

gsec . 30

gstat . 30

iblockpr (gds_lock_print) 30

ibmgr . 30

CHAPTER 2 IBConsole: The InterBase Interface

IBConsole . 33

InterBase Security . 40

Server Management . 40

Database Management. 41

iv INTERBASE 6

CHAPTER 3 Server Configuration

Server configuration using IBConsole 44

IBConsole Preferences . 45

ISQL preferences . 46

Windows NT service . 49

Starting and stopping the service 49

Selecting service startup options 49

Shutting down the server on Windows NT 50

Running InterBase as an application on Windows NT . . . 50

Windows 95 peer-to-peer server application 51

Selecting startup options 51

Shutting down InterBase on Windows 95 51

UNIX daemon . 52

Starting the server . 53

Stopping the server . 53

Starting the server automatically 53

InterBase Guardian process . 55

Starting Guardian . 56

Starting the server without Guardian 56

The attachment governor . 57

Environment variables . 58

ISC_USER and ISC_PASSWORD. 58

The INTERBASE environment variable 58

The TMP environment variable 59

Temporary file management . 59

Configuring history files 59

Configuring sort files . 59

Configuration parameters in isc_config 60

Diagnostic log files . 62

CHAPTER 4 Network Configuration

Network protocols . 65

Connection specification . 66

Registering a server . 66

OPERATIONS GUIDE v

Logging in to a server . 68

Logging out from a server. 69

Unregistering a server . 69

Registering a database. 70

Connecting to a database 71

Disconnecting a database 73

Unregistering a database 73

Connection-specific examples. 73

Connection troubleshooting . 74

Connection Refused errors 74

Connection Rejected errors 77

Disabling automatic Internet dialup 78

Other errors . 81

When all else fails... 81

Communication Diagnostics . 81

DB Connection tab . 81

TCP/IP tab . 83

NetBEUI tab. 85

SPX tab . 86

CHAPTER 5 Database Security

Security model . 89

The SYSDBA user . 90

Other users . 90

Users on UNIX . 90

Security database isc4.gdb . 91

SQL privileges . 92

Groups of users . 92

ANSI SQL 3 roles . 92

UNIX groups . 93

Other security measures . 93

Restriction on using InterBase tools 94

Protecting your databases 94

User administration with IBConsole 95

vi INTERBASE 6

Displaying the User Information dialog 95

Adding a user . 96

Modifying user configurations 96

Deleting a user . 97

User administration with the InterBase API 97

gsec command-line tool . 98

Running gsec remotely . 98

Security utility commands 99

Using gsec from the command prompt 101

gsec error messages . 102

CHAPTER 6 Database Configuration and Maintenance

Database files . 106

Database file size . 106

Dynamic file sizing. 106

External files . 106

Temporary files . 107

File naming conventions 107

Multifile databases . 108

Networked filesystems . 110

On-disk structure (ODS) . 110

Read-write and read-only databases 111

Read-write databases . 111

Read-only databases . 111

Creating databases . 113

Database options . 114

Dropping databases . 115

Backup file properties . 115

Removing database backup files 116

Shadowing . 117

Tasks for shadowing . 117

Advantages of shadowing 118

Limitations of shadowing 118

Creating a shadow . 118

OPERATIONS GUIDE vii

Activating a shadow . 122

Dropping a shadow . 123

Adding a shadow file . 123

Database configuration using IBConsole 123

Sweep interval and automated housekeeping 126

Overview of sweeping . 126

Setting the sweep interval 128

Disabling automatic sweeping 128

Performing an immediate database sweep 128

Configuring the Superserver cache 129

Default cache size per database 129

Default cache size per server 129

Default cache size per ISQL connection 130

Setting cache size in applications 130

Verifying cache size . 130

Forced writes vs. buffered writes 131

Validation and repair . 131

Repairing a corrupt database 134

Database shutdown and restart 135

Shutting down a database 135

Restarting a database . 138

Limbo transactions . 138

Recovering transactions 139

gfix command-line tool . 141

gfix error messages . 144

CHAPTER 7 Database Backup and Restore

Benefits of backup and restore 145

Backing up a database . 146

Backup options . 148

Restoring a database . 152

Database ownership . 154

Restore options . 155

gbak command-line tool . 158

viii INTERBASE 6

Database backup . 158

Backing up a database with gbak 161

Restoring a database. 162

The -service option. 165

The user name and password 166

Some backup and restore examples 166

gbak error messages . 168

CHAPTER 8 Database and Server Statistics

Viewing statistics using IBConsole 173

Database statistics options 175

gstat command-line tool . 181

Viewing lock statistics . 182

Retrieving statistics programmatically 184

CHAPTER 9 Interactive Query

ISQL . 188

The ISQL window . 188

Temporary files . 190

Executing SQL statements 190

Commit and Rollback . 193

Saving ISQL input and output 193

Changing ISQL settings 194

Metadata information . 194

Viewing metadata . 194

Command-line isql tool . 196

Invoking isql . 196

Transaction behavior in isql 201

Extracting metadata . 201

isql Commands . 202

Error handling . 203

isql command reference . 204

BLOBDUMP . 205

EDIT . 205

OPERATIONS GUIDE ix

EXIT . 206

HELP. 207

INPUT . 207

OUTPUT . 208

QUIT . 209

SET. 210

SET AUTODDL . 212

SET BLOBDISPLAY . 213

SET COUNT . 215

SET ECHO . 216

SET LIST . 217

SET NAMES . 218

SET PLAN . 219

SET STATS. 220

SET TERM . 221

SET TIME . 223

SHELL . 224

SHOW CHECK . 225

SHOW DATABASE . 225

SHOW DOMAINS . 226

SHOW EXCEPTIONS . 227

SHOW FILTERS . 228

SHOW FUNCTIONS . 229

SHOW GENERATORS . 230

SHOW GRANT . 230

SHOW INDEX . 231

SHOW PROCEDURES . 232

SHOW ROLES . 234

SHOW SYSTEM . 234

SHOW TABLES . 235

SHOW TRIGGERS . 236

SHOW VERSION . 237

SHOW VIEWS . 237

x INTERBASE 6

Using SQL scripts . 238

Creating an isql script . 238

Running an SQL script 239

Committing work in an SQL script 239

Adding comments in an isql script 240

CHAPTER 10 Database and Server Performance

Introduction . 242

Hardware configuration . 242

Choosing a processor speed. 242

Using multiprocessor servers 243

Sizing memory . 243

Using high-performance I/O subsystems 244

Distributing I/O . 245

Using high-bandwidth network systems 246

Using high-performance bus 248

Useful links . 248

Operating system configuration 249

Disabling screen savers 249

Console logins . 250

Sizing a temporary directory 250

Use a dedicated server . 250

Optimizing Windows NT for network applications 251

Understanding Windows NT pitfalls 251

Understanding Linux pitfalls 252

Understanding NetWare pitfalls 253

Network configuration . 254

Choosing a network protocol 254

Configuring hostname lookups 255

Database properties . 256

Choosing a database page size 256

Setting the database page fill ratio 257

Sizing database cache buffers. 257

Buffering database writes 258

OPERATIONS GUIDE xi

Database design principles . 259

Defining indexes . 259

Normalizing databases. 261

Choosing Blob segment size 261

Database tuning tasks . 261

Tuning indexes . 261

Performing regular backups 262

Facilitating garbage collection 263

Application design techniques 263

Using transaction isolation modes 263

Using correlated subqueries 264

Preparing parameterized queries. 265

Designing query optimization plans 266

Deferring index updates. 267

Application development tools 267

InterBase Express™ (IBX) 267

IB Objects . 267

Borland Database Engine 267

Visual components . 269

CHAPTER 11 Data Replication

About IBReplicator . 273

Requirements . 274

IBReplicator features . 275

Components of IBReplicator 276

About data replication . 277

How IBReplicator works . 278

The basic sequence . 279

IBReplicator’s strategies 279

Resolving precedence issues 280

Replication involving new InterBase 6 datatypes. 281

Operation logging . 281

Viewing schema . 281

Running the Replication Server 282

xii INTERBASE 6

Windows platforms . 282

Solaris platforms . 282

Using IBReplicator . 284

Steps in replication . 284

Managing configuration databases 285

Registering databases . 286

Defining replication schemata 288

Defining a replication step by step 289

Customizing default settings 290

Creating schemata . 291

Choosing the source database 291

Choosing the target databases 293

Choosing replicated tables and stored procedures 294

Choosing replicated columns 300

Creating system objects 301

Problems and workarounds 301

APPENDIX A InterBase Document Conventions
The InterBase documentation set 304

Printing conventions . 305

Syntax conventions . 306

Index . i

OPERATIONS GUIDE xiii

List of Tables

Table 1.1 InterBase features . 20

Table 1.2 InterBase specifications . 26

Table 2.1 IBConsole context menu for a server icon 35

Table 2.2 IBConsole context menu for a connected database icon 36

Table 2.3 IBConsole standard toolbar . 37

Table 2.4 Server/database tree commands 38

Table 3.1 isql session settings . 47

Table 3.2 ibmgr commands . 52

Table 4.1 Matrix of connection supported protocols 66

Table 4.2 Using Communication Diagnostics to diagnose connection problems 84

Table 5.1 Format of the isc4.gdb security database 91

Table 5.2 Summary of gsec commands . 99

Table 5.3 gsec options . 100

Table 5.4 gsec security error messages . 102

Table 6.1 Auto vs. manual shadows . 121

Table 6.2 General options . 126

Table 6.3 Validation options . 133

Table 6.4 gfix options . 141

Table 6.5 gfix database maintenance error messages 144

Table 7.1 gbak arguments . 159

Table 7.2 gbak backup options . 160

Table 7.3 gbak restore options . 163

Table 7.4 host_service syntax for calling the Service Manager with gbak 165

Table 7.5 gbak backup and restore error messages. 168

Table 8.1 gstat options . 181

Table 8.2 iblockpr/gds_lock_print options . 183

Table 8.3 Database I/O statistics information items 184

Table 9.1 Toolbar buttons for executing SQL statements 191

Table 9.2 Metadata information items . 196

Table 9.3 isql command-line options . 198

Table 9.4 isql extracting metadata arguments 201

Table 9.5 SQLCODE and message summary 204

Table 9.6 isql commands . 204

xiv INTERBASE 6

LIST OF TABLES

Table 9.7 SET statements . 210

Table 10.1 Matrix of BDE driver flags values 268

Table A.1 Books in the InterBase 6 documentation set 304

Table A.2 Text conventions . 305

Table A.3 Syntax conventions . 306

OPERATIONS GUIDE xv

List of Figures

Figure 2.1 IBConsole window . 34

Figure 2.2 IBConsole Toolbar . 37

Figure 2.3 IBConsole Tree pane . 38

Figure 3.1 Server Properties - Alias tab . 44

Figure 3.2 Server Properties - General tab . 45

Figure 3.3 Preferences dialog . 46

Figure 3.4 SQL Options dialog . 47

Figure 3.5 InterBase Server icon on the task tray 51

Figure 3.6 Server Log dialog . 63

Figure 4.1 Register Server and Connect dialog 67

Figure 4.2 Server Login dialog . 68

Figure 4.3 Register Database and Connect dialog 70

Figure 4.4 Database connect dialog . 72

Figure 4.5 Communications dialog - DB Connection 82

Figure 4.6 Communications dialog - TCP/IP 83

Figure 4.7 Communications dialog - NetBEUI 85

Figure 4.8 Communications dialog - SPX . 86

Figure 5.1 User information dialog . 95

Figure 6.1 Create Database dialog . 113

Figure 6.2 Backup alias properties . 116

Figure 6.3 Database Properties - Alias tab 124

Figure 6.4 Database Properties - General tab 125

Figure 6.5 Database Validation dialog . 132

Figure 6.6 Validation report dialog . 134

Figure 6.7 Database shutdown dialog . 135

Figure 6.8 Transaction Recovery - limbo transactions 139

Figure 6.9 Transaction Recovery - advice 140

Figure 7.1 Database backup dialog . 147

Figure 7.2 Database backup options . 149

Figure 7.3 Database backup verbose output 151

Figure 7.4 Database Restore dialog . 152

Figure 7.5 Database restore options . 155

xvi INTERBASE 6

LIST OF FIGURES

Figure 7.6 Database restore verbose output 158

Figure 8.1 Database Statistics options . 174

Figure 8.2 Database Statistics dialog . 175

Figure 9.1 IBConsole - ISQL . 188

Figure 9.2 Metadata tab . 195

Figure 10.1 Comparing external transfer rate of disk I/O interfaces 244

Figure 10.2 Comparing bandwidth of network interfaces 247

Figure 10.3 Comparing throughput of bus technologies 248

Figure 11.1 The Configuration Editor . 285

Figure 11.2 The Database tab of the Replication Manager 287

Figure 11.3 Replication Manager’s Replication tab 289

Figure 11.4 The Source Database dialog . 292

Figure 11.5 The Add Target Database dialog 293

OPERATIONS GUIDE 17

CHAPTER

1
Chapter 1Introduction

The InterBase Operations Guide is a task-oriented reference of procedures to install,
configure, and maintain an InterBase database server or Local InterBase workstation.

This chapter describes who should read this book, and provides a brief overview of the
capabilities and tools available in the InterBase product line.

Who should use this guide
The Interbase Operations Guide is written for database administrators or system
administrators who are responsible for operation and maintenance of an InterBase
database server. The material is also useful for application developers who wish to
understand more about the InterBase technology. The guide assumes knowledge of:

· Server operating systems including Windows NT, NetWare, and UNIX

· Networks and network protocols

· Application programming

CHAPTER 1 INTRODUCTION

18 INTERBASE 6

Topics covered in this guide
g Introduction to InterBase features

g Overview of concepts of client, server, application, middleware

g General instructions on installing and licensing InterBase on Windows and UNIX
platforms

g Server configuration, startup and shutdown

g Network configuration and troubleshooting guidelines

g Security configuration for InterBase servers, databases, and data; reference for the
security configuration tools

g Database configuration and maintenance options; reference for the maintenance tools

g Backing up and restoring databases; reference for the backup tools

g Performance troubleshooting and tuning guidelines.

g Database and server statistics monitoring

g Interactive query profiling; reference for the interactive query tools

System requirements and server sizing
InterBase server runs on a variety of platforms, including Microsoft Window NT 4.0 and
Windows 95/98, and several UNIX operating systems.

The InterBase server software makes efficient use of system resources on the server node.
The server process uses little more than 1.9Mb of memory. Typically, each client
connection to the server adds approximately 1Mb of memory. This varies based on the
nature of the client applications and the database design, so the figure is only a baseline
for comparison.

The minimal software installation requires disk space ranging from 9Mb to 12Mb,
depending on platform. During operation, InterBase’s sorting routine requires additional
disk space as scratch space. The amount of space depends on the volume and type of
data the server is requested to sort.

The InterBase client also runs on any of these operating systems. In addition, InterBase
provides the InterClient Java client interface using the JDBC standard for database
connectivity. Client applications written in Java can run on any client platform that
supports Java, even if InterBase does not explicitly list it among its supported platforms.
Examples include the Macintosh and Internet appliances with embedded Java
capabilities.

SYSTEM REQUIREMENTS AND SERVER SIZING

OPERATIONS GUIDE 19

Windows system requirements
Operating system: Windows NT 4.0 with Service Pack 4, Windows 95 with Service
Pack 1, or Windows 98

Memory: 16 megabytes minimum; 64 recommended for a server

Processor/Hardware model: 486DX2 66MHz minimum; Pentium 100MHz or greater
recommended for a multiclient server

Compilers: Microsoft Visual C++ 4.2 or Borland C++ Builder 3.0

UNIX system requirements

HP-UX

Operating system: HP-UX 10.20

HP DCE/9000 runtime support (DCE-Core) must be installed

Memory: 32 megabytes minimum; 64 recommended for a server

Processor: PA-RISC

C compiler: HP C/HP-UX Version A.10.32;

C++ compiler: HP C++/HP-UX Version A.10.22;

Fortran compiler: 10.20 release of HP Fortran/9000

Hardware Model: HP/9000 Series 7xx or 8xx

Solaris

Operating system: Solaris 2.6.x or Solaris 7

Memory: 32 megabytes minimum; 64 recommended for a server

Processor/Hardware model: SPARC or UltraSPARC

C compiler: SPARCWorks SC 4.2 C compiler

C++ compiler: SPARCWorks SC3.0.1 C++ compiler

Fortran compiler: SPARCWorks SC4.0 Fortran compiler

COBOL compiler: MicroFocus Cobol 4.0

Ada compiler: SPARCWorks SC4.0 Ada compiler

CHAPTER 1 INTRODUCTION

20 INTERBASE 6

Other platforms

Information on system requirements for other operating systems supported by
InterBase are not available at the time of this writing. Refer to online sources of
information, including release notes included on your product media, and web pages
containing platform-specific notes on the InterBase web site, http://www.interbase.com/.

Primary InterBase features
InterBase on Windows 95/98 and Windows NT offers all the benefits of a full-featured
RDBMS. The following table lists some of the key InterBase features:

Feature Description

Network protocol support • All platforms of InterBase support TCP/IP
• InterBase server for Windows NT and all Windows clients support

NetBEUI/named pipes
• InterBase Server for NetWare and all Windows clients support IPX/SPX

SQL-92 entry-level
conformance

ANSI standard SQL, available through an Interactive SQL tool and
Borland desktop applications

Simultaneous access to
multiple databases

One application can access many databases at the same time

multigenerational
architecture

Server maintains older versions of records (as needed) so that
transactions can see a consistent view of data

Optimistic row-level locking Server locks only the individual records that a client updates, instead of
locking an entire database page

Query optimization Server optimizes queries automatically, or you can manually specify a
query plan

Blob datatype and Blob filters Dynamically sizeable datatypes that can contain unformatted data such
as graphics and text

Declarative referential
integrity

Automatic enforcement of cross-table relationships (between FOREIGN
and PRIMARY KEYs)

Stored procedures Programmatic elements in the database for advanced queries and data
manipulation actions

TABLE 1.1 InterBase features

PRIMARY INTERBASE FEATURES

OPERATIONS GUIDE 21

Triggers Self-contained program modules that are activated when data in a
specific table is inserted, updated, or deleted

Event alerters Messages passed from the database to an application; enables
applications to receive asynchronous notification of database changes

Updatable views Views can reflect data changes as they occur

User-defined functions (UDFs) Program modules that run on the server

Outer joins Relational construct between two tables that enables complex
operations

Explicit transaction
management

Full control of transaction start, commit, and rollback, including named
transactions

Concurrent multiple
application access to data

One client reading a table does not block others from it

multidimensional arrays Column datatypes arranged in an indexed list of elements

Automatic two-phase commit Multi-database transactions check that changes to all databases
happen before committing (InterBase Server only)

InterBase API Functions that enable applications to construct SQL/DSQL statements
directly to the InterBase engine and receive results back

gpre Preprocessor for converting embedded SQL/DSQL statements and
variables into a format that can be read by a host-language compiler

IBConsole Windows tool for data definition, query, database backup, restoration,
maintenance, and security

 isql Command-line version of the InterBase interactive SQL tool; can be used
instead of IBConsole.

Feature Description

TABLE 1.1 InterBase features (continued)

CHAPTER 1 INTRODUCTION

22 INTERBASE 6

SQL support
InterBase conforms to entry-level SQL-92 requirements. It supports declarative referential
integrity with cascading operations, updatable views, and outer joins. InterBase Server
provides libraries that support development of embedded SQL and DSQL client
applications. On all InterBase platforms, client applications can be written to the
InterBase API, a library of functions with which to send requests for database operations
to the server.

InterBase also supports extended SQL features, some of which anticipate SQL3
extensions to the SQL standard. These include stored procedures, triggers, SQL roles, and
segmented Blob support.

For information on SQL, see the Language Reference.

Multiuser database access
InterBase enables many client applications to access a single database simultaneously. A
client applications can also access the multiple databases simultaneously. SQL triggers
can notify client applications when specific database events occur, such as insertions or
deletions.

You can write user-defined functions (UDFs) and store them in an InterBase database,
where they are accessible to all client applications accessing the database.

Command-line DBA utilities Command-line version of the InterBase database administration tools;
can be used instead of IBConsole

Header files Files included at the beginning of application programs that define
InterBase datatypes and function calls

Example make files Files that demonstrate how to invoke the makefiles to compile and link
InterBase applications

Example programs C programs, ready to compile and link, which you can use to query
standard InterBase example databases on the server

Message file interbase.msg, containing messages presented to the user

Feature Description

TABLE 1.1 InterBase features (continued)

PRIMARY INTERBASE FEATURES

OPERATIONS GUIDE 23

Transaction management
Client applications can start multiple simultaneous transactions. InterBase provides full
and explicit transaction control for starting, committing, and rolling back transactions.
The statements and functions that control starting a transaction also control transaction
behavior.

InterBase transactions can be isolated from changes made by other concurrent
transactions. For the life of these transactions, the database appears to be unchanged
except for the changes made by the transaction. Records deleted by another transaction
exist, newly stored records do not appear to exist, and updated records remain in the
original state.

For information on transaction management, see the Embedded SQL Guide.

Multigenerational architecture
InterBase provides expedient handling of time-critical transactions through support of
data concurrency and consistency in mixed use—query and update—environments.
InterBase uses a multigenerational architecture, which creates and stores multiple
versions of each data record. By creating a new version of a record, InterBase allows all
clients to read a version of any record at any time, even if another user is changing that
record. InterBase also uses transactions to isolate groups of database changes from other
changes.

Optimistic row-level locking
Optimistic locks are applied only when a client actually updates data, instead of at the
beginning of a transaction. InterBase uses optimistic locking technology to provide
greater throughput of database operations for clients.

InterBase implements true row-level locks, to restrict changes only to the records of the
database that a client changes; this is distinct from page-level locks, which restrict any
arbitrary data that is stored physically nearby in the database. Row-level locks permit
multiple clients to update data that is in the same table without coming into conflict. This
results in greater throughput and less serialization of database operations.

InterBase also provides options for pessimistic table-level locking. See the Embedded SQL
Guide for details.

CHAPTER 1 INTRODUCTION

24 INTERBASE 6

Database administration
InterBase provides both Windows-based and command-line tools for managing
databases and servers.

You can perform database administration on databases residing on Local InterBase or
InterBase Server with IBConsole, a Windows application running on a client PC. You can
also use command-line database administration utilities on the server.

IBConsole and the command-line utilities enable the database administrator to:

g Manage server security

g Back up and restore a database

g Perform database maintenance

g View database and lock manager statistics

You can find more information on server security later in this chapter, and later chapters
describe individual tasks you can accomplish with IBConsole and the command-line
tools.

4 Managing server security
InterBase maintains a list of user names and passwords in a security database. The
security database allows clients to connect to an InterBase database on a server if a user
name and password supplied by the client match a valid user name and password
combination in the security database, isc4.gdb, on the server.

You can add and delete user names and modify a user’s parameters, such as password
and user ID.

For information about managing server security, see Chapter 5, “Database Security.”

4 Backing up and restoring databases
You can backup and restore a database using IBConsole or command-line gbak. A backup
can run concurrently with other processes accessing the database because it does not
require exclusive access to the database.

Database backup and restoration can also be used for:

g Erasing obsolete versions of database records

g Changing the database page size

g Changing the database from single-file to multifile

g Transferring a database from one operating system to another

PRIMARY INTERBASE FEATURES

OPERATIONS GUIDE 25

IBConsole and the command-line backup tool also have an option for backing up only a
database’s metadata to recreate an empty database.

For information about database backup and recovery, see Chapter 7, “Database Backup
and Restore.”

4 Maintaining a database
You can prepare a database for shutdown and perform database maintenance using
either IBConsole or the command-line utilities. If a database incurs minor problems, such
as an operating system write error, these tools enable you to sweep a database without
taking the database off-line.

Some of the tasks that are part of database maintenance are:

g Sweeping a database

g Shutting down the database to provide exclusive access to it

g Validating table fragments

g Preparing a corrupt database for backup

g Resolving transactions “in limbo” from a two-phase commit

g Validating and repairing the database structure

For information on database maintenance, see Chapter 6, “Database Configuration
and Maintenance.”

4 Viewing statistics
IBConsole enables the database administrator (DBA) to monitor the status of a database
by viewing statistics from the database header page, and an analysis of tables and
indexes. For more information, see Chapter 8, “Database and Server Statistics.”

InterBase Specifications
This section defines the limits of a number of InterBase characteristics. The values the
following table lists are design limits, and in most cases are further restricted by finite
resource restrictions in the operating system or computer hardware.

CHAPTER 1 INTRODUCTION

26 INTERBASE 6

Characteristic Value

Maximum number of clients
connected to one server

There is no single number for the maximum number of clients the
InterBase server can serve—it depends on a combination of
factors including capability of the operating system, limitations of
the hardware, and the demands that each client puts on the
server.

Assuming a “normal” type of client application that executes
database operations from human interaction, and a modern
server platform (Pentium 150MHz+, 64Mb RAM), expect the
InterBase server to comfortably handle up to 150 clients.

This is a guideline, not a guarantee. Applications that engage in
high levels of contention or that perform complex or high-volume
operations could cause the practical number of clients to be fewer.
Note also that some operating systems do not have the
technology to serve 150 incoming network connections.

Maximum database size The maximum addressable file size for a single file is 2Gb on
Windows 95/98, 4Gb on Windows NT and most UNIX brands. Refer
to your operating system documentation to verify file size limits.

Combined with the multifile database feature of InterBase, this
allows many terrabytes of addressable file space.

Maximum number of files
per database

By design, 216 (65,536), because the files are enumerated with an
unsigned 16-bit integer. Shadow files count toward this limit.

This is a design parameter of InterBase, but most operating
systems have a much lower limit on the number of files that a
single process can have open simultaneously. In some cases, the
OS provides a means to raise this limit. Refer to your OS
documentation for the default open files limit, and the means to
raise this limit.

Maximum number of databases
open in one transaction

No restriction. The parameters in a transaction parameter buffer
comprise a linked list, so there is no limit except that imposed by
system resources.

Maximum number of tables
per database

By design, 216 (65,536), because tables are enumerated with a
16-bit unsigned integer.

TABLE 1.2 InterBase specifications

PRIMARY INTERBASE FEATURES

OPERATIONS GUIDE 27

Maximum row size 64Kb. Each Blob and array contributes eight bytes to this limit in
the form of their Blob handle.

Systems tables (tables maintained by the InterBase engine for
system data) have a row size limit of 128Kb.

Maximum number of rows and
columns per table

By design, 232 rows, because rows are enumerated with a 32-bit
unsigned integer per table.

Number of columns in a row depends on datatypes used. One row
can be 64K. For example, you can define 16,384 columns of type
INTEGER (four bytes each) in one table.

Maximum number of indexes
per table

By design, 216 (65,536), because indexes per table are enumerated
with a 16-bit unsigned integer.

Maximum number of indexes
per database

By design, 232, because there you can create 216 tables per
database, and each table can have 216 indexes.

Maximum index key size Starts at 256 bytes for a single-column key, and 200 for
multicolumn keys; subtract four bytes for each additional column.

Example: a single-column CHAR key can be up to 256 – 4 = 252
bytes; a three-column key must add up to 200 – 12 = 188 bytes.

Note that multibyte character sets must fit within the key by
counting bytes, not by counting characters. For example, a
single-column key using 3-byte UNICODE_FSS characters can
have a maximum of (256 – 4) / 3 = 84 characters.

Maximum number of events
per stored procedure

No restriction by design, but there is a practical limit, given that
there is a limit on the length of code in a stored procedure or
trigger (see below).

Maximum stored procedure
or trigger code size

48Kb of BLR, the bytecode language compiled from stored
procedure or trigger language.

Maximum Blob size The size of the largest single Blob datum depends on the
database page size:
1Kb page size => 64Mb
2Kb page size => 512Mb
4Kb page size => 4Gb
8Kb page size => 32Gb

The maximum Blob segment size is 64Kb.

Characteristic Value

TABLE 1.2 InterBase specifications

CHAPTER 1 INTRODUCTION

28 INTERBASE 6

Overview of command-line tools
For each task that you can perform in IBConsole, there is a command-line tool that you
can run in a command window or console to perform the same task.

The UNIX versions of InterBase include all of the following command-line tools. The
graphical Windows tools do not run on a UNIX workstation, though you can run most of
the tools on Windows to connect to and operate on InterBase databases that reside on
UNIX servers.

An advantage of noninteractive, command-line tools is that you can use them in batch
files or scripts to perform common database operations. You can automate execution of
scripts through your operating system’s scheduling facility (cron on UNIX, AT on
Windows NT). It is more difficult to automate execution of graphical tools.

Maximum tables in a JOIN There is no restriction by design, though the task of joining tables
is exponential in relation to the number of tables in the join.

The largest practical number of tables in a JOIN is about 16, but
experiment with your application and a realistic volume of data to
find the most complex join that has acceptable performance.

Maximum levels of nested
queries

There is no restriction by design.

The practical limit depends on the type of queries you nest.
Experiment with your application and a realistic volume of data to
find the deepest nested query that has acceptable performance.

Maximum number of columns
per one composite index

Sixteen.

Levels of nesting
per stored procedure or trigger

750 on Windows 95/98 and Windows NT.

1000 for UNIX platforms.

Maximum size of key
in SORT clause

32Kb.

Range of date values January 1, 100 a.d. to February 29, 32768 a.d.

Characteristic Value

TABLE 1.2 InterBase specifications

OVERVIEW OF COMMAND-LINE TOOLS

OPERATIONS GUIDE 29

isql
The isql tool is a shell-type interactive program that enables you to quickly and easily
enter SQL statements to execute with respect to a database. This tool uses InterBase’s
Dynamic SQL mechanism to submit a statement to the server, prepare it, execute it, and
retrieve any data from statements with output (for example, from a SELECT or EXECUTE
PROCEDURE). isql manages transactions, displays metadata information, and can produce
and execute scripts containing SQL statements.

See Chapter 9: “Interactive Query” for full documentation and reference on isql and
using isql from IBConsole.

gbak
The gbak tool provides options for backing up and restoring databases. gbak now backs
up to multiple files and restores from multiple files, making it unnecessary to use the
older gsplit command. Only SYSDBA and the owner of a database can back up a database.
Any InterBase user defined on the server can restore a database, although the user must
be SYSDBA or the database owner in order to restore it over an existing database.

Note When you back up and restore databases from IBConsole on Windows platforms,
you are accessing this same tool through the IBConsole interface.

See Chapter 7: “Database Backup and Restore” for full documentation and reference
on using gbak.

gfix
gfix configures several properties of a database, including:

g Database active/shutdown status

g Default cache allocation for clients

g Sweep interval and manual sweep

g Synchronous or asynchronous writes

g Detection of some types of database corruption

g Recovery of unresolved distributed transactions

You can also access all the functionality of gfix through the IBConsole graphical interface.

Only SYSDBA and the owner of a database can run gfix against that database.

CHAPTER 1 INTRODUCTION

30 INTERBASE 6

See Chapter 6: “Database Configuration and Maintenance” for descriptions of these
properties, and a reference of the gfix tool.

gsec
You can configure authorized users to access InterBase servers and databases with gsec.
You can also perform the same manipulations on the security database with IBConsole.

See Chapter 5: “Database Security” for full details and reference.

gstat
gstat displays some database statistics related to transaction inventory, data distribution
within a database, and index efficiency. You can also view these statistics from IBConsole.
You must be SYSDBA or the owner of a database to view its statistics.

See Chapter 8: “Database and Server Statistics” for more information on retrieving
and interpreting database statistics.

iblockpr (gds_lock_print)
You can view statistics from the InterBase server lock manager to monitor lock request
throughput and identify the cause of deadlocks in the rare case that there is a problem
with the InterBase lock manager. The utility is called gds_lock_print on the UNIX platforms,
and iblockpr on the Windows platforms.

See Chapter 8: “Database and Server Statistics” for more information on retrieving
and interpreting lock statistics.

ibmgr
On UNIX servers, use the ibmgr utility to start and stop the InterBase server process. See
the section “UNIX daemon” on page 52 for details on using this utility.

OPERATIONS GUIDE 31

CHAPTER 1 INTRODUCTION

32 INTERBASE 6

OPERATIONS GUIDE 33

CHAPTER

2
Chapter 2IBConsole: The

InterBase Interface

InterBase provides an intuitive graphical user interface, called IBConsole, with which you
can perform every task necessary to configure and maintain an InterBase server, to create
and administer databases on the server, and to execute interactive SQL. These features
include InterBase security, server management, database management and InterBase
interactive SQL (ISQL).

IBConsole
This chapter introduces IBConsole, a Windows application for monitoring and
administering InterBase databases and servers. IBConsole runs on Windows, but can
manage databases on any server on the local network.

IBConsole enables you to:

g Manage server security

g Backup and restore a database

g View database and server statistics

g Perform database maintenance, including:

CHAPTER 2 IBCONSOLE: THE INTERBASE INTERFACE

34 INTERBASE 6

· Validating the integrity of a database

· Sweeping a database

· Recovering transactions that are “in limbo”

4 The IBConsole window
To start IBConsole, choose IBConsole from the InterBase 6 Start menu. The IBConsole
window opens:

FIGURE 2.1 IBConsole window

Elements in the IBConsole dialog:

g Menu bar Commands for performing DBA tasks with IBConsole.

g Toolbars Shortcut buttons for menu commands. The toolbars can be fixed or floating.

g Tree pane Displays a hierarchy of servers and databases that are registered in IBConsole.

g Work pane Displays specific information or allows you to perform activities, depending
on what item is currently selected in the Tree pane.

g Status bar Shows the current server and user login and help for menus and the toolbar.

Status bar

Menu bar

Toolbar

Tree pane

Work pane

IBCONSOLE

OPERATIONS GUIDE 35

4 IBConsole menus
The IBConsole menus are the basic way to perform tasks with IBConsole. There are seven
pull-down menus.

g Console menu enables you to print and exit from IBConsole.

g View menu enables you to indicate whether or not IBConsole displays system data and
dependencies and to change the display and appearance of items listed in the Work pane.

g Server menu enables you to register and un-register a server, log in to and log out of a
server, diagnose a server connection, manage user security, add and remove certificates,
and view server properties.

g Database menu enables you to register and un-register a database, create and drop a
database, connect to and disconnect from a database, view database metadata, and view
and set database properties, including forced writes, sweep interval, SQL dialect, and
access mode.

g Tools menu enables you to back up and restore databases, perform database
maintenance, including performing sweeps, validation, and transaction recovery, start the
interactive SQL window, and set IBConsole options. The interactive SQL window has its
own set of menus, which are discussed in Chapter 9: “Interactive Query”.

g Help menu enables you to access both IBConsole on-line help and InterBase on-line help.

4 Context menus
IBConsole also enables you to perform certain tasks with context sensitive popup menus
called context menus. Tables 2.1 and 2.2 are examples of context menus.

When you right-click a server icon, a context menu is displayed listing actions that can
be performed on the selected server.

Popup command Description

Register Register the current server.

Un-register Un-register the current server.

Login Login to the selected server.

Logout Logout from the current server.

Add Certificate Add certificate ID/keys for the current server.

TABLE 2.1 IBConsole context menu for a server icon

CHAPTER 2 IBCONSOLE: THE INTERBASE INTERFACE

36 INTERBASE 6

When you right-click a connected database icon, a context menu is displayed listing
actions that can be performed on the database:

4 IBConsole toolbar
A toolbar is a row of buttons that are shortcuts for menu commands. The following table
describes each toolbar button in detail.

Remove Certificate Remove certificate ID/keys for the current server.

User Security Authorize users on the current server.

View Log file Display the server log for the current server.

Diagnose Connection Display database and network protocol communication
diagnostics.

Server Properties View and update server information for the current server.

Popup command Description

Disconnect Disconnect from the current database.

Maintenance Perform maintenance tasks including: view database statistics,
shutdown, database restart, sweep, and transaction recovery.

Backup/Restore Back up or restore a database to a device or file.

View Metadata View the metadata for the selected database.

Properties View database information, adjust the database sweep interval,
set the SQL dialect and access mode, and enable forced writes.

TABLE 2.2 IBConsole context menu for a connected database icon

Popup command Description

TABLE 2.1 IBConsole context menu for a server icon (continued)

IBCONSOLE

OPERATIONS GUIDE 37

FIGURE 2.2 IBConsole Toolbar

Button Description

Register server: opens the register server dialog, enabling you to register and login
to a local or remote server.

Un-register server: enables you to unregister a local or remote server. This
automatically disconnects a database on the server and logout from the server.

Database connect: opens the database connect dialog, enabling you to connect to
a database on the current server.

Database disconnect: enables you to disconnect a database on the current server.

Launch SQL: opens the interactive SQL window, which is discussed in detail in
Chapter 9: “Interactive Query”.

TABLE 2.3 IBConsole standard toolbar

CHAPTER 2 IBCONSOLE: THE INTERBASE INTERFACE

38 INTERBASE 6

4 Tree pane
When you open the IBConsole window, you must register and log in to a local or remote
server and then register and connect to the server’s databases to display the Tree pane.
See “Connection specification” on page 66 to learn how to register and connect servers and
databases.

FIGURE 2.3 IBConsole Tree pane

Navigating the server/database hierarchy is achieved by expanding and retracting nodes
(or branches) that have subdetails or attributes. This is accomplished by a number of
methods, outlined in Table 2.4.

To expand or retract the server/database tree in the Tree pane:

Tasks Commands

Display a server’s databases • Left-click the plus (+) to the left of the server icon
• Double-click the server icon
• Press the plus (+) key
• Press the right arrow key

Retract a server’s databases • Left-click the minus (–) to the left of the server icon
• Double-click the server icon
• Press the minus (–) key
• Press the left arrow key

TABLE 2.4 Server/database tree commands

Current Server

Current Database

Expand current database to see hierarchy of
tables, views, procedures, functions, and other
database attributes.

IBCONSOLE

OPERATIONS GUIDE 39

Similarly, you can follow these methods to expand or retract any tree branch. Expanding
a database branch displays a list of database attributes. Expanding a table branch displays
a list of table attributes, and so on.

In an expanded tree, click a database name to highlight it. The highlighted database is
the one on which IBConsole operates, referred to as the current database. The current
server is the server on which the current database resides.

The hierarchy displayed in the Tree pane of figure 2.1 is an example of a fully expanded
tree.

g Expanding the InterBase Server Aliases branch displays a list of registered servers.

g Expanding a connected server branch displays a list of server attributes, including
Databases, Backups, Users, Certificates, and the Server Log.

g Clicking on the Database branch displays a list of registered databases on the current
server.

g Expanding a connected database branch displays a list of database attributes, including
Domains, Tables, Views, Stored Procedures, External Functions, Generators, Exceptions,
Blob Filters, and Roles.

4 Work pane
Depending on what item has been selected in the Tree pane, the Work pane gives specific
information or enables you to execute certain tasks.

g Clicking on the Backup icon displays a list of backup aliases for the current server.

g Clicking on the Certificates icon displays a list of InterBase certificate keys and IDs for
the current server.

g Clicking on the Users icon displays a list of users defined on the server.

g Clicking on a a database attribute icon displays information for that particular attribute.
Clicking on the icon for a database object, such as a table name, in the Work Pane
launches an object viewer specific to that object. These are discussed in “Viewing
metadata” on page 194.

4 Standard text display window
The standard text display window is used to monitor database backup and restoration, to
display database statistics and to view server and administration logs.

The standard text display window contains a menu bar, a toolbar with icons for
often-used menu commands, and a scrolling text display area. Figure 7.3, “Database
backup verbose output” on page 151 is an example of the standard text display window.

CHAPTER 2 IBCONSOLE: THE INTERBASE INTERFACE

40 INTERBASE 6

Elements in a standard text display window:

g Menu bar A File menu enables you to Save the contents of the window, Print the contents
of the window and Exit from the window. An Edit menu enables you to Copy selected
text in the window to the clipboard, Select All text in the window, and Find a specified
word or phrase within the displayed text.

g Toolbar Save, Print, and Copy toolbar buttons enable you to save and print the contents
of the text display window as well as copy selected text to the clipboard.

g Status bar Shows the cursor location, given by line and column, within the text display
window.

InterBase Security
InterBase Security includes server security features that control how a database is
accessed and used.

Server security enables you to:

g Add a user to the security database

g Delete a user from the security database

g Modify user information in the security database

g Display a list of users in the security database

See Chapter 5, “Database Security,” on page 89 for more details on server security.

Server Management
Server management features enable you to:

g Register/un-register a server and login/logout a server

g Manage server/client certificates

g Retrieve server properties and environment settings

g Perform server diagnostics

See Chapter 4, “Network Configuration” and Chapter 8, “Database and Server
Statistics” for further information on server management.

IBCONSOLE

OPERATIONS GUIDE 41

Database Management
Database management features offer monitoring and administering of InterBase
databases and servers. These features enable you to:

g Register/un-register a database and connect/disconnect a database

g Backup, restore and repair a database

g View and modify database properties

g Validate database integrity

g Perform a database sweep

g Recover transactions that are “in limbo”

g Manage the administration log

g View database statistics

See Chapter 4, “Network Configuration”, Chapter 6, “Database Configuration
and Maintenance” and Chapter 7, “Database Backup and Restore” for more details
on database management.

CHAPTER 2 IBCONSOLE: THE INTERBASE INTERFACE

42 INTERBASE 6

OPERATIONS GUIDE 43

CHAPTER

3
Chapter 3Server Configuration

This chapter describes the operation and configuration of the InterBase server process,
including the following topics:

g Configuring the server with IBConsole

g Setting IBConsole session settings

g Starting and stopping the InterBase server on Windows NT, Windows 95/98, and UNIX

g The attachment governor

g Setting environment variables

g Managing temporary files

g Configuration parameters in isc_config

g Monitoring client connections with IBConsole

g Diagnostic log files

CHAPTER 3 SERVER CONFIGURATION

44 INTERBASE 6

Server configuration using IBConsole
The Server Properties dialog enables you to display and configure certain server settings.
You can access the Server Properties dialog by any of the following methods:

g Select a server (or any branch under the server hierarchy) in the Tree pane and choose
Server | Server Properties.

g Select a server in the Tree pane and click Server Properties in the Work pane.

g Right-click a server in the Tree pane and choose Server Properties from the context menu.

The Server Properties dialog contains two tabs, Alias and General. You must be connected
to a server to access the Server Properties dialog.

4 The Alias tab
The Alias tab of the Server Properties dialog is where you can specify an alias name for
a server. If, however, the server is a local server then you cannot edit anything.

FIGURE 3.1 Server Properties - Alias tab

To edit server alias settings, enter the alias name of the server in the Alias Name text field
and click Apply to save your changes.

If you need to view the general server settings, click the General tab and see “The
General tab” below for further information.

4 The General tab
The General tab of the Server Properties dialog is where you can view such server settings
as the version, capabilities, attached databases, number of databases, and number of
attachments. You cannot edit the information displayed on this tab.

IBCONSOLE PREFERENCES

OPERATIONS GUIDE 45

FIGURE 3.2 Server Properties - General tab

The server properties displayed in the general tab are described below:

· Version: displays the version number for the InterBase Server.

· Capabilities: displays support capabilities for the InterBase Server.

· Attached Databases: displays all attached databases on the InterBase Server.

· Number of databases: displays the total number of databases in the InterBase Server.

· Number of attachments: displays the total number attachments to the InterBase Server.

You cannot update the information displayed on the General tab, however you can click
Refresh at any time to retrieve the current server property information. If you need to
view or configure the server alias settings, click the Alias tab and see “The Alias tab”
above for further information. Once you finish making changes to the server properties
Alias tab click Apply to save your changes, otherwise click Cancel.

IBConsole Preferences
The Preferences dialog enables you to specify a default temporary directory and external
text editor for the current session. You can access the Preferences dialog by choosing
Tools | IBConsole Preferences.

The General tab of the Preferences dialog is where you can specify an external text editor
which IBConsole will use for viewing text files.

CHAPTER 3 SERVER CONFIGURATION

46 INTERBASE 6

FIGURE 3.3 Preferences dialog

To specify IBConsole preferences:

1. Enter the file path of the application temporary directory. If you prefer, you
can also click the browse button to locate the directory you want.

2. Uncheck the Use Default Editor box and enter the filename of the external
text editor, including the path where the file is located, in the Editor Filename
text field. If you prefer, you can also click the browse button to locate the
file you want.

Note If you do not specify a filename then the internal text viewer will be used.

3. Enter the parameters or switches to use with the specified text editor in the
Editor Parameters text field and click Apply.

ISQL preferences
Use the SQL Options dialog to display and modify the ISQL session settings. You can
specify options by clicking the option value and choosing a new value from a drop down
list of values or by double-clicking the option value to rotate its value to the next in the
list of values.

Select Query | Options from the Interactive SQL window to display the SQL Options dialog.

ISQL PREFERENCES

OPERATIONS GUIDE 47

FIGURE 3.4 SQL Options dialog

The following table summarizes the isql session settings:

Settings and values Behavior

Show Query Plan

• True
• False

If this setting is True, IBConsole displays the query plan chosen by the
optimizer when a SELECT is entered. To modify the optimizer plan, use
the PLAN option of the SQL SELECT statement.

See “SET PLAN” on page 219.

Auto Commit DDL

• True
• False

• If this setting is True, IBConsole automatically commits DDL (data
definition) statements as each statement is entered. This setting is True
by default.

• If this setting is False, you must explicitly commit DDL statements (with
Query | Commit Work) to make them permanent.

See “SET AUTODDL”on page 212.

TABLE 3.1 isql session settings

CHAPTER 3 SERVER CONFIGURATION

48 INTERBASE 6

Character Set Determines the active character set for strings for subsequent
connections to the database; enables you to override the default
character set for a database.

• Specify the character set before connecting to the database whose
character set you want to specify. For a complete list of character sets
recognized by InterBase, see the Language Reference.

• Choice of character set limits possible collation orders to a subset of all
available collation orders. Given a character set, a collation order can
be specified when data is selected, inserted, or updated in a column.

• You can perform the same function in an SQL script with the SET NAMES
command. Use SET NAMES before connecting to the database whose
character set you want to specify.

See “SET NAMES” on page 218 for more information.

BLOB Display

• Enable
• Disable
• Restrict

Determines how IBConsole displays columns of Blob data. SELECT always
displays the Blob ID for columns of Blob datatype. By default, a SELECT
also displays actual Blob data of text subtypes beneath the associated
row.

• If this setting is set to Disable, IBConsole does not display the contents
of Blob columns.

• If this setting is set to Enable, IBConsole displays the contents of Blob
columns.

• If this setting is set to Restrict, IBConsole displays the contents of only
Blob columns of the specified BLOB Subtype.

BLOB Subtype

• Text
• Unknown

Used in conjunction with the BLOB Display setting above.

Terminator Identifies the end-of-statement symbol to be used for SQL queries

• Default terminator is the semicolon (;)
• You can specify any character or group of characters as the terminator.
• You can change the terminator with the -terminator command line

option or with the SET TERMINATOR command in an SQL script.

Settings and values Behavior

TABLE 3.1 isql session settings (continued)

WINDOWS NT SERVICE

OPERATIONS GUIDE 49

Windows NT service
On Windows NT, a service is a program that runs outside of the context of a given user
login session. A service runs even when there is no user logged in on the desktop of the
Windows NT system. This section details how to configure and run InterBase as a service
on Windows NT.

Starting and stopping the service
The InterBase Server and InterBase Guardian must be started prior to enabling database
connections. The default install sets InterBase to run automatically as a service when the
system boots up. To start it without rebooting, access Services in the Control Panel and
enable the InterBase Guardian. No icon appears in the Taskbar when InterBase runs as
a service.

Selecting service startup options
You can configure InterBase Server services or change its startup options by using the
Registry Configuration Utility (regcfg.exe). This utility enables you to:

g Choose how InterBase starts:

· Start InterBase automatically as a service (recommended). InterBase starts
automatically when you start Windows NT.

· Start InterBase manually as a Service. InterBase must be started using the Services
Control Panel or the Registry Configuration Utility (regcfg.exe).

· Start InterBase automatically as an icon. The enabled server appears as an icon on the
desktop each time you start Windows NT.

· Start InterBase manually as an icon. To start the server, run InterBase Server from the
InterBase 5 Start menu. The server appears as an icon on the desktop.

g Choose the process priority. The InterBase server process is a background process that by
default runs at normal priority. If there are other processes running at high priority, you
might wish to increase the priority of the InterBase process. You can run InterBase in
either normal or high-priority.

g Determine the location of the InterBase Server or change the directory for the InterBase
license file, message file, and security database.

g Remove InterBase Information from the Registry and Services database.

g Start and Stop NT service. Used to start up and stop the InterBase Server.

CHAPTER 3 SERVER CONFIGURATION

50 INTERBASE 6

If the status of the InterBase Server Service is started, then stop it before changing the
status. Once the service has been stopped, you can change how InterBase starts and then
restart the NT Service Control.

If you want to change the process priority, you must first stop the InterBase Server Service
using the NT Service Control, then choose a different service priority and the InterBase
Server Service. Thereafter, the InterBase server process starts with higher priority.

If InterBase is not getting the CPU share that it needs, and for some reason you do not
want to boost the priority of the InterBase process, you can change the default priority of
foreground and background processes. Invoke the System application in the Control
Panel.

In the System dialog that opens, choose the Tasking button, then select the option
“Foreground and Background Applications Equally Responsive.” This ensures that the
InterBase process (that runs in the background) receives the same priority as foreground
processes. Note that all other background processes have their priority boosted as well.

Tip Disable any CPU-intensive screen savers on your server, or set it to “blank screen.”
A screen saver can use an inordinate amount of CPU cycles, and Windows NT does not
provide a way to reduce the priority of screen savers or to favor services. Screen savers
are not generally necessary to prevent phosphor burn on modern monitors.

For more information on foreground and background tasking, see the Microsoft Windows
NT documentation.

Shutting down the server on Windows NT
To shut down the InterBase Server running as an icon, left-click the server icon to display
a popup menu and select Shutdown Server from the menu. A message appears indicating
the number of open database connections. If the message indicates zero (0) active
connections, click OK to shut down the server.

To shut down the InterBase Server running as an NT Service, use the Stop NT Service
Control in the Registry Configuration Utility or the NT Service Control.

If you have open connections, it is recommended that you close them before shutting
down the server. You also must close all client application you are running.

Running InterBase as an application on Windows NT
To start InterBase as an application, you must supply the -a switch. To do this, create a
shortcut to ibguard.exe and supply the switch in the Target field of the Shortcut tab.

WINDOWS 95 PEER-TO-PEER SERVER APPLICATION

OPERATIONS GUIDE 51

Windows 95 peer-to-peer server application
You must start Local InterBase or InterBase Server prior to enabling database
connections.

When you install the Local InterBase Server or the InterBase Server and reboot your
system, the enabled server appears as an icon on the Task Tray, located on the right side
of the Task Bar.

FIGURE 3.5 InterBase Server icon on the task tray

To start a server that has been shut down, run InterBase Server from the InterBase 5 Start
menu. The enabled server icon appears on the Task Tray.

Selecting startup options
You can configure how InterBase Server starts by using the Registry Configuration Utility
(regcfg.exe). This utility enables you to:

g Start a server each time you start Windows 95. The enabled server appears as an icon on
the Task Tray.

Start a server manually by running InterBase Server from the InterBase Start menu. The
enabled server then appears as an icon on the Task Tray.

Shutting down InterBase on Windows 95
To shut down the Local InterBase or InterBase server, right-click the InterBase server icon
located in the Task Tray to display a popup menu and select Shutdown. A message
appears indicating the number of open database connections. If the message indicates
zero (0) active connections, click OK to shut down the server.

If you have open connections, it is recommended that you close them before shutting
down the server. You also must close all client applications you are running.

CHAPTER 3 SERVER CONFIGURATION

52 INTERBASE 6

UNIX daemon

Syntax ibmgr -command [-option [parameter] ...]

or

ibmgr u
IBMGR> command [–option [parameter]]

Description On UNIX, the InterBase server process runs as a daemon. A daemon runs even when no
user is logged in to the console or a terminal on the UNIX system.

ibmgr is a utility for managing the InterBase server process on UNIX systems. You must
be logged on to the machine on which the server is running to use ibmgr.

Note The ibmgr32.exe file that is present in older Windows installations is an older
client-side utility whose functions are entirely different than ibmgr on UNIX. The name is
coincidental.

Options

The command switches –user and –password can also be used as option switches for
commands like –start or –shut. For example, you can shut down a server in any of the
following ways:

ibmgr –shut –password password

or

start [–once | –forever] Starts server; the –forever switch causes the server to
restart if it crashes; default is –forever

shut Rolls back current transactions, terminates client
connections, and shuts down server immediately

show Shows host and user

user user_name Supplies SYSDBA

password password Supplies SYSDBA password

help Prints help text

quit Quits prompt mode

TABLE 3.2 ibmgr commands

UNIX DAEMON

OPERATIONS GUIDE 53

ibmgr u
IBMGR> shut –password password

or

imbgr u

IBMGR> password password
IBMGR> shut

Starting the server
To start the InterBase server, log in as the “root” or “interbase” user. (“interbas” is a
synonym for “interbase,” to accommodate operating systems that do not support
nine-character account names.) Execute the following command:

ibmgr –start

Note Once you have started ibserver using one login, such as “root,” be aware that all
objects created belong to that login. They are not accessible to you if you later start ibserver
as one of the other two (“interbas” or “interbase”). It is highly recommended to run the
InterBase Server as “interbase.”

Stopping the server
To stop the InterBase server, execute the following command:

ibmgr –shut –password SYSDBA_password

You do not need to log on as “root” to do this.

Note Currently, the –shut command rolls back all current transactions and shuts down the
server immediately. If you need to allow clients a grace period to complete work and
detach gracefully, use shutdown methods for individual databases. See “Database
shutdown and restart” on page 135.

Starting the server automatically
To configure a UNIX server to start the InterBase Server automatically at boot-time of the
server host, you need to install a script that the rc initialization scripts can run. Refer to
/etc/init.d/README for more details on how UNIX runs scripts at boot-time.

Example initialization script

#!/bin/sh

CHAPTER 3 SERVER CONFIGURATION

54 INTERBASE 6

ibserver.sh script - Start/stop the InterBase daemon

Set these environment variables if and only if they are not set.

: ${INTERBASE:=/usr/interbase}

: ${ISC_USER:=SYSDBA}

: ${ISC_PASSWORD:=masterkey}

WARNING: in a real-world installation, you should not put the

SYSDBA password in a publicly-readable file. To protect it:

chmod 700 ibserver.sh; chown root ibserver.sh

export INTERBASE

export ISC_USER

export ISC_PASSWORD

ibserver_start() {

This example assumes the InterBase server is

being started as UNIX user ’interbase’.

echo '$INTERBASE/bin/ibmgr -start -forever' | su interbase

}

ibserver_stop() {

No need to su, since $ISC_USER and $ISC_PASSWORD validate us.

$INTERBASE/bin/ibmgr -stop

}

case $1 in

’start’) ibserver_start ;;

’start_msg’) echo 'InterBase Server starting...\c' ;;

’stop’) ibserver_stop ;;

’stop_msg’) echo 'InterBase Server stopping...\c' ;;

*) echo 'Usage: $0 { start | stop }' ; exit 1 ;;

esac

exit 0

Example initialization script installation on Solaris

1. Log in as root.

$ su

2. Enter the example script above into the initialization script directory.

INTERBASE GUARDIAN PROCESS

OPERATIONS GUIDE 55

vi /etc/init.d/ibserver.sh

3. Enter text

4. Link the initialization script into the rc directories for the appropriate run
levels for starting and stopping the InterBase server.

ln /etc/init.d/ibserver.sh /etc/rc0.d/K30ibserver

ln /etc/init.d/ibserver.sh /etc/rc2.d/S85ibserver

Example initialization script installation on HP-UX

1. Log in as root.

$ su

2. Enter the example script above into the initialization script directory.

vi /sbin/init.d/ibserver.sh

<Enter text>

3. Link the initialization script into the rc directories for the appropriate run
levels for starting and stopping the InterBase server.

ln -s /sbin/init.d/ibserver.sh /sbin/rc1.d/K500ibserver

ln -s /sbin/init.d/ibserver.sh /sbin/rc2.d/S500ibserver

InterBase Guardian process
The InterBase Guardian manages the InterBase server under both Windows NT and
Windows 95/98. By default, Guardian runs as a service under Windows NT and as an
application under Windows 95/98.

Users normally do not need to interact with Guardian in any way; it operates as an
invisible process. When Guardian is configured for “Windows Startup” and “Start
Always”—the default settings—it starts the InterBase server whenever Windows starts,
monitors the server, and restarts it if it stops due to anything other than a normal
shutdown by a user.

A number of options are available for starting and configuring Guardian and the
InterBase server. See “Starting Guardian” on page 56, “Starting the server without
Guardian” on page 56, and “Server configuration using IBConsole” on page 44.

The following options are available under Windows NT:

g Guardian can be started automatically as a service (default behavior)

g Guardian can be started manually as a service

CHAPTER 3 SERVER CONFIGURATION

56 INTERBASE 6

g Guardian can be disabled, and the server can run as either a service or an application,
started automatically or manually

The following options are available under Windows 95/98:

g Guardian can be started automatically as an application (default behavior)

g Guardian can be started manually rather than starting automatically with Windows

g Guardian can be disabled and the server can be run independently as an application,
started either automatically or manually

On Windows 95/98, you can access the InterBase Server properties by right-clicking the
Guardian icon in the Task Tray.

The following options are available under UNIX:

g Guardian can be started as a daemon automatically with ibmgr -start -forever (this is also the
default behavior if you do not specify -forever or -once)

g Guardian is not started if you run ibmgr -start -once

Starting Guardian
To start Guardian manually, Startup Mode must be set to either Windows Startup or
Manual Startup. Startup always fails if either Guardian or the server is already running.

g To start Guardian manually as an application, run InterBase Guardian from the Interbase
Start menu. Administrative privileges are not required to start Guardian.

g Any attempt to either start the server while the Guardian is running or to start the
guardian twice results in an error message.

g To start Guardian manually as a service under Windows NT, go to the Control Panel | Services,
highlight InterBase Guardian, and click Start.

Starting the server without Guardian
This section describes how to run the server directly, without using Guardian.

4 Running the server as an application
To run the InterBase Server without running Guardian, choose InterBase Server from the
Interbase Start menu. Manual startup detects whether the server is already running and
does not start up if that is the case.

THE ATTACHMENT GOVERNOR

OPERATIONS GUIDE 57

4 Running the server as a service
On Windows NT, you can choose to run the InterBase server as a service rather than as
an application. To do this, you must disable the Guardian.

1. Shut down the Guardian, or shut down Superserver if it is running without
the Guardian.

2. Run InterBase Configuration from the Interbase 5 Start menu. and in the
Guardian page, set the Startup Mode to Disabled.

3. Move to the General page of the dialog and set Server Startup to Service. Set
the Startup Mode to Windows Startup if you want Superserver to start
automatically when Windows starts, or to Manual if you want to start it
manually.

4. Click OK.

5. Go to Control Panel | Services, highlight InterBase Server, and click Start.

To shut down the server when it is running as a service, go to Control Panel | Services,
highlight InterBase Server, and click Stop.

The attachment governor
The InterBase server has an attachment governor that regulates the number of
attachments to the server. Multiply the value of the USERS field in the license file by four
to determine the total number of permitted concurrent attachments.

All successful attempts to create or connect to a database increment the number of
current attachments. Both local and remote connections count toward the connection
limit. Connections are permitted by the governor until the maximum number of
concurrent attachments is reached. All successful attempts to drop or disconnect from a
database decrement the number of current attachments.

Once the maximum number of attachments is reached, the server returns the error
constant isc_max_att_exceeded (defined in ibase.h), which corresponds to the message:

Maximum user count exceeded. Contact your database administrator.

CHAPTER 3 SERVER CONFIGURATION

58 INTERBASE 6

Environment variables
This section describes the usage of environment variables that InterBase recognizes.

ISC_USER and ISC_PASSWORD

If you do not provide a user name and password when you connect to a database or when
you run utilities such as gbak, gstat, and gfix, InterBase looks to see if the ISC_USER and
ISC_PASSWORD environment variables are set and uses that user and password as the
InterBase user.

Although setting these environment variables is convenient, it is strongly not
recommended if security is at all an issue.

The INTERBASE environment variable

INTERBASE

The INTERBASE variable is used both during installation and during runtime. During
installation, it defines the path where the InterBase product is installed. If this path is
different from /usr/interbase, all users must have the correct path set at runtime. During
runtime, use the INTERBASE variable to set the InterBase install directory.

INTERBASE_TMP

The INTERBASE_TMP variable can be used to set the location of InterBase’s sort files on the
server. There are other options for defining the location of these files. See “Configuring
sort files” on page 59.

INTERBASE_LOCK AND INTERBASE_MSG

INTERBASE_LOCK sets the location of the InterBase lock file and INTERBASE_MSG sets the
location of the InterBase message file. These two variables are independent of each other
and can be set to different locations.

IMPORTANT The environment variables must be in the scope of the ibserver process. On Windows NT,
define the variables as system variables in the NT Control Panel | System | Environment dialog.
On UNIX, the easiest way to do this is to add the variable definition to the system-wide
default shell profile.

TEMPORARY FILE MANAGEMENT

OPERATIONS GUIDE 59

The TMP environment variable
The TMP environment variable defines where InterBase stores temporary files, if the
INTERBASE_TMP variable is not defined.

Temporary file management
InterBase creates two types of temporary files: sort files and history list files.

The InterBase server creates sort files when the size of the internal sort buffer isn’t big
enough to perform the sort. Each request (for example, CONNECT or CREATE DATABASE)
gets and shares the same list of temporary file directories. Each request creates its own
temporary files (each has its own I/O file handle). Sort files are released when sort is
finished or the request is released. If space runs out in a particular directory, InterBase
creates a new temporary file in the next directory from the directory list. If there are no
more entries in the directory list, it prints an error message and stops processing the
current request.

The InterBase isql client creates the history list files to keep track of the input commands.
Each instance creates its own temporary files, which can increase in size until they run
out of disk space. Temporary file management is not synchronized between clients. When
a client quits, it releases its temporary files.

Configuring history files
To set the location for history files, define the TMP environment variable on your client
machine. This is the only way to define the location of history files. If you do not set the
location for the history files by defining the TMP environment variable, an InterBase client
uses whatever temporary directory it finds defined for the local system. If no temporary
directory is defined, it uses /tmp on a UNIX system or C:\temp on a Windows system.

Configuring sort files
You should make sure to have plenty of free space available for temporary sorting
operations. The maximum amount of temporary space InterBase needs might be larger
than the database itself in some cases.

Temporary sort files are always located on the server where the database is hosted; you
should specify temporary directories on disk drives that are physically local to the server
(not on mapped drives or network mounted filesystems).

CHAPTER 3 SERVER CONFIGURATION

60 INTERBASE 6

There are two ways to specify directories for sort files:

g You can add an entry to the $INTERBASE/isc_config (UNIX) or ibconfig (Windows) file to
enable directory and space definition for sort files. The syntax is:

TMP_DIRECTORY size pathname

This defines the maximum size in bytes of each sort directory. You can list several
directories, each on its own line with its own size specification and can specify a directory
more than once with different size configurations. InterBase exhausts the space in each
specification before proceeding to the next one.

For example, if you specify dir1 with a size of 5000000 bytes, then specify dir2 with
10000000 bytes, followed by dir1 with 2000000 bytes, InterBase uses dir1 until it reaches
the 5000000 limit, then uses dir2 until it has filled the 10000000 bytes allocated there, and
then returns to dir1 where it has another 2000000 bytes available. Below are the ibconfig
entries that describe this configuration:

TMP_DIRECTORY 5000000 C:\dir1
TMP_DIRECTORY 10000000 D:\dir2
TMP_DIRECTORY 2000000 C:\dir1

g You can use the INTERBASE_TMP and TMP environment variables to define the location.

If you specify temporary directories in isc_config (UNIX) or ibconfig (Windows), the server
uses those values for the sort files and ignores the server environment variable values. If
you don’t specify configuration of temporary directories in isc_config or ibconfig, then the
server picks a location for a sort file based on the following algorithm:

1. Use the directory defined in INTERBASE_TMP environment variable

2. If INTERBASE_TMP isn’t defined, use directory defined in TMP environment
variable

3. If TMP isn’t defined, default to the /tmp directory (UNIX) or C:\temp (Windows)

Configuration parameters in isc_config
The isc_config file (ibconfig on Windows 95/98 and Windows NT) is a text file with
configuration information for the InterBase server. Entries are in the form:

PARAMETER <whitespace> VALUE

PARAMETER is a string that contains no whitespace and names a property of the server
being configured. VALUE is a number or string that is the configuration of the specified
property.

CONFIGURATION PARAMETERS IN ISC_CONFIG

OPERATIONS GUIDE 61

Note Each line in isc_config is limited to 80 characters, including the word “parameter”
and any whitespace.

The following is a summary of the legal entries in isc_config (UNIX) or ibconfig (Windows)
file:

Parameter Description

connection_timeout Seconds to wait before concluding an attempt to connect has failed;
default is 180.

database_cache_pages Server-wide default for the number of database pages to allocate in
memory per database. This can be overridden by clients. See “Configuring
the Superserver cache” on page 129 for more information on database
cache configuration; default is 256.

deadlock_timeout Seconds before an ungranted lock causes a scan to check for deadlocks;
default is 10.

dummy_packet_interval Seconds to wait on a silent client connection before the server sends
dummy packets to request acknowledgment; default is 60.

lock_acquire_spins Number of spins during a busy wait on the lock table mutex. Only relevant
on SMP machines; default is 0.

lock_hash_slots Tune lock hash list. More hash slots means shorter hash chains. Not
necessary except under very high load. Prime number values are
recommended; default is 101.

server_client_mapping Size in bytes of one client’s portion of the memory mapped file used for
interprocess communication; default is 4096.

server_priority_class Priority of the InterBase service on Windows NT. The value 1 is low priority,
2 is high priority. Relevant on Windows NT only; default is 1.

server_working_size_max Threshold above which Windows NT is requested to swap out all memory.
Relevant on Windows NT only; default is 0 (system-determined).

server_working_size_min Threshold below which Windows NT is requested to swap out no memory.
Relevant on Windows NT only; default is 0 (system-determined).

tmp_directory Directory to use for storing temporary files. Specify number of bytes
available in the directory, and the path of the directory. You can list
multiple entries, one per line. Each directory is used according to the order
specified; default is the value of the INTERBASE_TMP environment variable,
otherwise /tmp on UNIX or C:\temp on Windows NT.

CHAPTER 3 SERVER CONFIGURATION

62 INTERBASE 6

Diagnostic log files
InterBase Server logs diagnostic messages in the file interbase.log in the InterBase install
directory. Any messages generated by ibserver are sent to this file. This can be a very
important source of diagnostic information if your server is having configuration
problems.

Refer to the Language Reference for a list of error messages that can appear in this file.

IBConsole displays this log file in a standard text display window.

To display the Server Log dialog:

Select a server and expand it if it is not already expanded, click on Server Log and then
click on View Logfile in the Work pane.

g Right-click a server in the Tree pane and choose View Logfile from the context menu.

v4_event_memsize Bytes of shared memory allocated for event manager; default is 32768.

v4_lock_grant_order 1 means locks are granted first come, first served. 0 means emulate
InterBase V3.3 behavior, where locks are granted as soon as they are
available, which can result in lock request starvation; default is 1.

v4_lock_mem_size Bytes of shared memory allocated for lock manager; default is 98304.

v4_lock_sem_count Number of semaphores for interprocess communication. Classic
architecture only.

v4_lock_signal UNIX signal to use for interprocess communication. Classic architecture
only.

v4_solaris_stall_value Number of seconds a server process waits before retrying for the lock table
mutex. Relevant on Solaris only; default is 60.

Parameter Description

DIAGNOSTIC LOG FILES

OPERATIONS GUIDE 63

FIGURE 3.6 Server Log dialog

The standard text display window enables you to search for specific text, save the text to
a file, and print the text. For an explanation of how to use the standard text display
window, see “Standard text display window” on page 39.

On Windows NT, the Event Viewer application contains many warnings and notifications
pertaining to operating system problems, including memory, I/O, and networking
failures. Some of these operating system problems can affect the InterBase server.

CHAPTER 3 SERVER CONFIGURATION

64 INTERBASE 6

OPERATIONS GUIDE 65

CHAPTER

4
Chapter 4Network Configuration

This chapter details issues with configuring InterBase in a networked client/server
environment. Topics include network protocols supported by InterBase, remote
connection specifiers, and network troubleshooting tips.

Network protocols
InterBase supports TCP/IP for all combinations of client and server platforms.
Additionally, InterBase supports NetBEUI for NT servers and Windows clients, and a local
connection mode (involving interprocess communication but no network interface) for
Windows 95/98 and Windows NT clients.

InterBase is designed to allow clients running one operating system to access an
InterBase server that is running on a different platform and operating system than the
client. For example, a common arrangement is to have several inexpensive Windows
95/98 PCs acting as client workstations concurrently accessing a departmental server
running Windows NT, NetWare, or any of several brands of UNIX.

CHAPTER 4 NETWORK CONFIGURATION

66 INTERBASE 6

Note The InterBase client does not support IPX/SPX, though it can use TCP/IP to
connect to a NetWare server. To use IPX/SPX, you must use the InterBase 5.1 or higher
client.

Connection specification
Before performing any database administration tasks, you must first register and log in
to a server. Once you log in, you can register and connect to databases residing on the
server. You can switch context from one connected database to another by selecting the
desired database from the IBConsole Tree pane. The selected database in the Tree pane
is referred to as the current database. The selected server or the server where the current
database resides is referred to as the current server.

Registering a server
You can access the Register Server and Connect dialog in IBConsole by one of the
following methods:

g Select InterBase Servers from the Tree pane and choose Server | Register or click the Register
Server toolbar button.

g Double-click InterBase Servers in the Tree pane.

g Right-click InterBase Servers in the Tree pane and choose Register from the context
menu.

Server platform

Client platform
Windows 95/98
server

Windows NT
server UNIX server NetWare server

Windows 95/98 TCP/IP, Local TCP/IP, NetBEUI TCP/IP TCP/IP, IPX/SPX

Windows NT TCP/IP TCP/IP, NetBEUI,
Local

TCP/IP TCP/IP, IPX/SPX

UNIX TCP/IP TCP/IP TCP/IP TCP/IP

TABLE 4.1 Matrix of connection supported protocols

CONNECTION SPECIFICATION

OPERATIONS GUIDE 67

FIGURE 4.1 Register Server and Connect dialog

To register a local or remote server:

1. Select either the Local Server option or the Remote Server option.

2. If you choose Local Server, the Server Name, Network Protocol and Alias
Name information is not required. These text fields are disabled. You can
proceed to step 5.

3. If you choose Remote Server, type the name of the server in the Server Name
text field, select a network protocol from the drop down list, and enter a
server alias name in the Alias Name text field. As well, check the Save Alias
Information check box if you wish to save the server alias name in the
windows registry.

Note The InterBase server name is the name of the database server machine. There
is not a specific name for the InterBase server process itself. For example, if the server
is running on the NT server “venus”, you enter this name in the Server Name text field.

The network protocol you select can be one of TCP/IP, NetBEUI, or SPX. Protocols are
valid only when they are supported by both the client and the server.

4. Optionally, enter a description name for the server.

5. At this point you can choose to just register the server (without logging in)
or you can choose to register and connect to the server simultaneously.

CHAPTER 4 NETWORK CONFIGURATION

68 INTERBASE 6

If you want to just register the server you can ignore the Login Information and click
OK.

6. If you want to register and connect to the server simultaneously, enter a
username and password in the corresponding text fields and click OK.

Note The usernames and passwords must be the InterBase usernames and passwords
that are stored in the security database isc4.gdb on the server.

Once a server is registered, IBConsole displays it in the Tree pane.

Logging in to a server
You can access the Server Login dialog in IBConsole by one of the following methods:

g In the Tree pane, select a registered server that is not already logged in. Choose Server |
Login or select Login in the Work pane.

g In the Tree pane, double-click a registered server that is not already logged in.

g In the Tree pane, right-click a registered server that is not already logged in and choose
Login from the context menu.

The Server Login dialog appears:

FIGURE 4.2 Server Login dialog

To log in to a server:

1. Verify that the server displayed in the Server field is correct.

2. Enter a username and password in the corresponding text fields. For
convenience, IBConsole defaults the UserName text field to the last username
that was used to login (successfully or unsuccessfully).

Note The usernames and passwords must be the InterBase usernames and passwords
that are stored in the security database isc4.gdb on the server.

CONNECTION SPECIFICATION

OPERATIONS GUIDE 69

The username is significant to 31 characters and is not case-sensitive. The password
is significant to eight characters and is case-sensitive.

All users must enter their username and password to log in to a server. The username
and password are verified against records in the security database. If a matching
record is found, the login succeeds.

3. Click Login to log in to the server.

IMPORTANT Initially, every server has only one authorized user with username SYSDBA. The
SYSDBA must log on and add other authorized users. For more information about how
to add new users, see “User administration with IBConsole” on page 95.

Logging out from a server
You can log out from a server in IBConsole by one of the following methods:

g Select a connected server in the Tree pane (you can also select any branch under the
desired server hierarchy) and choose Server | Logout.

g Select a connected server in the Tree pane and click Logout in the Work pane.

g Right-click a connected server in the Tree pane and choose Logout from the context
menu.

A confirmation dialog asks you to confirm that you wish to close the connection to the
selected server. Click OK if you want to logout from the server, otherwise click Cancel.

Note Logging out from a server automatically disconnects all databases but does not
un-register any databases on the server.

Unregistering a server
You can unregister a disconnected server in IBConsole by one of the following methods:

g Select a server in the Tree pane and choose Server | Un-register or click the Unregister Server
toolbar button

g Select a server in the Tree pane and click Un-register Server in the Work pane.

g Right-click a server in the Tree pane and choose Un-register from the context menu.

A confirmation dialog asks you to confirm that you wish to un-register the selected server.
Click OK if you want to un-register the server, otherwise click Cancel.

CHAPTER 4 NETWORK CONFIGURATION

70 INTERBASE 6

Note Un-registering a server removes that server from the Tree pane and automatically
logs you out of the current server as well as disconnects and un-registers any databases
on the server.

Registering a database
You can access the Register Database and Connect dialog in IBConsole by one of the
following methods:

g Select a connected server in the Tree pane and choose Database | Register.

g Expand a connected server branch. Right-click Databases in the Tree pane and choose
Register from the context menu.

The Register Database and Connect dialog appears:

FIGURE 4.3 Register Database and Connect dialog

To register a database:

1. Make sure the server displayed in the Server field is correct.

2. Enter the database filename, including the path where the file is located, in
the File text field. For databases that reside on the local server, you also have
the option of clicking the Browse button to locate the file you want. The
Browse button is disabled for all remote servers.

3. Type an alias name for the database in the Alias Name text field. This is the
name that will appear in the IBConsole window. If you omit this step, the
alias defaults to the filename that you select in step 2.

CONNECTION SPECIFICATION

OPERATIONS GUIDE 71

4. Check the Save Alias Information check box if you wish to permanently
register the database. This saves the database alias name in the windows
registry.

5. At this point you can choose to just register the database without connecting,
or you can choose to register and connect to the database simultaneously.

If you only want to register the database, ignore the Login Information and click OK.

6. If you want to register and connect a database simultaneously, type the
username, password and optional role for the database in the corresponding
text fields and click OK.

Note If you want to connect using a role, specify the role in the Role text field. This
is optional. Connecting using a role gives you all privileges that have been assigned
to that role, assuming that you have previously been granted that role with the GRANT
statement.

Once you register a database it appears in the Tree pane.

Connecting to a database
IBConsole provides two methods for connecting to a database. The first method is a quick
connect using the username and password that were supplied with the login to the server
to instantaneously connect the database. The second method allows you to connect to
the database using a different username and password by accessing the Database
Connect dialog.

4 Connect
If you want to perform an automatic connect, using the username and password supplied
for the server login to instantaneously connect the database, you can do so by one of the
following methods:

g Select a disconnected database in the Tree pane. Choose Database | Connect, choose Connect
in the Work pane, or click on the Database Connect toolbar button.

g Right-click a disconnected database in the Tree pane and choose Connect from the
context menu.

g Double-click a disconnected database in the Tree pane.

Once you connect to a database, the database tree expands to display the database
hierarchy.

CHAPTER 4 NETWORK CONFIGURATION

72 INTERBASE 6

4 Connect as
If you want to access the Connect Database dialog in IBConsole to connect to the
database using a different username and password from that which was supplied in the
server login you can do so by one of the following methods:

g Select a disconnected database in the Tree pane. Choose Database | Connect As or choose
Connect As in the Work pane.

g Right-click a disconnected database in the Tree pane and choose Connect As from the
context menu.

The Database Connect dialog appears:

FIGURE 4.4 Database connect dialog

To connect to a database:

1. Verify that the database displayed in the Database field is correct.

2. Type the username and password for the database in the corresponding User
Name and Password text fields.

3. If you want to connect as a role, specify the role in the Role text field. This is
optional. Connecting as a role gives you all privileges that have been assigned
to that role, assuming that you have previously been granted that role with
the GRANT statement.

4. Select the SQL Client dialect. The dialect for the database connection will
default to the lower value of the client or server.

5. Click Connect.

Once you connect to a database, the database tree expands to display the database
hierarchy.

CONNECTION SPECIFICATION

OPERATIONS GUIDE 73

Disconnecting a database
You can disconnect a database in IBConsole by one of the following methods:

g Select a connected database in the Tree pane (you can also select any branch under the
desired database hierarchy) and choose Database | Disconnect or click the Disconnect
Database toolbar button

g Select a connected database in the Tree pane and choose Disconnect in the Work pane.

g Right-click a connected database in the Tree pane and choose Disconnect from the
context menu.

A confirmation dialog asks you to confirm that you wish to close the connection to the
selected database. Click OK if you want to disconnect the database, otherwise click
Cancel.

Unregistering a database
You can unregister a disconnected database in IBConsole by one of the following
methods:

g Select a database in the Tree pane (you can also select any branch under the desired
database hierarchy) and choose Database | Un-register.

g Select a database in the Tree pane and choose Un-register in the Work pane.

g Right-click a database in the Tree pane and choose Un-register from the context menu.

A confirmation dialog asks you to confirm that you wish to un-register the database. Click
OK if you want to un-register the database, otherwise click Cancel.

Note Un-registering a database automatically disconnects the current database and
removes it from the Tree pane.

Connection-specific examples
Here are some examples of connecting to databases on various types of servers.

g For a Windows NT or Windows 95/98 server, the database path name must contain the
appropriate drive letter designation. For example:

D:\users\accting\fin\accred.gdb

g To connect to a database on a remote server by TCP/IP:

D:\users\accting\fin\accred.gdb

CHAPTER 4 NETWORK CONFIGURATION

74 INTERBASE 6

g To connect via NetBEUI (Windows NT servers only), use UNC notation:

\D:\users\accting\fin\accred.gdb

g To connect via IPX/SPX (NetWare servers only) use the following notation:

\accting\fin\accred.gdb

g For a UNIX server, you must enter the complete and absolute directory path for the
database. For example:

/usr/accting/fin/accred.gdb

Connection troubleshooting
This section describes some troubleshooting guidelines for issues related to network
configuration and client/server connections. If you are having trouble connecting client
to server over a network, use the steps listed below to diagnose the cause. On Windows,
you can perform some of these tests using the Communications Diagnostic dialog. See
“Communication Diagnostics” on page 81 for more information.

Connection Refused errors
If the client fails to reach the server host at all, or the gds_db service fails to answer, you
might get a “connection refused” error. Below is a checklist that you can use to diagnose
the source of this error.

Is there low-level network access between the client and server?

You can quickly test whether the client cannot reach the server because of a physically
disconnected network or improper network software configuration, by using the ping
command. Usage is:

ping servername

Error messages from ping indicate that there is a network problem. Check that the
network is plugged in, that the network wires are not damaged, and that the client
and server software is properly configured.

Test connectivity from the client in question to another server; if it succeeds, this could
rule out improper network configuration on the client.

Test connectivity from another client to the InterBase server host; if it succeeds, this
could rule out improper network configuration on the server.

CONNECTION TROUBLESHOOTING

OPERATIONS GUIDE 75

Can the client resolve the server’s hostname?

InterBase clients must specify the server by name, not by IP address. Therefore, the
client must be able to resolve the server’s hostname. For TCP/IP, this is done either by
maintaining a hosts file on the client with the mappings of hostnames to IP addresses,
or by the client querying a DNS server or WINS server to resolve this mapping. Make
sure the name server has a correct entry for the server host in question.

Is the server behind a firewall?

If the database server is behind a software or hardware firewall, all network traffic
could be restricted and the client might not be able to reach the server at all. Some
firewalls permit or restrict traffic based on the port to which the client attempts to
connect. Because of this, it is not conclusive whether a given service can reach the
server. Neither is it an indication of connectivity if the client can resolve the IP
address; that merely indicates that the client can reach a name server that resolves the
InterBase server host’s name.

If the client is separated from the server by a firewall, the client cannot connect.

Are the client and server on different subnets?

NetBEUI cannot route network traffic between subnets. Other protocols can also be
configured to restrict traffic between subnets. If the client and server are on a complex
network with multiple subnets, ask your network administrator if the network
configuration allows you to route network traffic between the client and server in
question using a given protocol.

Can you connect to a database locally?

To confirm that the ibserver process is running on the server and able to attach to your
database, try a local database connection:

1. Log in to the console of the database server host, and run an application such as
command-line isql or IBConsole ISQL.

2. Attempt to connect to a database without specifying a hostname: list just the path.
In IBConsole ISQL, the Local Engine option is grayed out in the Database Connect
dialog if the ibserver process is not running.

The Communications Diagnostic dialog also has a local database attachment test. See
“DB Connection tab” on page 81 for details.

Note Local connection mode is not available on UNIX servers or NetWare servers.

CHAPTER 4 NETWORK CONFIGURATION

76 INTERBASE 6

Can you connect to a database loopback?

You can simulate a client/server connection and test the server’s configuration
without the additional variable of the client configuration and intervening network by
connecting in a loopback mode.

1. Log in to the console of the database server host and run an application such as
command-line isql or InterBase IBConsole ISQL.

2. Attempt to connect to the database using a remote connection specification, even
though the server named is also the client host.

Whether this test fails or succeeds, it helps to narrow the focus of further diagnostic
tests. If it fails, you can infer that the server’s configuration is at fault. If it succeeds,
you can infer that the server is not at fault and you can concentrate further tests on
the client.

Note Loopback tests cannot be performed when using NetWare, because client
applications run only on a remote client, not on the NetWare server.

Is the server listening on the InterBase port?

If the ibserver process on the server has not started, there is no answer to attempts to
connect to the gds_db service (port 3050).

Start the ibserver process on the server. Use ibmgr -start on UNIX, or the InterBase
Manager in the control panel on NT. See Chapter 3, “Server Configuration.”

Is the services file configured on client and server?

The services file must have correct entries to indicate the port number associated with
the named service gds_db. This configuration must be accessible on the client as well
as the server.

gds_db 3050/tcp # InterBase Server

On Windows NT, this file is in C:\windows\system32\drivers\etc\services.
On Windows 95/98, this file is in C:\windows\services.
On UNIX, this file is in /etc/services.

In a UNIX environment with NIS, the NIS server can be configured to supply the
services file to all NIS clients on UNIX workstations.

CONNECTION TROUBLESHOOTING

OPERATIONS GUIDE 77

Is the UNIX inetd daemon configured for InterBase Classic architecture?

When running a version of InterBase that has the Superserver architecture (for
instance, InterBase 6.0 for Solaris), you should check the /etc/inetd.conf file to make
sure that the inetd daemon is not configured to listen on the gds_db service (port
3050). In InterBase 6, the ibserver process takes over the task of listening on the port,
and if both inetd and ibserver attempt to listen, then there is a conflict and the result is
that neither can successfully accept connection requests.

Make the following change:

- Use a text editor to remove the line in /etc/inetd.conf that mentions the gds_db service

- Restart inetd by sending it a HUP signal

The installation script in InterBase for UNIX is supposed to perform this task, but if
something goes wrong, or the /etc/inetd.conf file is restored to its configuration for
InterBase Classic, you need to correct the configuration.

For InterBase versions that run in Classic mode (for instance, SCO OpenServer and
Linux), check to make sure the /etc/inetd.conf file does have an entry for gds_db, and
restart inetd with kill -HUP to make sure inetd is using the current configuration in
/etc/inetd.conf.

Connection Rejected errors
If the client reaches the server host and the gds_db service answers but you still cannot
attach to a database, it can result in a “connection rejected” error. Below is a checklist
that you can use to diagnose the source of this error.

Did you get the correct path to the database?

Verify that you supplied the correct path to the database file. Keep in mind:

- On NT, you must supply the drive letter with the path.

- On UNIX, paths are case-sensitive.

- Slash (“/”) vs. backslash (“\”) does not matter, unless you need to use
double-backslashes in string literals in C or C++ code.

Is UNIX host equivalence established?

To use the UNIX user-equivalence feature, there must be a trusted host relationship
between the client and the server. See “Users on UNIX” on page 90.

CHAPTER 4 NETWORK CONFIGURATION

78 INTERBASE 6

Is the database on a networked filesystem?

A database file must not reside on an NFS filesystem or a mapped drive. When the
ibserver process finds such a case, it either denies the connection or passes the
connection request on to the InterBase service running on the file server. See
“Networked filesystems” on page 110 for more details.

To correct this situation, move your database to a filesystem on a hard disk that is
physically local to the database server.

Are the user and password valid?

The client application must use a valid user and password combination that matches
an entry in isc4.gdb. Make sure you are using a valid user and password for that server.

Does the server have permissions on the database file?

The ibserver process must have permission to read and write the database file at the
operating system level. Check the permissions on the database file, and the uid of the
ibserver process. (On UNIX, you have the option of running ibserver as user interbase,
a non-superuser uid.)

The isc4.gdb database that contains users and passwords must also be writable by the
ibserver process.

Does the server have permissions to create files in the InterBase install directory?

The ibserver process must have write permission in the InterBase directory (by default,
/usr/interbase on UNIX, C:\Program Files\InterBase Corp\InterBase on Windows). The server
process must be able to write to, and perhaps create, the interbase.log file and other
temporary files.

Disabling automatic Internet dialup
Microsoft Windows 95, 98, and NT operating systems offer a networking feature that is
convenient for users who use a modem to connect to the Internet: any TCP/IP request
that occurs on the system activates an automatic modem dialing program. This is helpful
for users who want to connect quickly as they launch a web browser or email client
application.

This convenience feature is unnecessary on systems that use a client/server application
to access an InterBase server on a local network. The TCP/IP service request that the
client invokes triggers the Windows automatic modem dialer. This interferes with quick
network connections from client to server.

CONNECTION TROUBLESHOOTING

OPERATIONS GUIDE 79

This section describes several methods to suppress the automatic modem dial feature of
Windows operating systems. No more than one of these methods should be necessary to
accomplish the networking configuration you need.

4 Reorder network adapter bindings
You probably have a dialup adapter and an ethernet adapter for your local network. On
Windows NT, you can reverse the bindings order for your two adapters to force the
ethernet adapter service the TCP/IP request before the dialup adapter tries. You can do
this in Control Panel | Networking | Bindings | All Adapters | Move Down on Windows NT.

The local ethernet adapter satisfies TCP/IP requests it can, and those requests that can’t
be done locally—such as Internet requests—are passed on to the next adapter in the list,
the dialup adapter.

4 Internet Explorer
If you have Microsoft Internet Explorer installed (as if you could avoid it), you have an
item on the Control Panel that allows you to disable the autodial feature of the dialup
network driver. If you don't have Internet Explorer, you won't have any control over this
feature.

Run Control Panel | Internet | Connection tab. On Windows 95, deselect “Connect to the Internet
as Needed.” On Windows NT or Windows 98, check “Connect to the Internet using a local
area network.”

You can also change this in some versions of Internet Explorer. Use the menu View |
Internet Options | Connection and check “Connect to the Internet using a local area network.”

After making this change, you must invoke your modem dialer manually every time you
want to use the Internet.

4 Disabling autodial in the registry
Perform the following:

1. Start the registry editor, with regedit.exe

2. Move to the registry key HKEY_LOCAL_MACHINE\Software\Microsoft\
Windows\CurrentVersion\Internet Settings: EnableAutoDial

3. Change the value from 0 to 1

CHAPTER 4 NETWORK CONFIGURATION

80 INTERBASE 6

4 Disabling RAS autodial
The easiest way to do this is to disable the RAS AutoDial service:

1. Start the services control panel applet Control Panel | Services

2. Scroll down to “Remote Access AutoDial Manager” and select it

3. Click Startup and change the startup to Manual; click OK

4. If you want to stop it now click Stop

5. Click Close

To re-enable the RAS autodial service, repeat the above but change the startup to
Automatic.

4 Preventing RAS from dialing out for local network activity
Perform the following if you are using Windows NT RAS:

1. Start the registry editor, with regedit.exe

2. Move to the registry key
HKEY_CURRENT_USER\Software\Microsoft\RAS Autodial\
Addresses

A better way to view these is to type rasautou -s from the command prompt

3. In the subkeys look for the local address and name; select the key and select
Delete from the Edit menu

4. Close the registry editor

You might also wish to add addresses to the disabled list:

1. Start the registry editor with regedt32.exe, not regedit.exe

2. Move to the registry key
HKEY_CURRENT_USER\Software\Microsoft\RAS Autodial\Control

3. Double click Disabled Addresses and add the address on a new line; click OK
when you are finished

4. Close the registry editor

You must reboot the machine in both of the above cases.

COMMUNICATION DIAGNOSTICS

OPERATIONS GUIDE 81

Other errors

Unknown Win32 error 10061

This error is often associated with a missing server-access license for the InterBase
software on the server host. Make sure you have licensed InterBase server to allow
clients to connect from the network. See the Install chapter of Getting Started for
information about licensing InterBase at install time and “Using the Install and
Licensing APIs” in the Developer’s Guide for information about using the Licensing
API to license InterBase as part of an application install.

When all else fails...
If these troubleshooting guidelines have not helped you to correct your networking
issues, contact InterBase technical support.

Communication Diagnostics
Network configuration of a client/server system involves several different software and
hardware layers and proper configuration of each of these layers. When one or more
layers are misconfigured, it is not always evident where the problem lies. InterBase
Communication Diagnostics helps to identify the source of the problem by testing each
layer progressively for existing or potential network problems.

You can access the Communication Diagnostics dialog by one of the following methods:

g Select a disconnected server in the Tree pane. Choose Server | Diagnose Connection.

g Right-click InterBase Servers or any disconnected server in the Tree pane and choose
Diagnose Connection from the context menu.

g Select a disconnected server from the Tree pane and choose Diagnose Connection in the
Work pane.

There are four types of diagnostics that you can perform. The Communications
Diagnostics dialog has separate tabs for each diagnostic type.

DB Connection tab
This test lets you connect to an InterBase database using the InterBase client libraries. It
is the most basic test of InterBase operation and is generally used only after confirmation
that the underlying network is working correctly.

CHAPTER 4 NETWORK CONFIGURATION

82 INTERBASE 6

FIGURE 4.5 Communications dialog - DB Connection

4 To run a DB Connection test:
1. Select either the Local Server option or the Remote Server option.

2. If you choose Local Server, the Server Name and Network Protocol
information is not required. These text fields are disabled. You can proceed
to step 5.

3. If you choose Remote Server, type the name of the server in the Server Name
text field.

Note The InterBase server name is the name of the database server machine. There
is not a specific name for the InterBase server process itself. For example, if the server
is running on the NT server “venus”, you enter this name in the Server Name text field.

4. If you choose Remote Server, select a network protocol from the drop down
list: either TCP/IP, NetBEUI, or SPX. Protocols are valid only when they are
supported by both the client and the server.

5. Enter the database filename, including the path where file is located, in the
Database text field. If you selected the Local Server option in step 1 you can
also click the browse button to locate the file you want. If you selected
the Remote Server option, however the browse button is disabled.

6. Type the username and password for the database in the corresponding
User Name and Password text fields.

7. Click Test to display the results of the connectivity test in the Results text area.

COMMUNICATION DIAGNOSTICS

OPERATIONS GUIDE 83

4 Sample output (local connection)

Attempting to attach to:

C:\Program Files\InterBase Corp\InterBase\

Examples\employee.gdb

Attaching ...Passed!

Detaching ...Passed!

InterBase Communication Test Passed!

TCP/IP tab
Use this property sheet to test Winsock TCP/IP connectivity.

FIGURE 4.6 Communications dialog - TCP/IP

To run a winsock TCP/IP connectivity test:

1. Enter either a network host name or IP address in the Host text field.

2. Select a service name or number from the dropdown Service list. Possible
service selections are: 21, Ping, 3050, ftp, gds_db.

Select Ping from the Service dropdown list to display a summary of round-trip times
and packet loss statistics.

3. Click Test to display the results of the connectivity test in the Results text area.

CHAPTER 4 NETWORK CONFIGURATION

84 INTERBASE 6

Sample results (ftp):

Initialized Winsock.

Attempting connection to DBSERVE.

Socket for connection obtained.

Found service ‘FTP’ at port ‘21’.

Connection established to host ‘DBSERVE’ on port 21.

TCP/IP Communication Test Passed!

Sample results (ping):

Pinging DBSERVE [200.34.4.5] with 32 bytes of data.

Reply from 200.34.4.5: bytes=32 time=1ms TTL=128

Reply from 200.34.4.5: bytes=32 time=1ms TTL=128

Reply from 200.34.4.5: bytes=32 time=1ms TTL=128

Reply from 200.34.4.5: bytes=32 time=0ms TTL=128

Ping statistics for 200.34.4.5:

 Packets: Send = 4, Received = 4, Lost = 0 (0%),

Approximate round trip times in milli-seconds:

 Minimum = 0ms, Maximum = 1ms, Average = 0ms

If the error message is... Then check...

Failed to find named port • Your services file to be sure there is an entry for gds_db in the form:
gds_db 3050/tcp

Failed to connect to host • Hostname, port 3050
• The InterBase Server to make sure it is installed properly, is

running, and is configured for TCP/IP

TABLE 4.2 Using Communication Diagnostics to diagnose connection problems

COMMUNICATION DIAGNOSTICS

OPERATIONS GUIDE 85

NetBEUI tab
Use this property sheet to test NetBEUI connectivity between the client and the server.

FIGURE 4.7 Communications dialog - NetBEUI

To run a NetBEUI connectivity test:

1. Select a Windows NT server on which InterBase has been installed from the
Server Name drop down list. If the desired server does not exist in this list,
you can type the server name in the edit portion of the drop down list.

2. Click Test to display the results of the connectivity test in the Results text area.

Sample output (NetBEUI connection):

Attempting to attach to DBSERVE using

Failed to resolve hostname • Hostname
• Your hosts file or DNS to be sure it has an entry for the server
• That you used a hostname and not an IP address

Unavailable database • Whether the InterBase server is running; the server must be
running before attempting a database connection

If the error message is... Then check...

TABLE 4.2 Using Communication Diagnostics to diagnose connection problems

CHAPTER 4 NETWORK CONFIGURATION

86 INTERBASE 6

the following named pipe:

\\dbserve\pipe\interbas\server\qds.db.

NetBEUI Communication Test Passed!

Note NetBEUI is supported on Windows NT and Windows 95/98 clients, but only
Windows NT supports NetBEUI as a server.

The connection may fail if a Microsoft Windows network is not the default network for
the client. You should also be logged into the MS Windows network with a valid NT user
name and password.

SPX tab
Use this property sheet to test SPX connectivity between the client and the server.

FIGURE 4.8 Communications dialog - SPX

To run an SPX connectivity test:

1. Select a name of a Windows NT server, on which InterBase has been
installed, from the Server Name drop down list. If the desired server does not
exist in this list, you can also type the server name in the edit portion of the
drop down list.

2. Click Test to display the results of the connectivity test in the Results text area.

COMMUNICATION DIAGNOSTICS

OPERATIONS GUIDE 87

Sample output (SPX connection):

Attempting to attach to DBSERVE using SPX.

Attached successfully to DBSERVE

using the SPX protocol.

SPX Communication Test Passed!

Note SPX is supported on Windows NT and Windows 95/98 clients, but only Novell
supports SPX as a server.

CHAPTER 4 NETWORK CONFIGURATION

88 INTERBASE 6

OPERATIONS GUIDE 89

CHAPTER

5
Chapter 5Database Security

InterBase provides several methods for configuring and enforcing security. This chapter
gives an overview of these options. The user administration tools are covered here, but
SQL statements for configuring privileges are in other InterBase books; these passages
are referenced where appropriate.

Security model
Security for InterBase relies on a central security database for each server host. This
database, isc4.gdb, contains a record for each legitimate user who has permission to
connect to databases and InterBase services on that host. Each record includes the user
login name and the associated encrypted password. The entries in this security database
apply to all databases on that server host.

The username is significant to 31 characters and is not case sensitive. Password is
significant to eight characters and is case sensitive.

Before performing any database administration tasks, you must first log in to a server.
Once you log in to a server, you can then connect to databases residing on the server.

All users must enter their username and password to log in to a server. The password is
encrypted for transmission over the network. The username and password are verified
against records in the security database. If a matching record is found, the login succeeds.

CHAPTER 5 DATABASE SECURITY

90 INTERBASE 6

The SYSDBA user
Every InterBase server has a SYSDBA user, with default password “changeme”. SYSDBA is
a special user account that can bypass normal SQL security and perform tasks such as
database backups and shutdowns.

Initially, SYSDBA is the only authorized user on a server; the SYSDBA must authorize all
other users on the server. Only the SYSDBA user can update the security database to add,
delete, or modify user configurations. SYSDBA can use either gsec or IBConsole to
authorize a new user by assigning a username and password in the security database.

IMPORTANT It is strongly recommended that you change the password for SYSDBA as soon as
possible after installing InterBase. If you do not alter the SYSDBA password,
unauthorized users have easy access and none of your databases are secure.

Other users
The SYSDBA account can create other users on a per-server basis. Use gsec or IBConsole
to create, modify, or remove users from the isc4.gdb security database. These users are
authorized to connect to any database on that database server host. It is a common design
strategy to create a distinct InterBase user for each human who uses the databases on
your server. However, other strategies are also legitimate. For example:

g Create one InterBase user for an entire group of people to use, in order to simplify
password administration. For example, a user FINANCE could satisfy the access needs for
any and all staff in a financial analysis team. This team only needs to remember one
password between them.

g Create one InterBase user for a group of people to use, as warranted by requirements of
distinct privilege configurations. For example, if Erin and Manuel have identical access
to the data within a database, they could use the same InterBase user account.

Users on UNIX
If both the client and the server are running UNIX, you can allow UNIX usernames access
to databases by configuring the server host to treat the client host as a trusted host.

To establish a trusted host relationship between two hosts, add an entry in /etc/hosts.equiv
or /etc/gds_hosts.equiv on the server. The former file establishes trusted host status for any
service (for example, rlogin, rsh, and rcp); the latter file establishes trusted host status for
InterBase client/server connections only. The format of entries in both files is identical;
see your operating system documentation on hosts.equiv for details.

SECURITY DATABASE ISC4.GDB

OPERATIONS GUIDE 91

The login of the client user must exist on the server. In addition to the hosts.equiv method
of establishing a trusted host, the you can also use the .rhosts file in the home directory
of the account on the server that matches the account on the client.

The InterBase client library defaults to using the current client’s UNIX login as the
InterBase login only when the client specifies no username through any of the following
methods:

g Database parameter buffer (dpb) parameters—see the API Guide

g Command-line options—for example, -user options of isql or another utility

g Environment variables—see “ISC_USER and ISC_PASSWORD” on page 58

Notes

g This feature is not implemented in InterBase 5 on a Windows NT server, because NT does
not implement a trusted host mechanism as UNIX does.

g Windows clients cannot be treated as trusted hosts by UNIX servers.

Security database isc4.gdb
Every user of an InterBase server requires an entry in the isc4.gdb security database. The
gsec security utility lets you display, add, modify, or delete information in isc4.gdb.
IBConsole provides a graphical interface for the same functionality. The following table
describes the contents of isc4.gdb:

Column Required? Description

User name Yes The name that the user supplies when logging in; maximum
length is 31 characters

Password Yes The user’s password

• Case sensitive
• Only the first eight characters are significant
• Maximum length: 32 characters.

UID No An integer that specifies a user ID

GID No An integer that specifies a group ID

Full name No User’s real name (as opposed to login name)

TABLE 5.1 Format of the isc4.gdb security database

CHAPTER 5 DATABASE SECURITY

92 INTERBASE 6

SQL privileges
Connecting to a database does not automatically include privileges to modify or even
view data stored within that database. Privileges must be granted explicitly; users cannot
access any database objects until they have been granted privileges. Privileges granted to
PUBLIC apply to all users.

For full description of syntax of SQL privileges, see entries for GRANT and ROLE in the
Language Reference and Data Definition Guide.

Groups of users
InterBase implements features for assigning SQL privileges to groups of users. SQL roles
are implemented on a per-database basis. UNIX groups are implemented on a server-wide
basis, using the UNIX group mechanism; this feature is not available on the
Windows NT/98/95 or NetWare platforms.

ANSI SQL 3 roles
InterBase supports SQL group-level security as described in the ISO-ANSI Working Draft
for Database Language. For syntax of SQL ROLEs, see the Language Reference and Data
Definition Guide.

Implementing roles is a four-step process.

1. Declare the role must with CREATE ROLE.

CREATE ROLE sales;

2. Assign privileges on specific tables and columns to the role using the GRANT
statement.

GRANT UPDATE ON table1 TO sales;

3. Grant the role to users, again with the GRANT statement.

GRANT sales TO user1, user2, user3;

4. Finally, to acquire the privileges assigned to a role, users must specify the role
when connecting to a database.

CONNECT ’foo.gdb’ USER ’user1’ PASSWORD ’peanuts’ ROLE sales;

User1 now has update privileges on TABLE1 for the duration of the connection.

OTHER SECURITY MEASURES

OPERATIONS GUIDE 93

A user can belong to only one role per connection to the database and cannot change
role while connected. To change role, the user must disconnect and reconnect, specifying
a different role name.

You can adopt a role when connecting to a database by any one of the following means:

g To specify a role when attaching to a database through IBConsole ISQL, display the
Database Connect dialog and type a rolename in the Role field.

g To specify a role programmatically upon connection using the InterBase API, use the dpb
parameter isc_dpb_sql_role_name. See chapter 4 of the API Guide.

g To specify a role for a connection made by an embedded SQL application or isql session,
use the ROLE rolename clause of the CONNECT statement. See the statement reference for
CONNECT in the Language Reference.

Note Applications using BDE version 5.02 or later, including Delphi, JBuilder, and
C++Builder, have a property by which they can specify a role name. Also, the ODBC
driver that currently ships with InterBase also recognizes roles.

UNIX groups
Operating system-level groups are implicit in InterBase security on UNIX, similarly to the
way UNIX users automatically supplement the users in isc4.gdb. For full description of
usage and syntax of using UNIX groups with InterBase security, see the Language
Reference and Data Definition Guide.

Note Integration of UNIX groups with database security is not an SQL standard feature.

Other security measures
InterBase provides some restrictions on the use of InterBase tools in order to increase
security. In addition, there are things that you can do to protect your databases from
security breaches. This section describes these options.

CHAPTER 5 DATABASE SECURITY

94 INTERBASE 6

Restriction on using InterBase tools
As a security measure, InterBase requires that only the owner of a database or SYSDBA
can execute gbak, gstat, and gfix.

g Only the database owner or SYSDBA can use gbak to back up a database. However, anyone
can restore a database, since there is no concept of an InterBase user for a backup file.
There is the restriction, however, that only the owner or SYSDBA can restore a database
over an existing database. For security purposes, make sure that your backup files are
stored in a secure location. This prevents unauthorized persons from restoring databases
and gaining access to them.

g On UNIX platforms, there is a further constraint on gstat: In order to run gstat, you must
have system-level read access to the database file. To access the database with gstat, you
must either be logged in as the same account that the InterBase server is running as
(interbase or root) or someone must change the permissions on the database file to
include read permission for your Group.

Protecting your databases
There are several steps that you can take to increase the security of your databases and
other files on your system:

g UNIX systems: Before starting the InterBase server, log in as the user “interbase” (or
“interbas”), rather than “root.” This restricts the power of users to accidentally or
intentionally access or overwrite sensitive files such as the password file.

g Because anyone can restore a backed up database, it is wise to keep your backup files in
a directory with restricted access if they are on a UNIX or NT platform. If they are on a
Windows 95/98 platform and security is an issue, you can either move them to physical
media such as tape or high-density removable drives and store these securely or move
the backup files to a UNIX or NT platform where they can be kept in a secure directory.

USER ADMINISTRATION WITH IBCONSOLE

OPERATIONS GUIDE 95

User administration with IBConsole
User administration is accomplished through the User Information dialog where you are
able to add, modify, view and delete users. User administration can only be performed
on a server that has been logged in.

Displaying the User Information dialog
You can use any of the following methods to access the User Information dialog:

g Select a logged in server or any branch under the server hierarchy from the list of
registered servers in the Tree pane; choose Server | User Security.

g Select a logged in server from the list of registered servers in the Tree pane. Click User
Security in the Work pane or right-click the selected server and choose User Security from
the context menu.

g Select Users under the desired server in the Tree pane to display a list of valid users in
the Work pane. Double-click a username in the Work pane.

FIGURE 5.1 User information dialog

CHAPTER 5 DATABASE SECURITY

96 INTERBASE 6

Adding a user
Adding new users is accomplished through the User Information dialog. To access this
dialog follow one of the methods described in “Displaying the User Information dialog”
on page 95.

To add a new user:

1. Click New. The New and Delete buttons are disabled and the Close button
changes to a Cancel button.

2. Type the new username in the User Name text field.

3. Type the user’s password in both the Password and the Confirm Password
text fields.

4. Add any desired optional information in the corresponding text fields. Each
of the optional text fields can be up to 32 characters.

5. Finally click Apply to add the new user to the security database or click
Cancel to abandon your changes.

Note Usernames can be up to 31 characters long and are not case sensitive. Passwords
can be up to 32 characters long and are case-sensitive. Only the first eight characters of
the password are significant. InterBase does not allow you to create usernames or
passwords containing spaces.

Modifying user configurations
Modifying users is accomplished through the User Information dialog. To access this
dialog follow one of the methods described in “Displaying the User Information dialog”
on page 95.

To modify a user’s details:

1. From the User Name drop down list, select the user whose configuration you
wish to modify. The user’s details display. You can also type the first letter of
the desired username in the User Name drop down list to quickly scroll to
usernames beginning with that letter. By repeatedly typing that same letter,
you can scroll through all usernames that begin with that letter.

2. Change any of the text fields except the User Name. If you change the
password, you must enter the same password in the Password text field and
the Confirm Password text field.

3. Finally click the Apply button to save your changes.

USER ADMINISTRATION WITH THE INTERBASE API

OPERATIONS GUIDE 97

Note You may not modify a username. The only way to change a username is to delete
the user and then add a user with the new name.

Deleting a user
Removing users from the security database is accomplished through the User Information
dialog. To access this dialog follow one of the methods described in “Displaying the User
Information dialog” on page 95.

To remove a user account:

1. Select the user you wish to delete from the User Name drop down list. You
can also type the first letter of the desired username in the User Name drop
down list to quickly scroll to usernames beginning with that letter. By
repeatedly typing that same letter, you can scroll through all usernames that
begin with that letter.

2. Click Delete. A confirmation dialog inquires, “Do you wish to delete user
username?” If you choose OK, the user is removed and is no longer
authorized to access databases on the current server.

Note Although it is possible for the SYSDBA to delete the SYSDBA user, it is strongly not
recommended because it will no longer be possible to add new users or modify existing
user configurations If you do delete the SYSDBA user, you must reinstall InterBase to
restore the isc4.gdb security database.

User administration with the InterBase API
The InterBase API includes three functions that permit authors of InterBase applications
to add, delete, and modify users programmatically using three API functions: These
functions are isc_add_user(), isc_delete_user(), and isc_modifiy_user(). These
functions are deprecated in InterBase Version 6 and later, however, because they are
replaced by functions in the InterBase Services API.

The InterBase Services API provides a much broader and more robust set of tools for
programmatically managing users in the security database.

See Chapter 12: “Working with Services” in the API Guide for details and examples of
using the Services API functions.

CHAPTER 5 DATABASE SECURITY

98 INTERBASE 6

For programmers using Delphi, the IBX components for InterBase 6 and higher include
components for managing users.

Note Delphi 5 ships with an older version of IBX that does not include Services API
components. Install the newer version of IBX that is included with InterBase 6 and later.

gsec command-line tool
The InterBase command-line security utility is gsec. This utility is used in conjunction with
the security database isc4.gdb, to specify user names and passwords for an InterBase
server. This tool duplicates the functionality of Server | User Security in IBConsole for
Windows.

The security database, isc4.gdb, resides in the InterBase install directory. To connect to a
database on the server, users must specify a user name and password, which are verified
against information stored in isc4.gdb. If a matching row is found, the connection
succeeds.

IMPORTANT Only the SYSDBA can run gsec. To do this, use one of the following methods:

g Invoke the command as:

gsec -user sysdba -password masterkey

g Define the ISC_USER and ISC_PASSWORD environment variables for SYSDBA before you
invoke the command.

g Run gsec when you are logged in as root on UNIX or Administrator on Windows NT.

To use gsec interactively, type gsec at the NT command prompt. The NT prompt changes
to GSEC>, indicating that you are in interactive mode. To quit an interactive session, type
QUIT.

Running gsec remotely
You can use gsec on a client host to administer users in a security database on a remote
server. Use the -database option with a remote database specification to connect to a
remote isc4.gdb. For example:

gsec -database jupiter:/usr/interbase/isc4.gdb

GSEC COMMAND-LINE TOOL

OPERATIONS GUIDE 99

Security utility commands
The following table summarizes gsec commands. The initial part of each command is
required. The part in brackets is optional.

4 Displaying the security database
To see the contents of isc4.gdb, enter the DISPLAY command at the GSEC> prompt. All the
rows in the security database are displayed:

GSEC> display

user nameuid gid full name

--

FRED 123 345 Fred Flintstone

BARNEY 123 345 Barney Rubble

BETTY 123 345 Betty Rubble

Note that passwords are never displayed.

4 Adding entries to the security database
To add users to the security database, use the add command:

a[dd] name -pw password [options]

followed by a user name, the -pw option followed by a password, and any other options,
as shown in the following table. The password is case sensitive. None of the other
parameters are case sensitive.

Command Description

di[splay] Displays all rows of isc4.gdb

di[splay] name Displays information only for user name

a[dd] name -pw password
[option argument]
[option argument ...]

Adds user name to isc4.gdb with password string. Each option
and corresponding argument specifies other data associated
with the user, as shown in Table 5.3, “gsec options”

mo[dify] name [options] Like add, except that name already exists in isc4.gdb

de[lete] name Deletes user name from isc4.gdb

h[elp] or ? Displays gsec commands and syntax

q[uit] Quits the interactive session

TABLE 5.2 Summary of gsec commands

CHAPTER 5 DATABASE SECURITY

100 INTERBASE 6

For each option, the initial letter or letters are required and optional parts are enclosed
in brackets. Each option must be followed by a corresponding argument, a string that
specifies the data to be entered into the specified column in isc4.gdb.

Note The -pa switch specifies the root or the SYSDBA account password; -pw specifies the
password for the user being added or modified.

For example, to add user “jones” and assign the password “welcome”, enter:

GSEC> add jones -pw welcome

Use display to verify the entry. An unassigned UID or GID defaults to 0:

GSEC> display

user name uid gid full name

--

JONES 0 0

For example, to add authorization for a user named Cindi Brown with user name
“cbrown” and password “coffee2go”, use the following gsec command:

GSEC> add cbrown –pw coffee2go –fname cindi –lname brown

To verify the new entry, display isc4.gdb:

GSEC> display

user name uid gid full name

--

JONES 0 0

CBROWN 0 0 CINDI BROWN

Option Meaning

-password or -pa string Password of user who is performing the change

-user string User who is performing the change

-pw string Target user password

-uid integer Target user ID

-gid integer Group ID for target user

-fname string First Name for target user

-mname string Middle Name for target user

-lname string Last Name for target user

TABLE 5.3 gsec options

GSEC COMMAND-LINE TOOL

OPERATIONS GUIDE 101

gsec stores the user name in uppercase regardless of how it is entered.

4 Modifying the security database
To change existing entries in the security database, use the modify command. Supply the
user name for the entry to change, followed by the option indicating the items to change
and the corresponding values to which to change them.

For example, to set the user ID of user “cbrown” to 8 and change the first name to
“Cindy”, enter the following commands:

GSEC> modify cbrown –uid 8 –fname cindy

To verify the changed line, use display followed by the user name:

GSEC> display cbrown

user name uid gid full name

CBROWN 8 0 CINDY BROWN

Note To modify a user name, first delete the entry in isc4.gdb, then enter the new user
name and re-enter the other information.

4 Deleting entries from the security database
To delete a user’s entry in isc4.gdb, use delete and specify the user name:

GSEC> delete cbrown

You can confirm that the entry has been deleted with the display command.

Using gsec from the command prompt
To use gsec from the NT command prompt, precede each command with gsec and prefix
each gsec command with a hyphen (-). For example, to add user “aladdin” and assign the
password, “sesame”, enter the following at the command line:

C:> gsec –add aladdin –pw sesame

To display the contents of isc4.gdb, enter:

C:> gsec –display

CHAPTER 5 DATABASE SECURITY

102 INTERBASE 6

gsec error messages

Error Message Causes and Suggested Actions to Take

Add record error The add command either specified an existing user, used
invalid syntax, or was issued without appropriate privilege to
run gsec. Change the user name or use modify on the existing
user.

<string> already specified During an add or modify, you specified data for the same
column more than once. Retype the command.

Ambiguous switch specified A command did not uniquely specify a valid operation.

Delete record error The delete command was not allowed. Check that you have
appropriate privilege to use gsec.

Error in switch specifications This message accompanies other error messages and
indicates that invalid syntax was used. Check other error
messages for the cause.

Find/delete record error Either the delete command could not find a specified user, or
you do not have appropriate privilege to use gsec.

Find/display record error Either the display command could not find a specified user, or
you do not have appropriate privilege to use gsec.

Find/modify record error Either the modify command could not find a specified user, or
you do not have appropriate privilege to use gsec.

Incompatible switches specified Correct the syntax and try again.

Invalid parameter, no switch defined You specified a value without a preceding argument.

Invalid switch specified You specified an unrecognized option. Fix it and try again.

Modify record error Invalid syntax for modify command. Fix it and try again.

Also check that you have appropriate privilege to run gsec.

TABLE 5.4 gsec security error messages

GSEC ERROR MESSAGES

OPERATIONS GUIDE 103

No user name specified Specify a user name after add, modify, or delete.

Record not found for user: <string> An entry for the specified user could not be found. Use display
to list all users, then try again.

Unable to open database The isc4.gdb security database does not exist or cannot be
located by the operating system.

Error Message Causes and Suggested Actions to Take

TABLE 5.4 gsec security error messages (continued)

CHAPTER 5 DATABASE SECURITY

104 INTERBASE 6

OPERATIONS GUIDE 105

CHAPTER

6
Chapter 6Database Configuration

and Maintenance

This chapter describes configuration and maintenance issues for individual databases,
including the following topics:

g Database file properties

g The InterBase On-disk structure (ODS)

g Read-write and read-only databases

g Database shadowing

g Database configuration and maintenance

g Configuring the Superserver cache

g Forced writes and buffered writes

g Database validation and repair

g Database shutdown and restart

g Limbo transactions

g Using gfix

CHAPTER 6 DATABASE CONFIGURATION AND MAINTENANCE

106 INTERBASE 6

Database files
InterBase database files are in many cases self-contained. All the data and indexes are
maintained as data structures within one type of file. The transaction log is also kept
within this file.

You can extend the functions available in InterBase database metadata by creating
libraries of functions compiled in your language of choice. You can compile functions
into a dynamic library (called a DLL on Windows, and a shared library on UNIX) and use
them in queries, stored procedures, triggers, views, and so on.

Database file size
InterBase database files are limited to 4GB. The total file size is the product of the number
of database pages times the page size. The default page size is 1KB and the maximum
page size is 8KB. You set the database page size when you create a database by using the
PAGE SIZE clause of the CREATE DATABASE statement, or its equivalent in IBConsole. You
can change the page size when you restore a database using gbak or IBConsole.

Database files cannot exceed 4GB total size. When a database file reaches 4GB, InterBase
issues a warning and stops writing data to it. At this point, you must add one or more
secondary files using the ALTER DATABASE statement or IBConsole.

Another way to add secondary files to a database is to back the database up and then
restore it to multiple files. This is the only way to reduce the size of the primary database
file. When you restore a database, you can specify multiple files without reference to the
original file sizes.

Dynamic file sizing
InterBase dynamically expands the last file in a database as needed until it reaches the
4GB limit. This applies to single-file database as well as to the last file of multifile
databases. You should be aware that specifying a LENGTH for such files has no effect.

External files
InterBase permits external files to be used as external tables. These tables are limited in
their functionality:

g From a database that is in read-write mode, you can execute only SELECT and INSERT
statements on external tables. From a read-only database, you can execute only SELECT
statement on external tables.

DATABASE FILES

OPERATIONS GUIDE 107

g You cannot define indexes on external tables; they are outside of the control of the
multigenerational architecture.

Temporary files
InterBase dynamically creates files in the temporary file space for scratch space during
sorting operations involving large amounts of data. See “Temporary file management”
on page 59 for details on temporary files.

File naming conventions
InterBase database files are given a file extension of .gdb by convention, though the
software does not enforce this and you can choose to use another file extension. For
purposes of this documentation, assume that .gdb refers to an InterBase database file
type.

InterBase is available on a wide variety of platforms. In most cases users in a
heterogeneous networking environment can access their InterBase database files
regardless of platform differences between client and server machines if they know the
target platform’s file naming conventions.

Because file naming conventions differ widely from platform to platform, and because
the core InterBase documentation set is the same for each of these platforms, all file
names in text and in examples are restricted to a base name with a maximum of eight
characters, with a maximum extension length of three characters. For example, the
sample database on all servers is referred to as employee.gdb.

Generally, InterBase fully supports each platform’s file naming conventions, including
the use of node and path names. InterBase, however, recognizes two categories of file
specification in commands and statements that accept more than one file name. The first
file specification is called the primary file specification. Subsequent file specifications are
called secondary file specifications. Some commands and statements place restrictions on
using node names with secondary file specifications. In syntax statements, file
specification is denoted as 'filespec'

CHAPTER 6 DATABASE CONFIGURATION AND MAINTENANCE

108 INTERBASE 6

4 Primary file specifications
InterBase syntax always supports a full file specification, including optional node name
and full path, for primary file specifications. For example, the syntax notation for CREATE
DATABASE appears as follows:

CREATE {DATABASE | SCHEMA} ’filespec’
[USER ’username’ [PASSWORD ’password’]]
[PAGE_SIZE [=] int]
[LENGTH [=] int [PAGE[S]]]
[DEFAULT CHARACTER SET charset]

In this syntax, the filespec that follows CREATE DATABASE supports a node name and path
specification, including a platform-specific drive or volume specification.

4 Secondary file specifications
For InterBase syntax that supports multiple file specification, such as CREATE DATABASE,
all file specifications after the first one are secondary. Secondary file specifications cannot
include a node name, but can specify a full path name.

Multifile databases
InterBase supports databases that span multiple files and multiple filesystems. You can
add additional files to the database without having to take it off line.

The Database Restore task in IBConsole and in the gbak command-line utility permits you
to create a multifile database. The only way to alter the file size allocation of an existing
database is to back up and restore the database file.

4 Adding database files
You have the option of specifying the size of secondary files in either of two ways: specify
the page on which each secondary file starts, or specify the length in database pages of
each file. When you specify the size using the LENGTH keyword, do not specify the length
of the final file. InterBase sizes the final file dynamically, as needed.

The following isql example adds files using STARTING AT syntax:

CONNECT ‘first.gdb’;

ALTER DATABASE

ADD FILE 'second.gdb' STARTING AT 50000;

DATABASE FILES

OPERATIONS GUIDE 109

4 Altering database file sizes
You cannot use ALTER DATABASE to split an existing database file. For example, if your
existing database is 80,000 pages long and you issue the command above, InterBase starts
the new database file at page 80,001. The only way to split an existing database file into
smaller files is to back it up and restore it. When you restore a database, you are free to
specify secondary file sizes at will, without reference to the original file sizes.

The following isql example adds a file using LENGTH syntax. Second.gdb will begin on the
page following the final page of first.gdb and will grow to 50,000 database pages. Then
InterBase begins writing to third.gdb and dynamically increases the size as necessary.

CONNECT ’first.gdb’;

ALTER DATABASE ADD FILE ’second.gdb’ LENGTH 50000

ADD FILE ’third.gdb’;

InterBase starts writing data to third.gdb once second.gdb file fills up. In the example above,
second.gdb is 50,000 pages long, and begins following the original file. InterBase will begin
filling the third.gdb file after second.gdb reaches 50,000 pages. Database pages are 1KB each
by default and have a maximum size of 8KB.

There is no guarantee that a given table resides entirely in one file or another. InterBase
stores records based on available space within database files. Over time, records from a
given table tend to spread over all the files in a multifile database.

4 Maximum number of files
InterBase allows up to 65,536 database files, including shadow files. Note that your
operating system might have a much lower limit on the number of simultaneous open
files that the ibserver process can have.

4 Application considerations
A multifile database is not the same thing as multiple single-file databases. The tables are
all part of the same database they used to be in, but they can be stored across the multiple
files. From your application’s standpoint, they’re all part of the same database and are
accessed exactly the same way they would be in a single-file database.

Your application does not need to know about any files except the first one. Any time
your database operations access/write data in the secondary files, the InterBase software
takes care of it without requiring any special programming from your application. The
application attaches to the database by specifying the path of the first file of the database;
applications don’t change.

CHAPTER 6 DATABASE CONFIGURATION AND MAINTENANCE

110 INTERBASE 6

4 Reorganizing file allocation
You can change the sizes of the files of a multifile database when using gbak to restore a
database. See “gbak command-line tool” on page 158.

Tip Any database in a production environment should include a definition for at least one
secondary file, even if the current size of the database does not warrant a multifile
database. Data tends to accumulate without bound, and some day in the future your
database might exceed your filesystem size, or the operating system’s maximum file size.
By defining a secondary file, you specify what action InterBase takes when the database
grows beyond these limits. This means that the database administrator is freed from
monitoring the database as it approaches the file size limit.

Networked filesystems
An InterBase database must reside on a disk local to the server software that accesses it.
The database file (including any secondary files and shadow files) cannot reside on
networked or remote filesystems (called mapped drives on Windows and NFS filesystems
on UNIX). External tables and UDF libraries can reside on networked filesystems, but this
practice is not recommended because networked filesystems can suffer from intermittent
availability.

On UNIX, the InterBase software detects that a database file is located on an NFS
filesystem. In this case, it invokes the remote access method to contact an InterBase
server process running on the host that exported the filesystem. If there is no InterBase
server software running on that node, any connection to the database fails.

On-disk structure (ODS)
Each release of InterBase has characteristic features in its internal file format. To
distinguish between the file formats, InterBase records an on-disk structure (ODS)
number in the .gdb file. In general, major ODS versions (those incrementing the number
the left of the decimal point) introduce features that are not backward compatible with
earlier ODS versions. As a result, earlier InterBase software cannot operate on a database
file with a later ODS.

When you create a new database or restore a backup file in the current version of
InterBase, the resulting database file has the current ODS version.

IMPORTANT To upgrade the ODS of an older database, you must back it up using the backup utility
for the version of the existing database and then restore it using the current version of
InterBase.

READ-WRITE AND READ-ONLY DATABASES

OPERATIONS GUIDE 111

InterBase 6 uses ODS version 10. New features in this ODS that are not recognized by
earlier software include 64-bit numerics and new datatypes: SQLDATE and SQLTIME. The
old TIME datatype has been changed to TIMESTAMP—a more descriptive name.

Read-write and read-only databases
InterBase databases have two modes: read-only and read-write. At creation, all databases
are both readable and writable: they are in read-write mode.

Read-write databases
To function in read-write mode, databases must exist on writable media and the ibserver
process must have write access to the database file. For databases that are in read-write
mode, this is true even when they are used only for reading because the transaction states
are kept in an internal inventory data structure within the .gdb file. Therefore any
transaction against the database requires the ability to write to the transaction inventory.

Under both Windows NT and UNIX, read-write database files must be writable by the
user ID for the ibserver process. However, the operating environment or filesystem can be
configured to create files that have limited file privileges by default. If you attempt to
attach to a database and get an error of “unavailable database,” first check to see if
the .gdb file’s permissions are such that the user ID of the ibserver process does not have
write privilege on the database file.

Read-only databases
You can change InterBase databases to read-only mode. This provides enhanced security
for databases by protecting them from accidental or malicious updates and enables
distribution on read-only media such as CDROMs. Databases are always in read-write
mode at creation time. This feature is independent of dialect. Any InterBase 6 or later
database can be set to read-only mode.

You can use either gbak or gfix to change them to read-only mode. (See “Making a
database read-only” below.)

4 Properties of read-only databases
g In read-only mode, databases can be placed on CD-ROMs or in read-only filesystems as

well as on read-write filesystems.

CHAPTER 6 DATABASE CONFIGURATION AND MAINTENANCE

112 INTERBASE 6

g Attempted INSERT, UPDATE, and DELETE operations on a read-only database generate an
error. See the “Error Codes and Messages” chapter of the Language Reference.

g No metadata changes are allowed in read-only databases.

g Generators in a read-only database do not increment and are allowed only to return the
current value. For example, in a read-only database, the following statement succeeds:

SELECT GEN_ID(generator_name, 0) FROM table_name;

The following statement fails with the error “attempted update on read-only database.”

SELECT GEN_ID(generator_name, 1) FROM table_name;

g External files accessed through a read-only database open in read-only mode, regardless
of the file’s permissions at the file system level.

g The read-only feature requires that both client and database be dialect 3, which is
available only for InterBase 6 and later databases. This means that InterBase servers older
than Version 6 cannot access read-only databases.

4 Making a database read-only
To change the mode of a database between read-write and read-only, you must be either
its owner or SYSDBA and you must have exclusive access to a database.

You must have exclusive to a database to change it to read-only mode.

From within InterBase, you can change a read-write database to read-only mode in any
of three ways:

g In IBConsole, select the database, display its properties, and edit the mode.

g Use gbak to back up the database and restore it in read-only mode:

gbak -create -mode read_only foo.gbk foo.gdb

g Use gfix to change the mode to read-only:

gfix -mode read_only foo.gdb

IMPORTANT To set a database to read-only mode from any application that uses BDE, ODBC, or
JDBC, use the isc_action_svc_properties() function in the InterBase Services API.

Tip To distribute a read-write database on a CD-ROM, back it up and put the .gbk file on the
CD-ROM. As part of the installation, restore the database to the user’s hard disk.

CREATING DATABASES

OPERATIONS GUIDE 113

4 Read-only with older InterBase versions
g A pre-6 InterBase client can access a read-only database to perform SELECTs. No other

operation succeeds.

g If a version 6 client tries to set a pre-6 database to read-only mode, the server silently
ignores the request. There is no way to make older databases read-only. You must
upgrade them to version 6.

Creating databases
You can create databases on local and remote servers using IBConsole with the Create
Database dialog.

You can use any of the following methods to access the Create Database dialog:

g In the Tree pane, select a server or anywhere in the branch under the desired server and
choose Database | Create Database.

g In the Tree pane, right click a server or the Databases branch under the desired server,
and select Create Database from the context menu.

FIGURE 6.1 Create Database dialog

To create a database:

1. Ensure that the server indicated is correct. If it is not, you must Cancel this
dialog and re-initiate it under the correct server.

2. Type an Alias name for the new database in the Alias text field.

CHAPTER 6 DATABASE CONFIGURATION AND MAINTENANCE

114 INTERBASE 6

3. Enter one or more filenames which will make up the database, specifying the
number of pages required for each file. To insert a new row into the Files
table, move to the last row and column of the table and type w-z.

When entering a filename, make sure to include the file path unless you wish to
default the file to the working directory.

Note Database files must reside on a local drive.

4. You can specify create options by entering a valid value, by clicking the
option value and choosing a new value from a drop down list of values or by
double-clicking the option value to rotate its value to the next in the list of
values. For more information, see “Database options” below.

To create a basic database without any options, leave all options blank.

5. Finally click OK to create the specified database.

IMPORTANT The alias name that you specify when creating a database references the necessary
database file information associated with the database. When performing database
configuration and maintenance, you need only specify the alias name, not the actual
database filename. If the database spans multiple files, the server uses the header page
of each file to locate additional files.

Database options
The database options that you can set are Page Size, Default Character Set, and SQL
dialect.

4 Page size
InterBase supports database page sizes of 1024, 2048, 4096, and 8192 bytes. The default
is 1024 bytes.

4 Default character set
See Character Set in table 3.1 for a detailed explanation of character sets.

For more information about creating databases, see the Language Reference.

4 SQL dialect
An InterBase database SQL dialect determines how double quotes, large exact numerics,
and certain datatypes such as SQL DATE, TIME, and TIMESTAMP are interpreted. In most
cases you should choose dialect 3 in order to have access to all InterBase 6 features.

DROPPING DATABASES

OPERATIONS GUIDE 115

Dropping databases
You can drop databases using IBConsole. Dropping a database deletes the current
database and database alias, removing both data and metadata.

To drop a database:

1. Select the database you wish to drop in the Tree pane.

2. Choose Database | Drop.

3. A dialog asks you to confirm that you wish to delete the database. Click OK
if you want to drop the selected database, otherwise click Cancel.

Note A database can be dropped only by its creator or the SYSDBA user. A dropped
database is removed from the list of databases maintained in the interbas.ini file.

IMPORTANT Dropping a database deletes all data and metadata in the database.

Backup file properties
You can view and modify backup file information in IBConsole with the Backup Alias
Properties dialog. You can access this dialog with any of the following methods:

g Select a backup alias in the Tree pane and choose Tools | Backup/Restore | Modify Backup Alias.or
select Modify Backup Alias from the Work pane.

g Right-click a backup alias in the Tree pane and choose Modify Backup Alias from the
context menu.

g Select Backup to display a list of backup files in the Work pane. Select a backup file in
the Work pane and choose Tools | Backup/Restore | Modify Backup Alias.

CHAPTER 6 DATABASE CONFIGURATION AND MAINTENANCE

116 INTERBASE 6

FIGURE 6.2 Backup alias properties

To edit backup file properties:

1. Enter a new backup alias name in the Alias Name text field.

2. Add, remove, or modify the backup filenames and corresponding file sizes
associated with the backup in the backup files table. When specifying
filenames, be sure to include the file path where the file is located.

To add a new row to the backup files table, move to the last row and column of the
table and type w-z. To remove a file from the backup file list, delete (blank out)
the values in the table.

3. Select a server from the Target Database Server drop down list. You can also
type the server name in the edit portion of the drop down list.

4. Select a database alias from the Target Database Alias drop down list. You can
also type the alias name in the edit portion of the drop down list

5. Click Apply to save your changes.

Removing database backup files
You can remove database backup files in IBConsole with any of the following methods:

g Select a backup file in the Tree pane and choose Tools | Backup/Restore | Delete Alias.

g Right-click a backup file in the Tree pane and choose Delete Alias from the context menu.

SHADOWING

OPERATIONS GUIDE 117

g Select a backup file in the Work pane and choose Delete Alias in the Work pane.

A dialog asks you to confirm that you wish to remove the selected backup file. Click OK
if you want to delete the backup file, otherwise click Cancel.

Shadowing
InterBase lets you recover a database in case of disk failure, network failure, or accidental
deletion of the database. The recovery method is called disk shadowing, or sometimes
just shadowing. This chapter describes how to set up and use shadowing.This section
describes the various tasks involved in shadowing, as well as the advantages and
limitations of shadowing.

Tasks for shadowing
The main tasks in setting up and maintaining shadowing are as follows:

g Creating a shadow.

Shadowing begins with the creation of a shadow. A shadow is an identical, physical copy
of a database. When a shadow is defined for a database, changes to the database are
written simultaneously to its shadow. In this way, the shadow always reflects the current
state of the database. For information about the different ways to define a shadow, see
“Creating a shadow” on page 118.

g Activating a shadow.

If something happens to make a database unavailable, the shadow can be activated.
Activating a shadow means it takes over for the database; the shadow becomes accessible
to users as the main database. Activating a shadow happens either automatically or
through the intervention of a DBA, depending on how the shadow was defined. For more
information about activating a shadow, see “Activating a shadow” on page 122.

g Deleting a shadow.

If shadowing is no longer desired, it can be stopped by deleting the shadow. For more
information about deleting a shadow, see “Dropping a shadow” on page 123.

g Adding files to a shadow.

A shadow can consist of more than one file. As shadows grow in size, files can be added
to accommodate the increased space requirements. For more information about adding
shadow files, see “Adding a shadow file” on page 123.

CHAPTER 6 DATABASE CONFIGURATION AND MAINTENANCE

118 INTERBASE 6

Advantages of shadowing
Shadowing offers several advantages:

g Recovery is quick. Activating a shadow makes it available immediately.

g Creating a shadow does not require exclusive access to the database.

g Shadow files use the same amount of disk space as the database. Log files, on the other
hand, can grow well beyond the size of the database.

g You can control the allocation of disk space. A shadow can span multiple files on multiple
disks.

g Shadowing does not use a separate process. The database process handles writing to the
shadow.

g Shadowing can run behind the scenes and needs little or no maintenance.

Limitations of shadowing
Shadowing has the following limitations:

g Shadowing is not an implementation of replication. Shadowing is one-way writing,
duplicating every write operation on the master database. Client applications cannot
access the shadow file directly.

g Shadowing is useful only for recovery from hardware failures or accidental deletion of
the database. User errors or software failures that corrupt the database are duplicated in
the shadow.

g Recovery to a specific point in time is not possible. When a shadow is activated, it takes
over as a duplicate of the database. Shadowing is an “all or nothing” recovery method.

g Shadowing can occur only to a local disk. Shadowing to a NFS filesystem or mapped drive
is not supported. Shadowing to tape or other media is unsupported.

Creating a shadow
A shadow is created with the CREATE SHADOW statement in SQL. Because this does not
require exclusive access, it can be done without affecting users. For detailed information
about CREATE SHADOW, see the Language Reference.

Before creating a shadow, consider the following topics:

g The location of the shadow

SHADOWING

OPERATIONS GUIDE 119

A shadow should be created on a different disk from where the main database resides.
Because shadowing is intended as a recovery mechanism in case of disk failure,
maintaining a database and its shadow on the same disk defeats the purpose of
shadowing.

g Distributing the shadow

A shadow can be created as a single disk file called a shadow file or as multiple files called
a shadow set. To improve space allocation and disk I/O, each file in a shadow set can be
placed on a different disk.

g User access to the database

If a shadow becomes unavailable, InterBase can either deny user access to the database
until shadowing is resumed, or allow access even though database changes are not being
shadowed. Depending on which database behavior is desired, the DBA creates a shadow
either in auto mode or in manual mode. For more information about these modes, see
“Auto mode and manual mode” on page 121.

g Automatic shadow creation

To ensure that a new shadow is automatically created, create a conditional shadow. For
more information, see “Creating a Conditional Shadow,” in this chapter.

The next sections describe how to create shadows with various options:

g Single-file or multifile shadows

g Auto or manual shadows

g Conditional shadows

These choices are not mutually exclusive. For example, you can create a single-file,
conditional shadow in manual mode.

4 Creating a single-file shadow
To create a single-file shadow for database employee.gdb, enter:

SQL> CREATE SHADOW 1 ’/usr/interbase/examples/employee.shd’;

The name of the shadow file is employee.shd, and it is identified by the number 1. Verify
that the shadow has been created by using the isql command SHOW DATABASE:

SQL> SHOW DATABASE;

Database: employee.gdb

 Shadow 1: ’/usr/interbase/examples/employee.shd’ auto

PAGE_SIZE 1024

Number of DB pages allocated = 392

Sweep interval = 20000

CHAPTER 6 DATABASE CONFIGURATION AND MAINTENANCE

120 INTERBASE 6

The page size of the shadow is the same as that of the database.

4 Creating a multifile shadow
If your database is large, you can shadow it to a multifile shadow, spreading the shadow
files over several disks. To create a multifile shadow, specify the name and size of each
file in the shadow set. As with multifile databases, you have the option of specifying the
size of secondary files in either of two ways: specify the page on which each secondary
file starts, or specify the length in database pages of each file. When you specify the size
using the LENGTH keyword, do not specify the length of the final file. InterBase sizes the
final file dynamically, as needed.

For example, the following example creates a shadow set consisting of three files. The
primary file, employee.shd, is 10,000 database pages in length. The second file is 20,000
database pages long, and the final file grows as needed.

SQL> CREATE SHADOW 1 ’employee.shd’ LENGTH 10000

CON> FILE ’emp2.shd’ LENGTH 20000

CON> FILE ’emp3.shd’;

Instead of specifying the page length of secondary files, you can specify their starting
page. The following example creates the same shadows as the previous example:

SQL> CREATE SHADOW 1 ’employee.shd’

CON> FILE ’emp1.shd’ STARTING AT 10000

CON> FILE ’emp2.shd’ STARTING AT 30000;

In either case, you can use SHOW DATABASE to verify the file names, page lengths, and
starting pages for the shadow just created:

SQL> SHOW DATABASE;

Database: employee.gdb

 Shadow 1: ’/usr/interbase/examples/employee.shd’ auto length 10000

 file /usr/interbase/examples/emp1.shd length 2000 starting 10000

 file /usr/interbase/examples/emp2.shd length 2000 starting 30000

PAGE_SIZE 1024

Number of DB pages allocated = 392

Sweep interval = 20000

Note The page length you allocate for secondary shadow files need not correspond to
the page length of the database’s secondary files. As the database grows and its first
shadow file becomes full, updates to the database automatically overflow into the next
shadow file.

SHADOWING

OPERATIONS GUIDE 121

4 Auto mode and manual mode
A shadow can become unavailable for the same reasons a database becomes unavailable
(disk failure, network failure, or accidental deletion). If a shadow becomes unavailable,
and it was created in auto mode, database operations continue automatically without
shadowing. If a shadow becomes unavailable, and it was created in manual mode,
further access to the database is denied until the DBA intervenes. The benefits of auto
mode and manual mode are compared in the following table:

AUTO MODE

The AUTO keyword directs the CREATE SHADOW statement to create a shadow in auto
mode:

SQL> CREATE SHADOW 1 AUTO ’employee.shd’;

Auto mode is the default, so omitting the AUTO keyword achieves the same result.

In AUTO mode, database operation is uninterrupted even though there is no shadow. To
resume shadowing, it might be necessary to create a new shadow. If the original shadow
was created as a conditional shadow, a new shadow is automatically created. For more
information about conditional shadows, see “Conditional shadows” on page 122.

MANUAL MODE

The MANUAL keyword directs the CREATE SHADOW statement to create a shadow in manual
mode:

SQL> CREATE SHADOW 1 MANUAL ’employee.shd’;

Mode Advantage Disadvantage

Auto Database operation is uninterrupted Creates a temporary period when the
database is not shadowed

The DBA might be unaware that the database
is operating without a shadow

Manual Prevents the database from running
unintentionally without a shadow

Database operation is halted until the
problem is fixed

Needs intervention of the DBA

TABLE 6.1 Auto vs. manual shadows

CHAPTER 6 DATABASE CONFIGURATION AND MAINTENANCE

122 INTERBASE 6

Manual mode is useful when continuous shadowing is more important than continuous
operation of the database. When a manual-mode shadow becomes unavailable, further
attachments to the database are prevented. To allow database attachments again, the
database owner or SYSDBA must enter the following command:

gfix –kill database

This command deletes metadata references to the unavailable shadow corresponding to
database. After deleting the references, a new shadow can be created if shadowing needs
to resume.

4 Conditional shadows
You can define a shadow such that if it replaces a database, the server creates a new
shadow file, allowing shadowing to continue uninterrupted. A shadow defined with this
behavior is called a conditional shadow.

To create a conditional shadow, specify the CONDITIONAL keyword with the CREATE
SHADOW statement. For example,

SQL> CREATE SHADOW 3 CONDITIONAL 'atlas.shd';

Creating a conditional file directs InterBase to automatically create a new shadow. This
happens in either of two cases:

g The database or one of its shadow files becomes unavailable.

g The shadow takes over for the database due to hardware failure.

Activating a shadow
When a database becomes unavailable, database operations are resumed by activating
the shadow. To do so, log in as SYSDBA or the database owner and use gfix with the
–activate (or –a) option.

IMPORTANT Before activating a shadow, check that the main database is unavailable. If a shadow is
activated while the main database is available, the shadow can be corrupted by existing
attachments to the main database.

To activate a shadow, specify the path name of its primary file. For example, if database
employee.gdb has a shadow named employee.shd, enter:

gfix –a employee.shd

After a shadow is activated, you should change its name to the name of your original
database. Then, create a new shadow if shadowing needs to continue and if another disk
drive is available.

DATABASE CONFIGURATION USING IBCONSOLE

OPERATIONS GUIDE 123

Dropping a shadow
To stop shadowing, use the shadow number as an argument to the DROP SHADOW
statement. For example,

SQL> DROP SHADOW 1

If you need to look up the shadow number, use the isql command SHOW DATABASE.

IMPORTANT DROP SHADOW deletes shadow references from a database’s metadata, as well as the
physical files on disk. Once the files have been removed from disk, there is no
opportunity to recover them. However, a shadow is merely a copy of an existing
database, so the new shadow is identical to the dropped shadow.

Adding a shadow file
If a database is expected to increase in size, consider adding files to its shadow. To add a
shadow file, first use DROP SHADOW to delete the existing shadow, then use CREATE
SHADOW to create a multifile shadow.

The page length you allocate for secondary shadow files need not correspond to the page
length of the database’s secondary files. As the database grows and its first shadow file
becomes full, updates to the database automatically overflow into the next shadow file.

Database configuration using IBConsole
The Database Properties dialog enables you to display and configure certain database
settings. You can access the Database Properties dialog by any of the following methods:

g Select a connected database (or any branch under the database hierarchy) in the Tree
pane and choose Database | Properties.

g Select a connected database in the Tree pane and click Properties in the Work pane.

g Right-click a database in the Tree pane and choose Properties from the context menu.

The Database Properties dialog contains two tabs, Alias and General.

4 Alias tab
The Alias tab of the Database Properties dialog is where you can specify an alias name
for a database as well as the file path and file name of the selected database.

CHAPTER 6 DATABASE CONFIGURATION AND MAINTENANCE

124 INTERBASE 6

FIGURE 6.3 Database Properties - Alias tab

To edit database alias settings:

1. Enter the alias name of the database in the Alias Name text field.

2. Enter database file name, including the path where the file is located, in the
File text field. If you prefer, you can also click the browse button to locate
the file you want.

3. If you need to view or configure the general database settings, click the
General tab and see “General tab” below for further information.

4. Once you are finished making changes to the database properties click Apply
to save your changes, otherwise click Cancel.

4 General tab
The General tab of the Database Properties dialog is where you can view such database
settings as the database owner, secondary files and their start pages, the number of
allocated database pages and the page size. You can also set such options as Forced
Writes, Sweep Interval, SQL Dialect and Read Only.

DATABASE CONFIGURATION USING IBCONSOLE

OPERATIONS GUIDE 125

FIGURE 6.4 Database Properties - General tab

To edit database general options:

1. Choose option values in the Options table. You can specify options by
clicking the option value and entering a new value, by choosing a new value
from a drop down list of values or by double-clicking the option value to
rotate its value to the next in the list of values.

2. If you need to view or configure the database alias settings, click the Alias tab
and see “Alias tab” above for further information.

3. Once you are finished making changes to the database properties click Apply
to save your changes, otherwise click Cancel.

CHAPTER 6 DATABASE CONFIGURATION AND MAINTENANCE

126 INTERBASE 6

Sweep interval and automated housekeeping
Sweeping a database is a systematic way of removing outdated records from the database.
Periodic sweeping prevents a database from growing too large. However, sweeping can
also slow system performance.

As a DBA, you can tune database sweeping, balancing its advantages and disadvantages
to best satisfy users’ needs.

Overview of sweeping
InterBase uses a multigenerational architecture. This means that multiple versions of data
records are stored directly on the data pages. When a record is updated or deleted,
InterBase keeps a copy of the old state of the record and creates a new version. This can
increase the size of a database.

Option Value

Forced Writes Option values are Enabled and Disabled. See “Forced writes
vs. buffered writes” on page 131 for further information
on forced writes.

Sweep Interval The sweep interval is the number of transactions that will occur
before an automatic database sweep takes place. You can enter
any positive number for the sweep interval, or zero to disable the
automatic sweep. See “Sweep interval and automated
housekeeping” on page 126 for further information on
setting the sweep interval.

SQL dialect An InterBase database SQL dialect determines how double
quotes, large exact numerics, and certain datatypes such as SQL
DATE, TIME, and TIMESTAMP are interpreted. In most cases you
should choose dialect 3 in order to have access to all InterBase 6
features.

Read Only Option values are True and False. To make the database read only
set the Read Only option to True. This prevents users from
performing any DML or updates to the database. The default
setting for this option is False.

TABLE 6.2 General options

SWEEP INTERVAL AND AUTOMATED HOUSEKEEPING

OPERATIONS GUIDE 127

GARBAGE COLLECTION

To limit the growth of the database, InterBase performs garbage collection by sweeping
the database. This process frees up space allocated to outdated record versions. Whenever
a transaction accesses a record, outdated versions of that record are garbage collected.
Records that were rolled back are not be garbage collected. To guarantee that all records
are garbage collected, including those that were rolled back, InterBase periodically
sweeps the database.

AUTOMATIC HOUSEKEEPING

If a transaction is left in an active (unresolved) state, this is an “interesting” transaction.
In a given database’s transaction inventory, the first transaction with a state other than
committed is known as the Oldest Interesting Transaction (OIT). If a client starts a new
transaction and the transaction number is greater than a certain threshold past the
number of the OIT, the InterBase server initiates a full sweep of the database. By default,
this threshold is 20,000 transactions, and is configurable (see “Setting the sweep
interval” on page 128).

Note It is a subtle but important distinction that the automatic sweep does not
necessarily occur every 20,000 transactions. It is only when the difference between the
OIT and the newest transaction reaches the threshold. If every transaction to the database
is committed promptly, then this difference it is not likely to be great enough to trigger
the automatic sweep.

The InterBase server process initiates a special thread to perform this sweep
asynchronously, so that the client process can continue functioning, unaffected by the
amount of work done by the sweep.

Tip Sweeping a database is not the only way to perform systematic garbage collection.
Backing up a database achieves the same result, because the InterBase server must read
every record, an action that forces garbage collection throughout the database. As a
result, regularly backing up a database can reduce the need to sweep. This enables you
to maintain better application performance. For more information about the advantages
of backing up and restoring, see “Benefits of backup and restore” on page 145.

CONFIGURING SWEEPING

You are able to control several aspects of database sweeping. You can:

g Change the automatic sweep interval.

g Disable automatic sweeping.

g Sweep a database immediately.

CHAPTER 6 DATABASE CONFIGURATION AND MAINTENANCE

128 INTERBASE 6

The first two functions are performed in the Database Properties dialog. The last is
performed with a sweep menu command and is explained in “Performing an
immediate database sweep” on page 128.

Setting the sweep interval
To set the automatic sweep threshold, type the number of transactions between each
database sweep in the Sweep Interval text field. For example, to set the sweep threshold
to 10,000 transactions, type 10000 in the text field.

Sweeping a database can affect transaction start-up if rolled back transactions exist in the
database. As the time since the last sweep increases, the time for transaction start-up can
also increase. Lowering the sweep interval can help reduce the time for transaction
start-up.

On the other hand, frequent database sweeps can reduce application performance.
Raising the sweep interval could help improve overall performance. The DBA should
weigh the issues for the affected applications and decide whether the sweep interval
provides the desired database performance.

Tip Unless the database contains many rolled back transactions, changing the sweep
interval has little effect on database size. As a result, it is more common for a DBA to
tune the database by disabling sweeping and performing it at specific times. These
activities are described in the next two sections.

Disabling automatic sweeping
To disable automatic sweeping, set the sweep interval to zero (0). Disabling automatic
sweeping is useful if:

g Maximum throughput is important. Transactions are never delayed by sweeping.

g You want to schedule sweeping at specific times. You can manually sweep the database
at any time. It is common to schedule sweeps at a time of least activity on the database
server, to avoid competing for resources with clients.

Performing an immediate database sweep
You can perform an immediate database sweep with any of the following methods:

g Right click a connected database in the Tree pane and choose Maintenance | Sweep from the
context menu.

CONFIGURING THE SUPERSERVER CACHE

OPERATIONS GUIDE 129

g Select a connected database in the Tree pane and click Sweep in the Work pane.

This operation runs an immediate sweep of the database, releasing space held by records
that were rolled back and by out-of-date record versions. Sweeps are also done
automatically at a specified interval.

Sweeping a database does not strictly require it to be shut down. You can perform
sweeping at any time, but it can impact system performance and should be done when
it inconveniences users the least.

If a sweep is performed as an exclusive operation on the database, there is additional
tuning that the procedure performs. As long as there are no outstanding active
transactions, the sweep updates the state of data records and the state of the inventory of
past transactions. Non-committed transactions are finally rendered obsolete, and internal
data structures need not track them in order to maintain snapshots of database versions.
The benefit of this is a reduction of memory use, and a noticeable performance
improvement.

Configuring the Superserver cache
You can set the size of the Superserver cache for a server. You can then modify that size
for a specific database or for a specific isql connection. To run gfix, you must attach to the
server as either SYSDBA or the owner of the database.

Default cache size per database
The buffers parameter of the gfix utility sets the default number of cache pages for a
specific database:

gfix –buffers n database_name

This sets the number of cache pages for the specified database to n, overriding the server
value, which by default is 256 pages.

Default cache size per server
You can configure the default number of pages used for the Superserver cache. By
default, the database cache size is 256 pages per database. You can modify this default
by changing the value of DATABASE_CACHE_PAGES in the $INTERBASE/isc_config (UNIX) or
ibconfig (Windows) file. When you change this setting, it applies to every active database
on the server.

CHAPTER 6 DATABASE CONFIGURATION AND MAINTENANCE

130 INTERBASE 6

You can also set the default cache size for each database using the gfix utility. This
approach permits greater flexibility, and reduces the risk that memory is overused, or that
database caches are too small. It is strongly recommended that you use gfix to set cache
size rather than DATABASE_CACHE_PAGES. To run gfix, you must be either SYSDBA or the
owner of the database.

Default cache size per ISQL connection
To configure the number of cache pages for the duration of one isql connection, invoke
isql with the following option:

isql –c n database_name

n is the number of cache pages to be used as the default for the session; n overrides any
values set by DATABASE_CACHE_PAGES or gfix and must be greater than 9.

A CONNECT statement entered in an isql query accepts the argument CACHE n. (Refer to
the discussion of CONNECT in the Language Reference manual for a full description of the
CONNECT function). For example:

ISQL> CONNECT database_name CACHE n;

The value n can be any positive integer number of database pages. If a database cache
already exists in the server because of another attachment to the database, the cache size
is increased only if n is greater than current cache size.

Setting cache size in applications
You can still use the isc_dpb_num_buffers parameter to set cache size in a database
parameter buffer (DPB).

Verifying cache size
To verify the size of the database cache currently in use, execute the following
commands:

ISQL> CONNECT database_name;

ISQL> SET STATS ON;

ISQL> COMMIT;

Current memory = 415768

Delta memory = –2048

Max memory = 419840

Elapsed time = 0.03 sec

FORCED WRITES VS. BUFFERED WRITES

OPERATIONS GUIDE 131

Buffers = 256

Reads = 0

Writes 2

Fetches = 2

ISQL> QUIT;

The empty COMMIT command prompts isql to display information about memory and
buffer usage. The “Buffers” line specifies the size of the cache for that database.

Forced writes vs. buffered writes
When an InterBase Server performs forced writes (also referred to as synchronous
writes), it physically writes data to disk whenever the database performs an (internal)
write operation.

If forced writes are not enabled, then even though InterBase performs a write, the data
may not be physically written to disk, since operating systems buffer disk writes. If there
is a system failure before the data is written to disk, then information can be lost.

Performing forced writes ensures data integrity and safety, but slow performance. In
particular, operations that involve data modification are slower.

Forced writes are enabled or disabled in the Database Properties dialog.

Validation and repair
In day-to-day operation, a database is sometimes subjected to events that pose minor
problems to database structures. These events include:

g Abnormal termination of a database application. This does not affect the integrity of the
database. When an application is canceled, committed data is preserved, and
uncommitted changes are rolled back. If InterBase has already assigned a data page for
the uncommitted changes, the page might be considered an orphan page. Orphan pages
are unassigned disk space that should be returned to free space.

g Write errors in the operating system or hardware. These usually create a problem with
database integrity. Write errors can cause data structures such as database pages and
indexes to become broken or lost. These corrupt data structures can make committed
data unrecoverable.

You should validate a database:

g Whenever a database backup is unsuccessful.

g Whenever an application receives a “corrupt database” error.

CHAPTER 6 DATABASE CONFIGURATION AND MAINTENANCE

132 INTERBASE 6

g Periodically, to monitor for corrupt data structures or misallocated space.

g Any time you suspect data corruption.

Note Database validation requires exclusive access to the database. Shut down a
database to acquire exclusive access. If you do not have exclusive access to the database,
you get the error message:

OBJECT database_name IS IN USE

To validate a database, access the Database Validation dialog by any of the following
methods:

g Select a disconnected database in the Tree pane and choose Validation in the Work pane.

g Right-click a disconnected database in the Tree pane and choose Validation from the
context menu.

FIGURE 6.5 Database Validation dialog

To validate database:

1. Check that the database indicated is correct. If it is not, you must Cancel this
dialog and re-initiate the Database Validation dialog under the correct
database.

2. Specify validation options by entering a valid value, by clicking the option
value and choosing a new value from a drop down list of values or by
double-clicking the option value to rotate its value to the next in the list of
values.

3. Click OK if you want to proceed with the validation, otherwise click Cancel.

When IBConsole validates a database it verifies the integrity of data structures.
Specifically, it does the following:

g Report corrupt data structures

g Report misallocated data pages

VALIDATION AND REPAIR

OPERATIONS GUIDE 133

g Return orphan pages to free space

IMPORTANT Even if you can restore a mended database that reported checksum errors, the extent of
data loss may be difficult to determine. If this is a concern, you may want to locate an
earlier backup copy and restore the database from it.

Option Value

Validate Record Fragments Option values are True and False. By default, database validation reports
and releases only page structures. If the Validate Record Fragments
option is set to True validation reports and releases record structures as
well as page structures.

Read Only Validation Option values are True and False.By default, validating a database
updates it, if necessary. To prevent updating, set the Read Only
Validation option to True.

Ignore Checksum Errors Option values are True and False.A checksum is a page-by-page analysis
of data to verify its integrity. A bad checksum means that a database
page has been randomly overwritten (for example, due to a system
crash).

Checksum errors indicate data corruption. To repair a database that
reports checksum errors, set the Ignore Checksum Errors option to True.
This enables IBConsole to ignore checksums when validating a
database. Ignoring checksums allows successful validation of a corrupt
database, but the affected data may be lost.

TABLE 6.3 Validation options

CHAPTER 6 DATABASE CONFIGURATION AND MAINTENANCE

134 INTERBASE 6

Repairing a corrupt database
If a database contains errors, the following dialog opens:

FIGURE 6.6 Validation report dialog

The errors encountered are summarized in the text display area. The repair options you
selected in the Database Validation dialog are selected in this dialog also.

To repair the database, choose Repair. This fixes problems that cause records to be
corrupt and mark corrupt structures. In subsequent operations (such as backing up),
InterBase ignores the marked records.

Note Some corruptions are too serious for IBConsole to correct. These include
corruptions to certain strategic structures, such as space allocation pages. In addition,
IBConsole cannot fix certain checksum errors that are random by nature and not
specifically associated with InterBase.

If you suspect you have a corrupt database, perform the following steps:

1. Make a copy of the database using an operating-system command. Do not
use the IBConsole Backup utility or the gbak command, because they cannot
back up a database containing corrupt data.

2. Repair the copy database to mark corrupt structures. If IBConsole reports any
checksum errors, validate and repair the database again, setting the Ignore
Checksum Errors option to True. It may be necessary to validate a database
multiple times to correct all the errors.

3. Validate the database again, with the Read Only Validation option set to True.
Note that free pages are no longer reported, and broken records are marked
as damaged. Any records marked during repair are ignored when the
database is backed up.

DATABASE SHUTDOWN AND RESTART

OPERATIONS GUIDE 135

4. Back up the mended database with IBConsole. At this point, any damaged
records are lost, since they were not included during the back up. For more
information about database backup, see Chapter 7, “Database Backup
and Restore.”

5. Restore the database to rebuild indexes and other database structures. The
restored database should now be free of corruption.

Verify that restoring the database fixed the problem by validating the restored database
with the Read Only Validation option set to True.

Database shutdown and restart
Maintaining a database often involves shutting it down. Only the SYSDBA or the owner of
a database (the user who created it) can shut it down. The user who shuts down the
database then has exclusive access to the database.

Exclusive access to a database is required to:

g Validate and repair the database.

g Add or drop a foreign key on a table in the database.

g Add a secondary database file.

After a database is shut down, the database owner and SYSDBA are still able to connect
to it, but any other user attempting to connect gets an error message stating that the
database is shut down.

Shutting down a database
To shut down a database, select a database from the Tree pane and choose Shutdown in
the Work pane or choose Tools | Database Maintenance | Shutdown. The Database Shutdown
dialog appears:

FIGURE 6.7 Database shutdown dialog

CHAPTER 6 DATABASE CONFIGURATION AND MAINTENANCE

136 INTERBASE 6

4 Shutdown Timeout options
You can specify a timeout value by selecting a new value from the drop down list of
values or by typing the value in the edit portion of the drop down list. Timeout values
can range from 1 minute to 500 minutes.

4 Shutdown options
You can specify shutdown options by selecting a new value from the drop down list of
values. Shutdown option values include: Deny New Connections While Waiting, Deny
New Transactions While Waiting, and Force Shutdown After Timeout.

DENY NEW CONNECTIONS WHILE WAITING

This option allows all existing database connections to complete their operations
unaffected. IBConsole shuts down the database after all processes disconnect from the
database. At the end of the timeout period, if there are still active connections, then the
database is not shut down.

This prevents any new processes from connecting to the database during the timeout
period. This enables current users to complete their work, while preventing others from
beginning new work.

Suppose the SYSDBA needs to shut down database orders.gdb at the end of the day (five
hours from now) to perform routine maintenance. The Marketing department is currently
using the database to generate important sales reports.

In this case, the SYSDBA would shut down orders.gdb with the following parameters:

g Deny New Connections.

g Timeout of 300 minutes (five hours).

These parameters specify to deny any new database connections and to shut down the
database any time during the next five hours when there are no more active connections.

Any users who are already connected to the database are able to finish processing their
sales reports, but new connections are denied. During the timeout period, the SYSDBA
sends out periodic broadcast messages asking users to finish their work by 6 p.m.

When all users have disconnected, the database is shut down. If all users have not
disconnected after five hours, then the database is not shut down. Because the shutdown
is not critical, it is not forced.

It would be inappropriate to deny new transactions, since generating a report could
require several transactions, and a user might be disconnected from the database before
completing all necessary transactions. It would also be inappropriate to force shutdown,
since it might cause users to lose work.

DATABASE SHUTDOWN AND RESTART

OPERATIONS GUIDE 137

DENY NEW TRANSACTIONS WHILE WAITING

This option allows existing transactions to run to normal completion. Once transaction
processing is complete, IBConsole shuts down the database. Denying new transactions
also denies new database connections. At the end of the timeout period, if there are still
active transactions, then the database is not shut down.

This is the most restrictive shutdown option, since it prevents any new transactions from
starting against the database. This option also prevents any new connections to the
database.

Suppose the SYSDBA needs to perform critical operations that require shutdown of the
database orders.gdb. This is a database used by dozens of customer service representatives
throughout the day to enter new orders and query existing orders.

At 5 p.m., the SYSDBA initiates a database shutdown of orders.gdb with the following
parameters:

g Deny New Transactions.

g Timeout of 60 minutes.

These parameters deny new transactions for the next hour. During that time, users can
complete their current transactions before losing access to the database. Simply denying
new connections would not be sufficient, since the shutdown cannot afford to wait for
users to disconnect from the database.

During this hour, the SYSDBA sends out periodic broadcast messages warning users that
shutdown is happening at 6 p.m and instructs them to complete their work. When all
transactions have been completed, the database is shut down.

After an hour, if there are still any active transactions, IBConsole cancels the shutdown.
Since the SYSDBA needs to perform database maintenance, and has sent out numerous
warnings that a shutdown is about to occur, there is no choice but to force a shutdown.

FORCE SHUTDOWN AFTER TIMEOUT

With this option, there are no restrictions on database transactions or connections. As
soon as there are no processes or connections to the database, IBConsole shuts down the
database. At the end of the timeout period, if there are still active connections, IBConsole
rolls back any uncommitted transactions, disconnects any users, and shuts down the
database.

If critical database maintenance requires a database to be shut down while there are still
active transactions, the SYSDBA can force shut down. This step should be taken only if
broadcast messages have been sent out to users that shutdown is about to occur. If users
have not heeded repeated warnings and remain active, then their work is rolled back.

CHAPTER 6 DATABASE CONFIGURATION AND MAINTENANCE

138 INTERBASE 6

This option does not deny new transactions or connections during the timeout period. If,
at any time during the timeout period, there are no connections to the database,
IBConsole shuts down the database.

IMPORTANT Forcing database shutdown interferes with normal database operations, and should only
be used after users have been given appropriate broadcast notification well in advance.

Restarting a database
After a database is shut down, it must be restarted (brought back online) before users can
access it.

To restart a database, select a previously shut down database from the Tree pane and
choose Tools | Database Maintenance | Restart or choose Database Restart in the Work pane. The
currently selected database is brought back online immediately.

Limbo transactions
When committing a transaction that spans multiple databases, InterBase automatically
performs a two-phase commit. A two-phase commit guarantees that the transaction
updates either all of the databases involved or none of them—data is never partially
updated.

Note The Borland Database Engine (BDE), as of version 4.5, does not exercise the
two-phase commit or distributed transactions capabilities of InterBase, therefore
applications using the BDE never create limbo transactions.

In the first phase of a two-phase commit, InterBase prepares each database for the
commit by writing the changes from each subtransaction to the database. A
subtransaction is the part of a multi-database transaction that involves only one database.
In the second phase, InterBase marks each subtransaction as committed in the order that
it was prepared.

If a two-phase commit fails during the second phase, some subtransactions are
committed and others are not. A two-phase commit can fail if a network interruption or
disk crash makes one or more databases unavailable. Failure of a two-phase commit
causes limbo transactions, transactions that the server does not know whether to commit
or roll back.

It is possible that some records in a database are inaccessible due to their association with
a transaction that is in a limbo state. To correct this, you must recover the transaction
using IBConsole. Recovering a limbo transaction means committing it or rolling it back.

LIMBO TRANSACTIONS

OPERATIONS GUIDE 139

Recovering transactions
You can recover transactions by any of the following methods:

g Select a connected database in the Tree pane and choose Transaction Recovery in the
Work pane or choose Tools | Database Maintenance | Transaction Recovery.

g Right-click a connected database in the Tree pane and choose Database Maintenance |
Transaction Recovery from the context menu.

The Transaction Recovery dialog contains two tabs, Transactions and Advice. The
Transactions tab displays a list of limbo transactions that can then be operated upon to
recover - that is, to commit or roll back. The Advice tab is where you can seek suggested
recovery actions and set current actions to perform on the selected limbo transactions.

4 Transaction tab
All the pending transactions in the database are listed in the text area of the Transactions
tab. You can rollback or commit such transactions.

FIGURE 6.8 Transaction Recovery - limbo transactions

To recover limbo transactions:

1. Select a limbo transaction in the table.

2. The Connect Path text field displays the current path of the database file for
the selected transaction. You can change the target database path, if
necessary, by overwriting the current path.

CHAPTER 6 DATABASE CONFIGURATION AND MAINTENANCE

140 INTERBASE 6

The information on the path to the database was stored when the client application
attempted the commit. It is possible that the path and network protocol from that
machine does not work from the client which is now running IBConsole. Before
attempting to rollback or commit any transaction, confirm the path of all involved
databases is correct.

When entering the current path, be sure to include the server name and separator
indicating communication protocol. To use TCP/IP, separate the server and directory
path with a colon (:). To use NetBEUI or SPX, precede the server name with either a
double back slash (\\) or a double slash (//), and then separate the server name and
directory path with either a back slash or a slash.

3. You can seek advice about selected transactions and indicate the current
action for each transaction: whether to commit or rollback by clicking the
Advice tab. For further information about transaction recovery suggestions,
see “Advice tab” below.

4. If you want to continue with the transaction recovery process, click Ok,
otherwise click Cancel.

Note The transaction recovery process will commit or rollback transactions according to
the current actions set in the Advice tab.

4 Advice tab
The Advice tab displays information on each subtransaction of the transactions selected
in the Transactions tab: whether it has been committed, the remote server name, and
database name. At the bottom, an action is recommended: either commit or rollback.

FIGURE 6.9 Transaction Recovery - advice

GFIX COMMAND-LINE TOOL

OPERATIONS GUIDE 141

gfix command-line tool
The gfix tool performs a number of maintenance activities on a database, including the
following:

g Database shutdown

g Changing database mode to read-only or read-write

g Changing the dialect of a database

g Setting cache size at the database level

g Committing limbo transactions

g Mending databases and making minor data repairs

g Sweeping databases

g Displaying, committing, or recovering limbo transactions

To run gfix, you must attach as either SYSDBA or the owner of the database. Most of these
actions can also be performed through IBConsole.

Syntax gfix [options] db_name

Options In the OPTION column of the following table, only the characters outside the brackets
([]) are required. You can specify additional characters up to and including the full
option name. To help identify options that perform similar functions, the TASK column
indicates the type of activity associated with an option.

Option Task Description

–at[tach] n Shutdown Used with –shut to prevent new database connections during
timeout period of n seconds; shutdown is canceled if there are still
processes connected after n seconds

–b[uffers] n Cache buffers Sets default cache buffers for the database to n pages

–ca[che] n Reserved for future implementation

–c[ommit] {ID | all} Transaction
recovery

Commits limbo transaction specified by ID or commit all limbo
transactions

–f[orce] n Shutdown Used with –shut to force shutdown of a database after n seconds;
this is a drastic solution that should be used with caution

TABLE 6.4 gfix options

CHAPTER 6 DATABASE CONFIGURATION AND MAINTENANCE

142 INTERBASE 6

–f[ull] Data repair Used with –v to check record and page structures, releasing
unassigned record fragments

–h[ousekeeping] n Sweeping Changes automatic sweep threshold to n transactions

• Setting n to 0 disables sweeping
• Default threshold is 20,000 transactions (see “Overview of

sweeping” on page 126)
• Exclusive access not needed

–i[gnore] Data repair Ignores checksum errors when validating or sweeping

–l[ist] Transaction
recovery

Displays IDs of each limbo transaction and indicates what would
occur if –t were used for automated two-phase recovery

–m[end] Data repair Marks corrupt records as unavailable, so they are skipped (for
example, during a subsequent backup)

-mo[de] [read_write | read_only} Set access mode • Sets mode of database to either read-only or read-write
• Default table mode is read_write
• Requires exclusive access to the database

–n[o_update] Data repair Used with –v to validate corrupt or misallocated structures;
structures are reported but not fixed

–o[nline] Shutdown Cancels a –shut operation that is scheduled to take effect or
rescinds a shutdown that is currently in effect

–pa[ssword] text Remote access Checks for password text before accessing a database

–p[rompt] Transaction
recovery

Used with –l to prompt for action during transaction recovery

–r[ollback] {ID | all} Transaction
recovery

Rolls back limbo transaction specified by ID or roll back all limbo
transactions

–s[weep] Sweeping Forces an immediate sweep of the database

• Useful if automatic sweeping is disabled
• Exclusive access is not necessary

-s[ql_dialect] n Database dialect Changes database dialect to n

• Dialect 1 = InterBase 5.5 compatibility
• Dialect 3 = InterBase 6 with new SQL92 features

Option Task Description

TABLE 6.4 gfix options (continued)

GFIX COMMAND-LINE TOOL

OPERATIONS GUIDE 143

Examples The following example changes the dialect of the customer.gdb database to 3:

gfix -sql 3 customer.gdb

The following example changes the customer.gdb database to read-only mode:

gfix -mo read-only customer.gdb

–sh[ut] Shutdown • Shuts down the database
• Must be used in conjunction with –attach, –force, or –tran

–t[wo_phase] {ID | all} Transaction
recovery

Performs automated two-phase recovery, either for a limbo
transaction specified by ID or for all limbo transactions

–tr[an] n Shutdown Used with –shut to prevent new transactions from starting during
timeout period of n seconds; cancels shutdown if there are still
active transactions after n seconds

–user name Remote access Checks for user name before accessing a remote database

–v[alidate] Data repair Locates and releases pages that are allocated but unassigned to any
data structures; also reports corrupt structures

–w[rite] {sync | async} Database
writes

Enables or disables forced (synchronous) writes

sync enables forced writes; async enables buffered writes

–z Shows version of gfix and of the InterBase engine

Option Task Description

TABLE 6.4 gfix options (continued)

CHAPTER 6 DATABASE CONFIGURATION AND MAINTENANCE

144 INTERBASE 6

gfix error messages

Error Message Causes and Suggested Actions to Take

Database file name <string> already given A command-line option was interpreted as a database file
because the option was not preceded by a hyphen (-) or slash
(/). Correct the syntax.

Invalid switch A command-line option was not recognized.

Incompatible switch combinations You specified at least two options that do not work together,
or you specified an option that has no meaning without
another option (for example, -full by itself).

More limbo transactions than fit. Try again. The database contains more limbo transactions than gfix can
print in a single session. Commit or roll back some of the
limbo transactions, then try again.

Numeric value required The -housekeeping option requires a single, non-negative
argument specifying number of transactions per sweep.

Please retry, specifying <string> Both a file name and at least one option must be specified.

Transaction number or “all” required You specified -commit, -rollback, or -two_phase without
supplying the required argument.

-mode read_only or read_write The -mode option takes either read_only or read_write as an
option.

“read_only” or “read_write” required The -mode option must be accompanied by one of these two
arguments.

TABLE 6.5 gfix database maintenance error messages

OPERATIONS GUIDE 145

CHAPTER

7
Chapter 7Database Backup

and Restore

A database backup saves a database to a file on a hard disk or other storage medium. To
protect a database from power failure, disk crashes, or other potential data loss, you
should regularly back up the database. For additional safety, it is recommended to store
the backup medium in a different physical location from the database server.

A database restore re-creates a database from a backup file.

Benefits of backup and restore
Operating systems usually include facilities to archive database files. Using the InterBase
backup and restore feature in gbak or IBConsole offers several advantages over such
backup methods. The backup and restore process accomplishes the following:

g Improves database performance, by performing garbage collection on outdated records,
and balances indexes.

g Reclaims space occupied by deleted records, and pack the remaining data. This often
reduces database size.

g Gives you the option of changing the database page size or distributing the database
among multiple files or disks.

CHAPTER 7 DATABASE BACKUP AND RESTORE

146 INTERBASE 6

g Enables backups to run concurrently while other users are using the database. You do
not have to shut down the database to run a back up. However, any data changes that
clients commit to the database after the backup begins are not recorded in the backup
file.

g Provides you with a platform-independent, stable snapshot of the database for archiving
purposes.

g Creates a database backup to a disk file or to a named tape device.

g Upgrades the ODS

New major releases of the InterBase server often contain changes to the on-disk structure
(ODS). If the ODS has changed and you want to take advantage of any new InterBase
features, upgrade your databases to the new ODS.

You need not upgrade databases to use a new version of InterBase. The new versions can
still access databases created with a previous version, but cannot take advantage of any
new InterBase features.

To upgrade existing databases to a new ODS, perform the following steps:

1. Before installing the new version of InterBase, back up databases using the
old version.

2. Install the new version of the InterBase server as described in the Installation
Guide.

3. Once the new version is installed, restore the databases with the new version
of InterBase.

The restored databases are able to use any new InterBase server features.

Backing up a database
A database backup is accomplished using the Database Backup dialog. To access this
dialog, select a logged in server from the list of available servers displayed in the Tree
pane and continue with one of these four possible methods:

g Select Databases or any database alias under the Databases hierarchy and choose Tools |
Backup/Restore | Backup or click the Backup Database toolbar button.

g Right-click any database alias under the Databases hierarchy and choose Backup/Restore |
Backup from the context menu.

BACKING UP A DATABASE

OPERATIONS GUIDE 147

The Database Backup dialog appears:

FIGURE 7.1 Database backup dialog

To back up a database:

1. Check the Database Server to make sure the server indicated is correct. If it
is not, you will need to Cancel this dialog and re-initiate the Database Backup
dialog under the correct server.

2. If you accessed the Database Backup dialog from a database alias then the
Alias field is automatically assigned. If, however, you accessed the Database
Backup dialog from Database Aliases, then you must select an alias from the
list of database aliases.

Note The database alias references the necessary database files information associated
with the database so you only need to specify the alias name, not the actual database
filename, when indicating the database to backup. If the database spans multiple files,
the server uses the header page of each file to locate additional files, so the entire
database can be backed up based on the alias filename.

3. Select a destination server from a list of registered servers in the Backup Files
Server drop down list.

4. Once a destination server has been selected a list of backup file aliases is
available from the Backup Files Alias drop down list. If you want to overwrite
an existing backup file, select the appropriate file from the drop down list. If
you want to create a new backup file you can type a new alias name in the
Backup File(s) Alias field.

CHAPTER 7 DATABASE BACKUP AND RESTORE

148 INTERBASE 6

5. Next you must indicate where the backup is to be stored by entering one or
more filenames, specifying a size for each file, in the Backup File(s) table. To
insert a new row into the Backup File(s) table, move to the last row and
column in the table and type w-z.

When entering a filename, make sure to include the file path unless you wish to
default the file to the working directory.

If you select an existing backup alias the table displays all the filenames and file sizes
of that alias. You can edit any information within this table. You can add another file
to the backup file list by entering a new filename at the end of the table. You can
remove a file from the backup file list by deleting (blanking out) the values in the
table.

6. You can specify backup options by entering a valid value, by clicking the
option value and choosing a new value from a drop down list of values or by
double-clicking the option value to rotate its value to the next in the list of
values.

7. Click OK to start the backup.

Note Database files and backup files can have any name that is legal on the operating
system; the .gdb and .gbk file extensions are InterBase conventions only.

A backup file typically occupies less space than the database because it includes only the
current version of data and incurs less overhead for data storage. A backup file also does
not contain index data structures, only the index definition.

If you specify a backup file that already exists, IBConsole overwrites it. To avoid
overwriting, specify a unique name for the backup file.

Backup options
The backup options are shown on the right side of the Database Backup dialog. You can
specify options by entering a value, by clicking the option value and choosing a new
value from a drop down list of values or by double-clicking the option value to rotate its
value to the next in the list of values.

BACKING UP A DATABASE

OPERATIONS GUIDE 149

FIGURE 7.2 Database backup options

4 Format
Option values are Transportable and Non-transportable.

To move a database to a machine with a different operating system from the machine on
which the backup was performed, make sure the Format option is set to Transportable.
This option writes data in a generic format, enabling you to move to any machine that
supports InterBase.

Note Never copy a database from one location to another. Back it up and then restore it
to the new location.

4 Metadata Only
Option values are True and False.

When backing up a database, you can exclude its data, saving only its metadata. You
might want to do this to:

g Retain a record of the metadata before it is modified.

g Create an empty copy of the database. The copy has the same metadata but can be
populated with different data.

To back up metadata only, select True for the Metadata Only option.

Tip You can also extract a database’s metadata using isql. isql produces an SQL data
definition (text) file containing SQL commands. IBConsole backup Metadata Only
creates a binary backup file containing only metadata.

This function corresponds to the -metadata option of gbak

CHAPTER 7 DATABASE BACKUP AND RESTORE

150 INTERBASE 6

4 Garbage Collection
Option values are True and False.

By default, IBConsole performs garbage collection during backup. To prevent garbage
collection during a backup, set the Garbage Collection option value to False.

Garbage collection marks space used by old versions of data records as free for reuse.
Generally, you want IBConsole to perform garbage collection during backup.

Tip You do not want to perform garbage collection if there is data corruption in old record
versions and you want to prevent InterBase from visiting those records during a backup.

This function corresponds to the -garbage_collect option of gbak.

4 Transactions in Limbo
Option values are Process and Ignore.

To ignore limbo transactions during backup, set the Transactions in Limbo option value
to Ignore.

When IBConsole ignores limbo transactions during backup, it ignores all record versions
created by any limbo transaction, finds the most recently committed version of a record,
and backs up that version.

Limbo transactions are usually caused by the failure of a two-phase commit. They can
also exist due to system failure or when a single-database transaction is prepared.

Before backing up a database that contains limbo transactions, it is a good idea to
perform transaction recovery, by choosing Tools | Database Maintenance | Transaction Recovery in
the Database Maintenance window. Refer to “Recovering transactions” on page 139
for more information.

This function corresponds to the -limbo option of gbak.

4 Checksums
Option values are Process and Ignore.

To ignore checksums during backup, set the Checksums option value to Ignore.

A checksum is a page-by-page analysis of data to verify its integrity. A bad checksum
means that a data page has been randomly overwritten; for example, due to a system
crash.

Checksum errors indicate data corruption, and InterBase normally prevents you from
backing up a database if bad checksums are detected. Examine the data the next time
you restore the database.

This function corresponds to the -ignore option of gbak.

BACKING UP A DATABASE

OPERATIONS GUIDE 151

4 Convert to Tables
To convert external files to internal tables, set the Convert to Tables option value to True.

This function corresponds to the -convert option of gbak.

4 Verbose Output
Option values are None, To Screen and To File.

To monitor the backup process as it runs, set the Verbose Output option value to To
Screen. This option opens a standard text display window to display status messages
during the backup. For example:

FIGURE 7.3 Database backup verbose output

The standard text display window enables you to search for specific text, save the text to
a file, and print the text. For an explanation of how to use the standard text display
window, see “Standard text display window” on page 39.

This function corresponds to the -verbose option of gbak.

4 To transfer a database to a server running on a different operating
system:

1. Set the Format option to Transportable in the Database Backup dialog.

2. Back up the database.

3. If you backed up to a removable medium, proceed to Step 4. If you created
a backup file on disk, use operating-system commands to copy the file to
tape. Then load the contents of the tape onto another machine, or copy it
across a network to another machine.

CHAPTER 7 DATABASE BACKUP AND RESTORE

152 INTERBASE 6

4. On the destination machine, restore the backup file. If restoring from a
removable medium, such as tape, specify the device name instead of the
backup file.

Restoring a database
A database restore is accomplished through the Database Restore dialog. To access this
dialog, select a server from the list of available servers displayed in the Tree pane and
continue with one of these five possible methods:

g Select Backup or any backup alias name under the Backup hierarchy and choose Tools |
Backup/Restore | Restore.

g Double-click Backup or any backup alias name under the Backup hierarchy.

g Right-click Backup or any backup alias name under the Backup hierarchy and choose
Restore from the context menu.

g Select Backup Aliases to display a list of backup alias names in the Summary tab of the
Work pane. Right-click any alias name in this list and choose Restore from the context
menu.

g Select any backup alias name under Backup and click Restore in the Work pane.

The Database Restore dialog appears:

FIGURE 7.4 Database Restore dialog

RESTORING A DATABASE

OPERATIONS GUIDE 153

IMPORTANT When restoring a database, do not replace a database that is currently in use.

To restore a database:

1. Check the source Backup File(s) Server to make sure the server indicated is
correct. If it is not, you will need to Cancel this dialog and re-initiate the
Database Restore dialog under the correct server.

2. If you accessed the Database Restore dialog from a backup alias, then the
Alias field is automatically assigned. If, however, you accessed the Database
Restore dialog from Backup Aliases, then you must select an alias from the
list of backup aliases.

Note The backup alias references the necessary database backup files information
associated with the database so you only need to specify the alias name, not the actual
backup filename, when indicating the backup to restore. If the backup spans multiple
files, the server uses header page of each file to locate additional files, so the entire
backup can be restored based on the alias filename.

3. If you choose a backup file alias, the Backup File(s) table displays the
associated backup files. If you do not specify a backup file alias, then you can
enter the backup filenames manually, or you can browse for the file by
selecting “File...” from the Alias drop-down list. When entering a filename,
be sure to include the file path where the file is located. It is important that
you include all filenames associated with the restore. To insert a new row into
the Backup File(s) table, move to the last row and column in the table and
type w-z.

4. Select a destination server from a list of registered servers in the Database
Server drop down list.

5. Once a destination server has been selected a list of database aliases is
available from the Database Alias drop down list. If you want to restore to an
existing database, select the appropriate alias from the drop down list. If you
want to restore to a new database, type a new alias name in the Database
Alias field.

6. Next you must indicate where the backup is to be restored to by entering one
or more filenames, specifying the number of pages required for each file, in
the Database table. When entering a filename, make sure to include the file
path unless you wish to default the file to the working directory. To insert a
new row into the Database table, move to the last row and column in the
table and type w-z.

You might want to restore a database to multiple files to distribute it among different
disks, which provides more flexibility in allocating system resources.

CHAPTER 7 DATABASE BACKUP AND RESTORE

154 INTERBASE 6

You can add another file to the backup file list by entering a new filename at the end
of the table. You can remove a file from the backup file list by deleting (blanking out)
the values in the table.

If you selected an existing database alias the Database table will display all the
associated filenames and number of pages. You can edit any information within this
table. You can add another file to the database file list by entering a new filename at
the end of the table. You can remove a file from the list by deleting (blanking out) the
values in the table.

Note You cannot restore a database to a network file system (mapped drive).

7. You can specify restore options by entering a valid value, by clicking the
option value and choosing a new value from a drop down list of values or by
double-clicking the option value to rotate its value to the next in the list of
values.

8. Click OK to start the restore.

Typically, a restored database occupies less disk space than it did before being backed
up, but disk space requirements could change if the on-disk structure version
changes. For information about the ODS, see “Benefits of backup and restore” on
page 145.

Note InterBase 6 restore allows you to restore a database successfully even if for some
reason the restore process could not rebuild indexes for the database. For example, this
can occur if there is not enough temporary disk space to perform the sorting task
necessary to build an index during the restore. If this occurs, the database is restored and
available, but indexes are inactive. This is as if you had set the Deactivate Indexes option
to True, or used the -i switch of gbak. After the restore completes, use ALTER INDEX to set
the indexes active.

Database ownership
Although backing up a database can be performed by only the owner or SYSDBA, any
user can restore a database as long as they are not restoring it over an existing database.
A restored database file belongs to the user ID of the person who performed the restore.
This means that backing up and restoring a database is a mechanism for changing the
ownership of a database. It also means that an unauthorized user can “steal” a database
by restoring a backup file to a machine where he knows the SYSDBA password. It is
important to ensure that your backup files are secured from unauthorized access.

Note To restore a database over an existing database, you must be the owner of the
existing database or SYSDBA.

RESTORING A DATABASE

OPERATIONS GUIDE 155

Restore options
The restore options are shown on the right side of the Database Restore dialog. You can
specify options by entering a value, by clicking the option value and choosing a new
value from a drop down list of values or by double-clicking the option value to rotate its
value to the next in the list of values.

FIGURE 7.5 Database restore options

4 Page Size
InterBase supports database page sizes of 1024, 2048, 4096, and 8192 bytes. The default
is 1024 bytes. To change page size, back up the database and then restore it, modifying
the Page Size option in the Database Restore dialog.

Changing the page size can improve performance for the following reasons:

g Storing and retrieving Blob data is most efficient when the entire Blob fits on a single
database page. If an application stores many Blobs exceeding 1K, using a larger page size
reduces the time for accessing Blob data.

g InterBase performs better if rows do not span pages. If a database contains long rows of
data, consider increasing the page size.

g If a database has a large index, increasing the database page size reduces the number of
levels in the index tree. Indexes work faster if their depth is kept to a minimum. Choose
Tools | Database Maintenance | Statistics to display index statistics, and consider increasing the
page size if index depth is greater than three on any frequently used index.

g If most transactions involve only a few rows of data, a smaller page size may be
appropriate, because less data needs to be passed back and forth and less memory is used
by the disk cache.

This function corresponds to the -page_size option of gbak.

CHAPTER 7 DATABASE BACKUP AND RESTORE

156 INTERBASE 6

4 Overwrite
Option values are True and False.

IBConsole cannot overwrite an existing database file unless the Overwrite option value
is set to True. If you attempt to restore to an existing database name and this option is
set to False, the restore does not proceed.

IMPORTANT Do not replace an existing database while clients are operating on it. When restoring to
an existing file name, a safer approach is to rename the existing database file, restore
the database, then drop or archive the old database as needed.

This function corresponds to the -replace option of gbak.

4 Commit After Each Table
Option values are True and False.

Normally, IBConsole restores all metadata before restoring any data. If you set the
Commit After Each Table option value to True, IBConsole restores the metadata and data
for each table together, committing one table at a time.

This option is useful when you are having trouble restoring a backup file; for example,
if the data is corrupt or invalid according to integrity constraints.

If you have a problem backup file, restoring the database one table at a time lets you
recover some of the data intact. You can restore only the tables that precede the bad data;
restoration fails the moment it encounters bad data.

This function corresponds to the -one_at_a_time option of gbak.

4 Create Shadow Files
Shadow files are identical, physical copies of database files in a database. To create
shadow files during the restore process set the Create Shadow Files option to True. For
further information on shadowing see “Shadowing” on page 117.

4 Deactivate Indexes
Option values are True and False.

Normally, InterBase rebuilds indexes when a database is restored. If the database
contained duplicate values in a unique index when it was backed up, restoration fails.
Duplicate values can be introduced into a database if indexes were temporarily made
inactive (for example, to allow insertion of many records or to rebalance an index).

To enable restoration to succeed in this case, set the Deactivate Indexes option to True.
This makes indexes inactive and prevents them from rebuilding. Then eliminate the
duplicate index values, and re-activate indexes through ALTER INDEX in ISQL.

RESTORING A DATABASE

OPERATIONS GUIDE 157

A unique index cannot be activated using the ALTER INDEX statement; a unique index must
be dropped and then created again. For more information about activating indexes, see
the Language Reference.

Tip The Deactivate Indexes option is also useful for bringing a database online more
quickly. Data access is slower until indexes are rebuilt, but the database is available.
After the database is restored, users can access it while indexes are reactivated.

This function corresponds to the -inactive option of gbak.

4 Validity Conditions
Option values are Restore and Ignore.

If you redefine validity constraints in a database where data is already entered, your data
might no longer satisfy the validity constraints. You might not discover this until you try
to restore the database, at which time an error message about invalid data appears.

IMPORTANT Always make a copy of metadata before redefining it; for example, by extracting it using
ISQL.

To restore a database that contains invalid data, set the Validity Conditions option to
Ignore. This option deletes validity constraints from the metadata. After the database is
restored, change the data to make it valid according to the new integrity constraints. Then
add back the constraints that were deleted.

This option is also useful if you plan to redefine the validity conditions after restoring the
database. If you do so, thoroughly test the data after redefining any validity constraints.

This function corresponds to the -no_validity option of gbak.

4 Use All Space
Option values are True and False.

To restore a database with 100% fill ratio on every data page, instead of the default 80%
fill ratio, set the Use All Space option to True.

This function corresponds to the -use_all_space option of gbak.

CHAPTER 7 DATABASE BACKUP AND RESTORE

158 INTERBASE 6

4 Verbose Output
Option values are None, To Screen, and To File.

To monitor the restore process as it runs, set the Verbose Output option to To Screen. This
option opens a standard text display window to display status messages during the
restore. For example:

FIGURE 7.6 Database restore verbose output

The standard text display window enables you to search for specific text, save the text to
a file, and print the text. For an explanation of how to use the standard text display
window, see “Standard text display window” on page 39.

This function corresponds to the -verbose option of gbak.

gbak command-line tool
The gbak command-line tool allows both back up or restore of a database, with options
for changing specified database characteristics. Only SYSDBA or database owner can back
up a database.

Database backup

Syntax For backing up to a single file:

gbak [-B] [options] database target

When backing up from a multifile database, specify only the first file name.

GBAK COMMAND-LINE TOOL

OPERATIONS GUIDE 159

For backing up to multiple files:

gbak [-B] [options] database target1 size1[k|m|g] target2
[size2[k|m|g] target3

When backing up from a multifile database, specify only the first file name.

Options In the OPTION column of the following tables, only the characters outside the square
brackets ([]) are required.

Table 7.2 lists the options to gbak that are available for creating backups.

Argument Description

database • Name of a database to back up
• For a multifile database, the name of the first database file

target Name of a storage device or backup file to which to back up

• On UNIX, can also be stdout, in which case gbak writes its output
to the standard output (usually a pipe)

• No size need be specified when restoring to a single file, since
the database always expands as needed to fill all available space

size Length of a backup file or restored database file

• The only permissible unit for a restored database file is database
pages; minimum value is 200

• Default unit for a backup file is bytes
• Size of backup files can also be specified in kilobytes, megabytes,

or gigabytes
• Do not specify a size for the final backup file or database file; the

last file always expands as needed to fill all available space

TABLE 7.1 gbak arguments

CHAPTER 7 DATABASE BACKUP AND RESTORE

160 INTERBASE 6

Option Description

-b[ackup_database] Backs up database to file or device

-co[nvert] Converts external files as internal tables

-e[xpand] Creates a noncompressed back up

-fa[ctor] n Uses blocking factor n for tape device

-g[arbage_collect] Does not garbage collect during backup

-ig[nore] Ignores checksums during backup

-l[imbo] Ignores limbo transactions during backup

-m[etadata] Backs up metadata only, no data

-nt Creates the backup in nontransportable format

-ol[d_descriptions] Backs up metadata in old-style format

-pa[ssword] text Checks for password text before accessing a database

-role name Connects as role name

-se[rvice] servicename • Creates the backup files on the host where the original database
files are located, using InterBase’s Service Manager

• servicename invokes the Service Manager on the server host;
syntax varies with the network protocol in use:

TABLE 7.2 gbak backup options

TCP/IP hostname:service_mgr

SPX hostname@service_mgr

Named pipes \\hostname\service_mgr

Local service_mgr

GBAK COMMAND-LINE TOOL

OPERATIONS GUIDE 161

Backing up a database with gbak
When backing up a database, bear the following points in mind:

g Only the database owner or SYSDBA can back up a database.

g Unless the -service option is specified, gbak writes the backup files to the current directory
of the machine on which it is running, not on the server where the database resides. If
you specify a location for the backup file, it is relative to the machine where gbak is
executing. You can write the backup files only to this local machine or to drives that are
mapped to it. Note that the -service switch changes this behavior. (See “The -service
option” on page 165.)

g When you are backing up a multifile database, specify only the first file in the backup
command. You must not name the subsequent database files: they will be interpreted as
backup file names.

g The default unit for backup files is bytes. You can choose to specify kilobytes, megabytes,
or gigabytes (k, m, or g) instead. Restored database files can be specified only in database
pages.

Note It is good security practice to change your backup files to read-only at the system
level after creating them. This prevents them from being accidentally overwritten. In
addition, you can protect your databases from being “kidnapped” on UNIX and NT
systems by placing the backup files in directories with restricted access.

Tip Use the -transportable switch if you operate in a multiplatform environment. This switch
permits the database to be backed up to a platform other than the one on which it
originally resided. Using this option routinely is a good idea when you are operating in
a multiplatform environment.

-t[ransportable] Creates a transportable backup [default]

-u[ser] name Checks for user name before accessing remote database

-v[erbose] Shows what gbak is doing

-y [file | suppress_output] Direct status messages to file; file must not already exist;
suppress_output suppress output messages

-z Show version of gbak and of InterBase engine

Option Description

TABLE 7.2 gbak backup options (continued)

CHAPTER 7 DATABASE BACKUP AND RESTORE

162 INTERBASE 6

Tip Use the -service switch if you are backing up to the same server that holds the original
database. This option invokes the InterBase Service Manager on the server host and
saves both time and network traffic.

Restoring a database

Syntax For restoring:

gbak {-C|-R} [options] source dbfile

For restoring to multiple files:

gbak {-C|-R} [options] source dbfile1 size1 dbfile2
[size2 dbfile3 …]

For restoring from multiple files:

gbak {-C|-R} [options] source1 source2 [source3 …] dbfile

By extension, you can restore from multiple files to multiple files using the following
syntax:

gbak {-C|-R} [options] source1 source2 [source3 …] dbfile1
size1 dbfile2 [size2 dbfile3 …]

Table 7.3 lists gbak options that are available when restoring databases.

Argument Description

source Name of a storage device or backup file from which to restore

On UNIX, this can also be stdin, in which case gbak reads input
from the standard input (usually a pipe).

dbfile When restoring, the name of a restored database file

size Length of a backup file or restored database file

• The only permissible unit for a restored database file is database
pages; minimum value is 200

• Default unit for a backup file is bytes
• Size of backup files can also be specified in kilobytes, megabytes,

or gigabytes
• Do not specify a size for the final backup file or database file; the

last file always expands as needed to fill all available space

GBAK COMMAND-LINE TOOL

OPERATIONS GUIDE 163

Option Description

-c[reate_database] Restores database to a new file

-bu[ffers] Sets cache size for restored database

-i[nactive] Makes indexes inactive upon restore

-k[ill] Does not create any shadows that were previously defined

-mo[de] [read_write | read_only} Specifies whether the restored database is writable

• Possible values are read_only and read_write
• Default is read_write

-n[o_validity] Deletes validity constraints from restored metadata; allows
restoration of data that would otherwise not meet validity
constraints

-o[ne_at_a_time] Restores one table at a time; useful for partial recovery if database
contains corrupt data

-p[age_size] n Resets page size to n bytes (1024, 2048, 4196, or 8192);
default is 1024

-pa[ssword] text Checks for password text before accessing a database

-r[eplace_database] Restores database to new file or replaces existing file

-se[rvice] servicename • Creates the restored database on the host where the backup files
are located, using InterBase’s Service Manager

• servicename invokes the Service Manager on the server host;
syntax varies with the network protocol in use:

TABLE 7.3 gbak restore options

TCP/IP hostname:service_mgr

SPX hostname@service_mgr

Named pipes \\hostname\service_mgr

Local service_mgr

CHAPTER 7 DATABASE BACKUP AND RESTORE

164 INTERBASE 6

When restoring a database, bear the following points in mind:

g Anyone can restore a database. However, only the database owner or SYSDBA can restore
a database over an existing database.

g Do not restore a backup over a database that is currently in use; it is likely to corrupt the
database.

g When restoring from a multifile backup, name all the backup files, in any order.

g Do not provide a file size for the last (or only) file of the restored database. InterBase does
not return an error, but it always “grows” the last file as needed until all available space
is used. This dynamic sizing is a feature of InterBase.

g You specify the size of a restored database in database pages. The default size for
database files is 200 pages. The default database page size is 1K, so if the page size has
not been changed, the default database size is 200K. This is sufficient for only a very small
database. To change the size of the database pages, use the -p[age_size] option when
restoring.

Tip Use the -service switch if you are restoring to the same server that holds the backup file.
This option invokes the InterBase Service Manager on the server host and saves both
time and network traffic.

Note If you specify several target database files but have only a small amount of data,
the target files are quite small (around 200K for the first one and 1K for subsequent ones)
when they are first created. They grow in sequence to the specified sizes as you populate
the database.

-user name Checks for user name before accessing database

-use_[all_space] Restores database with 100% fill ratio on every data page, instead
of the default 80% fill ratio

-v[erbose] Shows what gbak is doing

-y [file | suppress_output] If used with -v, directs status messages to file; if used without -v
and file is omitted, suppresses output messages

-z Show version of gbak and of InterBase engine

Option Description

TABLE 7.3 gbak restore options (continued)

GBAK COMMAND-LINE TOOL

OPERATIONS GUIDE 165

The -service option
When you run gbak with the -service switch, it operates in a dramatically different fashion
than it does otherwise. The -service switch causes gbak to invoke the backup and restore
functions of InterBase’s Service Manager on the server where the database resides. When
run without the -service switch, gbak executes on the machine where it is invoked—
typically a client—and writes the backup file on that machine or relative to it. Using the
-service switch to invoke the Service Manager saves a significant amount of time and
network traffic in the case where you want to create the backup on the same host that
the database resides on. You have the option of specifying another machine as the target
when using the -service switch, but the advantages of reduced time and network traffic are
lost.

When you use the -service switch, you specify the host name followed by the string
“service_mgr”. The syntax you use for this varies with the network protocol you are using.
Together, these components are referred to as “host_service” in the syntax statements that
follow in this section.

The syntax in the right column appears in the gbak syntax below as “host_service.”

The “local” case is trivial on NT. If you are backing up a local database, the results in
terms of time and network traffic are the same whether you use the -service switch or not,
even though the actual implementation would be slightly different. On UNIX systems, the
local case is equivalent to specifying (for TCP/IP) localhost:service_mgr and saves both time
and network traffic.

Syntax Backing up with Service Manager

gbak -b [options] -se[rvice] host_service database filename

Syntax Restoring with Service Manager

gbak {-c|-r} [options] -se[rvice] host_service filename database

You can back up to multiple files and restore from multiple files using Service Manager.

Network protocol Syntax

TCP/IP hostname:service_mgr

SPX hostname@service_mgr

Named pipes \\hostname\service_mgr

Local service_mgr

TABLE 7.4 host_service syntax for calling the Service Manager with gbak

CHAPTER 7 DATABASE BACKUP AND RESTORE

166 INTERBASE 6

IMPORTANT On UNIX systems, in order to restore a database that has been backed up using the
Service Manager, you must either use the Service Manager for the restore or you must be
logged onto the system as the user that InterBase was running as when the backup was
created (either root or interbase). This is because the InterBase user (root or interbase)
is the owner of the backup file at the system level when the Service Manager is invoked,
and the backup file is readable to only that user. When gbak is used to back up a
database without the -service option, the owner of the backup file at the system level is
the login of the person who ran gbak. On Wintel platforms, the system-level constraints
do not apply.

The user name and password
When InterBase checks to see whether the user running gbak is authorized to do so, it
determines the user according to the following hierarchy:

g The -user that is specified, with a correct password, as part of the gbak command

g The user and password specified in the ISC_USER and ISC_PASSWORD environment
variables, provided they also exist in isc4.gdb (setting these environment variables is
strongly not recommended, since it is extremely insecure)

g UNIX only: If no user is specified at any of the previous levels, InterBase uses the UNIX
login if the user is running on the server or on a trusted host.

Some backup and restore examples

Note The following examples use forward slashes exclusively. InterBase accepts either
forward or backward slashes for paths on Wintel platforms.

4 Backup examples
The following example backs up foo.gdb, which resides on the server jupiter and writes the
backup file to the current directory of the client machine where gbak is running. foo.gdb
can be either a single-file database or the name of the first file in a multifile database.
Using this syntax (without the -se switch) copies a lot of data over the net.

gbak -b -user joe -pa blurf@ jupiter:/foo.gdb foo.gbk

The next example backs up foo.gdb, which resides on the server jupiter and writes the
backup file to the C:/archive directory on the client machine where gbak is running. As
before, foo.gdb can be a single file database or the name of the first file in a multifile
database. This syntax causes the same amount of network traffic as the first example.

gbak -b -user joe -pa blurf@ jupiter:/foo.gdb C:\archive\foo.gbk

GBAK COMMAND-LINE TOOL

OPERATIONS GUIDE 167

The next example backs up the same database on jupiter, but uses the -se[rvice] switch to
invoke the Service Manager on jupiter, which writes the backup to the \backup directory on
jupiter. This command causes very little network traffic and is therefore faster than
performing the same task without the -se (-service) switch. Note that the syntax
(jupiter:service_mgr) indicates a TCP/IP connection.

gbak -b -user joe -pa blurf@ -se jupiter:service_mgr

/foo.gdb /backup/foo.gbk

The next example again backs up foo1.gdb on server jupiter to multiple files in the /backup
directory on jupiter using the Service Manager. This syntax backs up a single file or
multifile database and uses a minimum of time and network traffic. It converts external
files as internal tables and creates a backup in a transportable format that can be restored
on any InterBase-supported platform. To back up a multifile database, name only the first
file in the backup command. In this example, the first two backup files are limited to
500K. The last one expands as necessary.

gbak -b -user joe -pa blurf@ -co -t -se jupiter:service_mgr

/foo1.gdb /backup/backup1.gbk 500k /backup/backup2.gbk 500k

/backup/lastBackup.gbk

Database restore examples

The first example restores a database that resides in the /archive directory on the machine
where gbak is running and restores it to jupiter, overwriting an existing (but inactive)
database.

gbak -r -user joe -pa blurf@ C:\archive\foo.gbk jupiter:/foo.gdb

The next example restores a multifile database from the /backup directory of jupiter to the
/companydb directory of jupiter. This command runs on the server by invoking Service
Manager, thus saving time and network traffic. In this example, the first two files of the
restored database are 500 pages long and the last file grows as needed.

gbak -r user -joe -pa blurf@ -se jupiter:service_mgr /backup/foo1.gbk

/backup/foo2.gbk /backup/fooLast.gbk /companydb/foo1.gdb 500

/companydb/foo2.gdb 500 /companydb/fooLast.gdb

The next example executes on server Jupiter using Service Manager and restores a
backup that is on Jupiter to another server called Pluto.

gbak -r user -joe -pa blurf@ -se jupiter:service_mgr

/backup/foo.gbk pluto:/companydb/foo.gdb

See Also Backing up a database

CHAPTER 7 DATABASE BACKUP AND RESTORE

168 INTERBASE 6

gbak error messages

Error Message Causes and Suggested Actions to Take

Array dimension for column <string> is invalid Fix the array definition before backing up

Bad attribute for RDB$CHARACTER_SETS An incompatible character set is in use

Bad attribute for RDB$COLLATIONS Fix the attribute in the named system table

Bad attribute for table constraint Check integrity constraints; if restoring, consider using the
-no_validity option to delete validity constraints

Blocking factor parameter missing Supply a numeric argument for “factor” option

Cannot commit files • Database contains corruption or metadata violates integrity
constraints

• Try restoring tables using -one_at_a_time option, or delete
validity constraints using -no_validity option

Cannot commit index <string> • Data might conflict with defined indexes
• Try restoring using “inactive” option to prevent rebuilding

indexes

Cannot find column for Blob

Cannot find table <string>

Cannot open backup file <string> Correct the file name you supplied and try again

Cannot open status and error output file <string> • Messages are being redirected to invalid file name
• Check format of file or access permissions on the directory of

output file

Commit failed on table <string> • Data corruption or violation of integrity constraint in the
specified table

• Check metadata or restore “one table at a time”

Conflicting switches for backup/restore A backup-only option and restore-only option were used in
the same operation; fix the command and execute again

Could not open file name <string> Fix the file name and re-execute command

Could not read from file <string> Fix the file name and re-execute command

TABLE 7.5 gbak backup and restore error messages

GBAK ERROR MESSAGES

OPERATIONS GUIDE 169

Could not write to file <string> Fix the file name and re-execute command

Datatype n not understood An illegal datatype is being specified

Database format n is too old to restore to • The gbak version used is incompatible with the InterBase
version of the database

• Try backing up the database using the -expand or -old
options and then restoring it

Database <string> already exists. To replace it, use
the –R switch

• You used -create in restoring a back up file, but the target
database already exists

• Either rename the target database or use -replace

Could not drop database <string> (database might
be in use).

• You used -replace in restoring a file to an existing database,
but the database is in use

• Either rename the target database or wait until it is not in
use

Device type not specified The -device option (Apollo only) must be followed by ct or mt;
obsolete as of InterBase V3.3

Device type <string> not known The -device option (Apollo only) was used incorrectly;
obsolete as of InterBase V3.3

Do not recognize record type n

Do not recognize <string> attribute n -- continuing

Do not understand BLOB INFO item n

Error accessing BLOB column <string> -- continuing

ERROR: Backup incomplete • The backup cannot be written to the target device or file
system

• Either there is insufficient space, a hardware write problem,
or data corruption

Error committing metadata for table <string> • A table within the database could be corrupt.
• If restoring a database, try using -one_at_a_time to isolate

the table

Error Message Causes and Suggested Actions to Take

TABLE 7.5 gbak backup and restore error messages (continued)

CHAPTER 7 DATABASE BACKUP AND RESTORE

170 INTERBASE 6

Exiting before completion due to errors • This message accompanies other error messages and
indicates that back up or restore could not execute

• Check other error messages for the cause.

Expected array dimension n but instead found m Try redefining the problem array

Expected array version number n but instead found m Try redefining the problem array

Expected backup database <string>, found <string> Check the name of the backup file being restored

Expected backup description record

Expected backup start time <string>, found <string>

Expected backup version 1, 2, or 3. Found n

Expected blocking factor, encountered <string> The -factor option requires a numeric argument

Expected data attribute

Expected database description record

Expected number of bytes to be skipped, encountered
<string>

Expected page size, encountered <string> The -page_size option requires a numeric argument

Expected record length

Expected volume number n, found volume n When backing up or restoring with multiple tapes, be sure to
specify the correct volume number

Expected XDR record length

Failed in put_blr_gen_id

Failed in store_blr_gen_id

Failed to create database <string> The target database specified is invalid; it might already exist

column <string> used in index <string> seems to
have vanished

• An index references a non-existent column
• Check either the index definition or column definition

Found unknown switch An unrecognized gbak option was specified

Error Message Causes and Suggested Actions to Take

TABLE 7.5 gbak backup and restore error messages (continued)

GBAK ERROR MESSAGES

OPERATIONS GUIDE 171

Index <string> omitted because n of the expected m
keys were found

Input and output have the same name. Disallowed. A backup file and database must have unique names; correct
the names and try again

Length given for initial file (n) is less than minimum
(m)

• In restoring a database into multiple files, the primary file
was not allocated sufficient space

• InterBase automatically increases the page length to the
minimum value

• No action necessary

Missing parameter for the number of bytes to be
skipped

Multiple sources or destinations specified Only one device name can be specified as a source or target

No table name for data • The database contains data that is not assigned to any table
• Use gfix to validate or mend the database

Page size is allowed only on restore or create The -page_size option was used during a back up instead of a
restore

Page size parameter missing The -page_size option requires a numeric argument

Page size specified (n bytes) rounded up to m bytes Invalid page sizes are rounded up to 1024, 2048, 4096, or
8192, whichever is closest

Page size specified (n) greater than limit (8192 bytes) Specify a page size of 1024, 2048, 4096, or 8192

Password parameter missing • The back up or restore is accessing a remote machine
• Use -password and specify a password

Protection is not there yet Unimplemented option -unprotected used

Redirect location for output is not specified You specified an option reserved for future use by InterBase

REPLACE specified, but the first file <string> is a
database

Check that the file name following the -replace option is a
backup file rather than a database

Requires both input and output file names Specify both a source and target when backing up or
restoring

Error Message Causes and Suggested Actions to Take

TABLE 7.5 gbak backup and restore error messages (continued)

CHAPTER 7 DATABASE BACKUP AND RESTORE

172 INTERBASE 6

RESTORE: decompression length error • Possible incompatibility in the gbak version used for
backing up and the gbak version used for restoring

• Check whether -expand should be specified during back up

Restore failed for record in table <string> Possible data corruption in the named table

Skipped n bytes after reading a bad attribute n

Skipped n bytes looking for next valid attribute,
encountered attribute m

Trigger <string> is invalid

Unexpected end of file on backup file • Restoration of the backup file failed; the backup procedure
that created the backup file might have terminated
abnormally

• If possible, create a new backup file and use it to restore the
database

Unexpected I/O error while <string> backup file A disk error or other hardware error might have occurred
during a backup or restore

Unknown switch <string> An unrecognized gbak option was specified

User name parameter missing • The backup or restore is accessing a remote machine
• Supply a user name with the –user option

Validation error on column in table <string> • The database cannot be restored because it contains data
that violates integrity constraints

• Try deleting constraints from the metadata by specifying
–no_validity during restore

Warning -- record could not be restored Possible corruption of the named data

Wrong length record, expected n encountered n

Error Message Causes and Suggested Actions to Take

TABLE 7.5 gbak backup and restore error messages (continued)

OPERATIONS GUIDE 173

CHAPTER

8
Chapter 8Database and Server

Statistics

This chapter provides an overview of the following InterBase facilities:

g Viewing a database summary and analysis

g Using the gstat command-line tool

g Viewing lock statistics

g Using the iblockpr command-line tool

g Retrieving statistics programmatically

Viewing statistics using IBConsole
To view database statistics, use one of the following methods to access the Database
Statistics dialog:

g Select a connected database in the Tree pane and choose Tools | Database Maintenance |
Database Statistics.

g Select a connected database in the Tree pane and click Database Statistics in the Work
pane.

CHAPTER 8 DATABASE AND SERVER STATISTICS

174 INTERBASE 6

g Right-click a connected database in the Tree pane and choose Maintenance | Database
Statistics from the context menu.

A Database Statistics dialog appears where you can select which statistics you want to
display.

FIGURE 8.1 Database Statistics options

To view database statistics:

1. Select the statistic data you wish to generate in the Options table.

You can specify options by entering a value, by clicking the option value and choosing
a new value from a drop down list of values or by double-clicking the option value to
rotate its value to the next in the list of values.

2. Click Ok to generate database statistics.

Note In some cases, it can take a long time to display the statistics for large databases
because, depending on what information has been selected to report, generating these
statistics may analyze all the tables and indexes in a database.

VIEWING STATISTICS USING IBCONSOLE

OPERATIONS GUIDE 175

FIGURE 8.2 Database Statistics dialog

The Database Statistics report dialog is a standard text display window that exhibits
database summary and database analysis information statistics. For an explanation of
how to use the standard text display window, see “Standard text display window” on
page 39.

Database statistics options
When you request a statistic option, InterBase generates and displays information for that
database statistic. Possible statistic option values include: All Options, Data Pages,
Database Log, Header Pages, Index Pages, and System Relations.

Note In addition to the selected statistic, header page information is displayed, regardless
which statistic has been selected to report. If Header Pages is the selected option value,
then only header page information will be displayed.

4 All Options
Displays statistic information for all options including Data Pages, Database Log, Header
Pages, Index Pages, and System Relations.

This function corresponds to the -all option of gstat.

CHAPTER 8 DATABASE AND SERVER STATISTICS

176 INTERBASE 6

4 Data Pages
Displays data page information in the database summary. Below is an example of data
page information, followed by an explanation of each item.

COUNTRY (31)

Primary pointer page: 246, Index root page: 247

Data pages: 1, data page slots: 1, average fill: 59%

Fill distribution:

0 - 19% = 0

20 - 39% = 0

40 - 59% = 1

60 - 79% = 0

80 - 99% = 0

The first line displays a database table name while the remaining lines contain item
information pertaining to the table.

These items include:

g Primary pointer page: the page that is the first pointer page for the table.

g Index root page: the page number that is the first pointer page for indexes.

g Data pages: the total number of data pages.

g Data page slots: the number of pointers to database pages, whether the pages are still in
the database or not.

g Average fill: the average percentage to which the data pages are filled.

g Fill distribution: a histogram that shows the number of data pages that are filled to the
percentages.

4 Database Log
Displays the database log in the database summary. Below is an example of database log
information.

This function corresponds to the -log option of gstat.

Database log page information:

Creation date Dec 20, 1998 11:38:19

Log flags:2

No write ahead log

Next log page:0

Variable log data:

Control Point 1:

File name:

VIEWING STATISTICS USING IBCONSOLE

OPERATIONS GUIDE 177

Partition offset: 0 Seqno: 0 Offset: 0

Control Point 2:

File name:

Partition offset: 0 Seqno: 0 Offset: 0

Current File:

File name:

Partition offset: 0 Seqno: 0 Offset: 0

4 Header Pages
Displays header page information in the database summary. Below is an example of
database summary header page information, followed by an explanation of each item.

This function corresponds to the -header option of gstat.

Database ’C:\Program Files\InterBase Corp\

InterBase\examples\employee.gdb’

Database header page information:

Flags 0

Checksum 15351

Generation 174

Page size 1024

ODS version 9.0

Oldest transaction 22

Oldest active 166

Oldest snapshot 166

Next transaction 170

Bumped transaction 1

Sequence number 0

Next attachment ID 0

Implementation ID 2

Shadow count 0

Page buffers 0

Next header page 0

Creation date Dec 20, 1998 11:38:19

Attributes force write

Database file sequence:

File /usr/interbase/examples/employee.gdb is the only file

The first line displays the name and location of the primary database file while the
remaining lines contain information on the database header page.

CHAPTER 8 DATABASE AND SERVER STATISTICS

178 INTERBASE 6

These items include:

g Checksum: the header page checksum. This is a unique value computed from all the data
in the header page. When the header page is stored to disk and later retrieved, the
checksum of the retrieved page is recomputed and compared to the stored value to
ensure that the information is correct.

g Generation: counter incremented each time header page is written.

g Page size: the current database page size, in bytes.

g ODS version: the version of the database’s on-disk structure.

g Oldest transaction: the transaction ID number of the oldest “interesting” transaction
(those that are not committed, but active, in limbo, or rolled back).

g Oldest active: the transaction ID number of the oldest active transaction.

g Next transaction: the transaction ID number that InterBase assigns to the next
transaction.

Note The difference between the oldest transaction and the next transaction determines
when database sweeping occurs. For example, if the difference is greater than this
difference (set to 20,000 by default), then InterBase initiates a database sweep. See
“Overview of sweeping” on page 126.

g Sequence number: the sequence number of the header page (zero is used for the first
page, one for second page, and so on).

g Next connection ID: ID number of the next database connection.

g Implementation ID: architecture of the system on which the database was created:

g Shadow count: the number of shadow files defined for the database.

1 Apollo 9 Reserved

2 Sun, HP 9000, IMP Delta, NeXT 10 RS 6000

3 Reserved 11 Data General AViiON

4 VMS 12 HP MPE/XL

5 VAX Ultrix 13 Silicon Graphics Iris

6 Reserved 14 Reserved

7 HP 900 15 DEC OSF/1

8 OS/2, Windows NT, Novell NetWare

VIEWING STATISTICS USING IBCONSOLE

OPERATIONS GUIDE 179

g Number of cache buffers: the number of page buffers in the database cache.

g Next header page: the ID of the next header page.

g Creation date: the date when the database was created.

g Attributes:

· force write—indicates that forced database writes are enabled.

· no_reserve—indicates that space is not reserved on each page for old generations of
data. This enables data to be packed more closely on each page and therefore makes
the database occupy less disk space.

· shutdown—indicates database is shut down.

g Database file sequence: this section lists all the files associated with the database,
including any secondary files

4 Index Pages
Displays index information in the database summary. Below is an example of index page
information, followed by an explanation of each item.

Index CUSTNAMEX (2)

Depth: 2, leaf buckets: 2, nodes: 27

Average data length: 45.00, total dup: 0, max dup: 0

Fill distribution:

 0 - 19% = 0

 20 - 39% = 0

 40 - 59% = 1

 60 - 79% = 0

 80 - 99% = 1

g Index: the name of the index.

g Depth: the number of levels in the index page tree.

g Leaf buckets: the number of leaf (bottom level) pages in the index page tree.

g Nodes: the total number of index pages in the tree.

g Average data length: the average length of each key, in bytes.

g Total dup: the total number of rows that have duplicate indexes.

g Max dup: the number of duplicates of the index with the most
duplicates.

g Fill distribution: a histogram that shows the number of index pages filled to the specified
percentages.

CHAPTER 8 DATABASE AND SERVER STATISTICS

180 INTERBASE 6

If the depth of the index page tree is greater than three, then sorting may not be as
efficient as possible. To reduce the depth of the index page tree, increase the page size.
If increasing the page size does not reduce the depth, then return it to its previous size.

4 System Relations
Displays information for system tables in the database.

RDB$CHECK_CONSTRAINTS (24)

 Primary pointer page: 54, Index root page: 55

 Data pages: 5, data page slots: 5, average fill: 59%

 Fill distribution:

 0 - 19% = 0

20 - 39% = 1

40 - 59% = 0

60 - 79% = 4

80 - 99% = 0

Index RDB$INDEX_14 (0)

Depth: 1, leaf buckets: 1, nodes: 68

Average data length: 0.00, total dup: 14, max dup: 1

Fill distribution:

 0 - 19% = 0

 20 - 39% = 0

 40 - 59% = 1

 60 - 79% = 0

 80 - 99% = 0

The statistics contained here are similar to that of data pages and index pages. For
information on the items see “Data Pages” and “Index Pages” above.

GSTAT COMMAND-LINE TOOL

OPERATIONS GUIDE 181

gstat command-line tool

Syntax gstat [options] database

Description The gstat program is a command-line tool for retrieving and reporting database statistics.
Its function is the same as that described for IBConsole in Chapter 8, “Database and
Server Statistics.”

You must be SYSDBA or the owner of a database to run gstat. On UNIX platforms, there is
a further constraint on gstat: In order to run gstat, you must have system-level read access
to the database files. You can gain this by logging in as the same account that the
InterBase server is running as (interbase or root) or by setting the system-level
permissions on the database file to include read permission for your Group. These
restrictions exist on UNIX platforms because gstat accesses the database file at the system
level rather than through the InterBase server.

Note You can run gstat only against local databases: run gstat on the server host.

Options TABLE 8.1 LISTS THE VALID OPTIONS FOR GSTAT.

Option Description

-all Equivalent to supplying -index and -data; this is the default if you supply none of -index,
-data, or -all

-data Retrieves and displays statistics on data tables in the database

-header Stops reporting statistics after reporting the information on the header page

-index Retrieves and displays statistics on indexes in the database

-log Stops reporting statistics after reporting the information on the log pages

-pa[ssword] text Checks for password text before accessing a database

-system Retrieves statistics on system tables and indexes in addition to user tables and indexes

-user name Checks for user name before accessing database

-z Prints product version of gstat

TABLE 8.1 gstat options

CHAPTER 8 DATABASE AND SERVER STATISTICS

182 INTERBASE 6

Viewing lock statistics
Locking is a mechanism that InterBase uses to maintain the consistency of the database
when it is accessed by multiple users. The lock manager is a thread in the ibserver process
that coordinates locking.

The lock manager uses a lock table to coordinate resource sharing among client threads
in the ibserver process connected to the database. The lock table contains information on
all the locks in the system and their states. The global header information contains useful
aggregate information such as the size of the lock table, the number of free locks, the
number of deadlocks, and so on. There is also process information such as whether the
lock has been granted or is waiting. This information is useful when trying to correct
deadlock situations.

Syntax iblockpr [a,o,w] (Windows) or gds_lock_print [a,o,w] (UNIX)

iblockpr [-i{a,o,w}] [t n]

Description iblockpr monitors performance by checking lock requests.

The first form of syntax given above is to retrieve a report of lock statistics at one instant
in time. The second form is to monitor performance by collecting samples at fixed
intervals.

These options display interactive information on current activity in the lock table. t
specifies the time in seconds between samplings. n (count) specifies the number of
samples to be taken. The utility prints out the events per second for each sampling and
gives the average of the values in each column at the end.

VIEWING LOCK STATISTICS

OPERATIONS GUIDE 183

Options

Example The following statement prints “acquire” statistics (access to lock table: acquire/s,
acqwait/s, %acqwait, acqrtry/s, and rtrysuc/s) every 3 seconds until 10 samples have
been taken:

gds_lock_print –ia 3 10

Option Description

[none] Same as -o

-a Prints a static view of the contents of the lock table

-o Prints a static lock table summary and a list of all entities that own blocks

-w Prints out all the information provided by the -o flag plus wait statistics for
each owner; this option helps to discover which owner’s request is blocking
others in the lock table

The following options supply interactive statistics
(events/second) for the requested items, which are sampled n
times every t seconds, with one line printed for each sample.
The average of the sample values is printed at the end of each
column. If you do not supply values for n and t, the default is
n=1.

-i Prints all statistics; the output is easier to read if you issue -ia, -io, and -iw
separatly

-ia Prints how many threads are trying to acquire access to the lock table per
second

-io Prints operation statistics such lock requests, conversions, downgrades, and
releases per second

-iw Prints number of lock acquisitions and requests waiting per second, wait
percent, and retries

TABLE 8.2 iblockpr/gds_lock_print options

CHAPTER 8 DATABASE AND SERVER STATISTICS

184 INTERBASE 6

Retrieving statistics programmatically
InterBase includes programming facilities to gather performance timings and database
operation statistics.

You can use the API function isc_database_info() to retrieve statistics, by specifying one
or more of the following request buffer items:

Request Buffer Item Result Buffer Contents

isc_info_fetches Number of reads from the memory buffer cache; calculated since
the InterBase server started

isc_info_marks Number of writes to the memory buffer cache; calculated since
the InterBase server started

isc_info_reads Number of page reads; calculated since the InterBase server
started

isc_info_writes Number of page writes; calculated since the InterBase server
started

isc_info_backout_count Number of removals of record versions per table since the current
database attachment started

isc_info_delete_count Number of row deletions

• Reported per table
• Calculated since the current database attachment started

isc_info_expunge_count Number of removals of a record and all of its ancestors, for records
whose deletions have been committed

• Reported per table
• Calculated since the current database attachment started

isc_info_insert_count Number of inserts into the database

• Reported per table
• Calculated since the current database attachment started

isc_info_purge_count Number of removals of old versions of fully mature records
(records committed, resulting in older-ancestor-versions no
longer being needed)

• Reported per table
• Calculated since the current database attachment started

TABLE 8.3 Database I/O statistics information items

RETRIEVING STATISTICS PROGRAMMATICALLY

OPERATIONS GUIDE 185

See the API Guide for information on request buffers, and details of using this API call.

isc_info_read_idx_count Number of reads done via an index

• Reported per table
• Calculated since the current database attachment started

isc_info_read_seq_count Number of sequential database reads, that is, the number of
sequential table scans (row reads)

• Reported per table
• Calculated since the current database attachment started

isc_info_read_update_count Number of row updates

• Reported per table
• Calculated since the current database attachment started

Request Buffer Item Result Buffer Contents

TABLE 8.3 Database I/O statistics information items

CHAPTER 8 DATABASE AND SERVER STATISTICS

186 INTERBASE 6

OPERATIONS GUIDE 187

CHAPTER

9
Chapter 9Interactive Query

This chapter documents the IBConsole interactive SQL (ISQL) and command-line isql
utilities for InterBase. These tools provide an interface to InterBase’s Dynamic SQL
interpreter. You can use these query tools to perform data definition, prototype queries
before implementing them in your application, or to perform ad hoc examination of data
in your database.

Topics covered in this chapter include:

g The IBConsole interface to the isql utility

g Executing, committing and rolling back SQL statements in IBConsole

g Saving isql input and output

g Changing isql settings

g Extracting metadata

g Loading and executing SQL script files

g Using the command-line isql tool

CHAPTER 9 INTERACTIVE QUERY

188 INTERBASE 6

ISQL
The IBConsole ISQL Window permits you to execute DDL and DML commands to the
InterBase server as well as to load, save, print, cut, paste, and copy SQL scripts and
results.

The ISQL window
To access the ISQL Window:

g Click the Launch SQL toolbar button

g Choose Tools | Interactive SQL.

The ISQL window appears.

FIGURE 9.1 IBConsole - ISQL

SQL input area

SQL output area

ISQL status bar

ISQL

OPERATIONS GUIDE 189

4 ISQL menus
Menus that are unique to IBConsole ISQL are the Edit, Query, and Transaction menus.

EDIT MENU

Edit menu items include undo, cut, copy, paste, find, and select all. You can use all Edit
menu items while working in the SQL input area. You can use all Edit menu items while
working in the SQL output area except Undo, Cut, and Paste. “Undo” in the Edit menu
does not undo database changes. Use Transactions | Rollback to abort database changes.

QUERY MENU

Query menu items enable you to perform ISQL commands. These menu items include
Load Script, Save Script, Next, Previous, Execute, Save Output, and Options. To change
ISQL session settings, choose Options.

TRANSACTIONS MENU

Transactions menu items enable you to commit and rollback database changes.

4 ISQL toolbar
See TABLE 9.1, “Toolbar buttons for executing SQL statements,” on page 191 for a
description of each toolbar button included in ISQL toolbar.

4 ISQL work areas

SQL INPUT AREA

The SQL input area is where you can type SQL statements or scripts to be executed. It
scrolls vertically.

SQL OUTPUT AREA

The SQL output area is where the results of the SQL statements or scripts are displayed.
It scrolls both horizontally and vertically. The SQL output area contains two tabs:

g The Data tab displays any data returned by the SQL output in a grid format.

g The Script Results tab displays the result of the SQL statement or script.

4 Status bar
The status bar at the bottom of the SQL input area displays information relevant to the
SQL input areas such as cursor position, input status, client dialect, and transaction status.
You can change the client dialect by right clicking on the status bar.

CHAPTER 9 INTERACTIVE QUERY

190 INTERBASE 6

Temporary files
ISQL creates temporary files used during a session to store information such as the
command history, output file names, and so on. These files are named in the form
isql_aa.xx. The files are stored in the directory specified by the TMP environment variable,
or if that is not defined, the working directory, or if that is not defined, they are stored in
the windows directory.

To avoid cluttering the windows directory with InterBase temporary files, specify a
different directory for them by defining TMP.

When you exit, ISQL deletes these temporary files. If ISQL abnormally terminates (for
example, due to a power failure), then these files remain and may be freely deleted
without any adverse effects. You should not delete any of these temporary files while
ISQL is running, because they may be used in the current session.

Executing SQL statements
In ISQL, you can execute SQL statements in either of two ways:

g Interactively, one statement at a time

g From a script containing multiple statements

4 Executing SQL interactively
To execute an SQL statement interactively:

1. Type a single SQL statement in the SQL Input area. Make sure any other
existing statements are commented. A statement is commented if it is
preceded by “/*” and followed by “*/”.

If the statement already exists in the SQL Input area make sure all statements except
the one you wish to execute are commented. Commented statements in the SQL Input
area are ignored during execution.

2. Choose Query | Execute, enter w+E, or click the Execute toolbar button.

If more than one statement is uncommented, Execute executes each statement, one
after the other.

The Output area echoes the statements and displays up to 32Kb of the results. You can
scroll to view output beyond 32Kb.

ISQL

OPERATIONS GUIDE 191

TIP You can copy text from other Windows applications such as the Notepad and Wordpad
text editors and paste it into the SQL Input area. You can also copy statements from the
ISQL Output area and paste them into the SQL Input area. This cut-and-paste method is
also a convenient way to use the online SQL tutorial provided in the online Help.

When SQL statements are executed, whether successfully or not, they become part of the
ISQL command history, a sequential list of SQL statements entered in the current session.

The buttons in the Toolbar pertaining to execution of SQL statements are:

Button Menu Option Description

Query | Execute Executes the current statement or script in the SQL input
area. The resultant output is displayed in the SQL Output
area. The accelerator key is w-E.

Query | Previous Recalls the previous SQL statement in the command
history. If no previous statement exists in the command
history, this button is disabled. The accelerator key is
w-P.

Query | Next Recalls the next SQL statement in the command history.
If no next statement exists in the command history, this
button is disabled. The accelerator key is w-N.

Query | Prepare Prepares the query for execution. The query plan is
displayed in the SQL output area.

Transactions | Commit Commits the transaction specified by the SQL statement
to the database.

Transactions | Rollback Rolls back all database changes since the last commit.

Query | Load Script Loads a script for SQL execution into the SQL input area.

Query | Save Script Saves SQL statements entered in the SQL input area to a
file.

TABLE 9.1 Toolbar buttons for executing SQL statements

CHAPTER 9 INTERACTIVE QUERY

192 INTERBASE 6

4 Preparing SQL statements
Use the Prepare toolbar button to prepare SQL statements for execution and to view the
query plan. Prepare compiles the query plan on the server, and displays it in the SQL
output area. This can be used to determine if your SQL script is well-constructed, without
having to wait for the SQL script to execute.

4 Legal SQL statements
g You can execute interactively any SQL statement identified as “available in DSQL” in the

Language Reference. You cannot use any statements that are specifically identified as isql
statements. All statements that are specific to isql have functionally equivalent menu items
in ISQL.

For example, the SET NAMES statement cannot be entered in the SQL Input area. To
change the active character set, choose Query | Options and select the desired character set
option value in the SQL Options dialog.

g SQL script files can include statements that are not legal to enter interactively. For
example, you can use the SET statements such as SET LIST or SET TERM in scripts.

g Transaction names may not be used with SET TRANSACTION statement.

g The SQL Input area accepts multiple statements, although only one can be executed at a
time. Each statement entered in the SQL input area must be terminated by a semicolon
(;). The SQL Input area accepts multiple statements, although only one can be executed
at a time. An uncommented statement that holds the mouse cursor is called the current
statement.

4 Loading and executing an SQL script file
To execute an SQL script file containing SQL statements:

1. Choose Query | Load Script or click the Load Script toolbar button.

2. Locate the desired script file in the Open dialog, and click Open to display
the statements of the script file in the SQL Input area.

3. Comment out any CONNECT or CREATE DATABASE statements.

4. Ensure that you are connected to the desired database.

5. Choose Query | Execute or click the Execute toolbar button to begin executing
the entire script statement by statement.

After each statement in the script executes, the result is displayed in the SQL Output area,
including any errors or warnings that are generated.

Note Statements executed from a loaded script file do not become part of the command
history.

ISQL

OPERATIONS GUIDE 193

Commit and Rollback
Changes to the database from data definition (DDL) statements—for example, CREATE
and ALTER statements—are automatically committed by default. To turn off automatic
commit of DDL, choose Query | Options and set the Auto Commit DDL option to false in the
SQL Options dialog.

Changes made to the database by data manipulation (DML) statements—for example
INSERT and UPDATE—are not permanent until they are committed. Commit changes by
choosing Transactions | Commit or by clicking the Commit toolbar button.

To undo all database changes from DML statements since the last commit, choose
Transactions | Rollback or click the Rollback toolbar button.

Saving ISQL input and output
ISQL enables you to save to a file:

g SQL statements entered in the SQL Input area of the current session.

g The output of the last SQL statement executed.

4 Saving SQL input
To save the SQL statements entered in the SQL Input area of the current session to a text
file:

1. Choose Query | Save Script or click the Save Script toolbar button.

2. Enter a file name, including the location for the new file, in the Save As dialog
and click Save.

To include the location for the file, you can either type the file path and file name in
the Filename text area, or you can locate the folder where you would like the file to
reside and type only the file name.

Only the SQL statements entered in the current session, not the output, are saved to the
specified file.

4 Saving SQL output
To save the results of the last executed SQL statement to a file:

1. Choose Query | Save Output to File.

2. Enter a file name, including the location for the new file, in the Export To
dialog and click Save.

CHAPTER 9 INTERACTIVE QUERY

194 INTERBASE 6

To include the location for the file, you can either type the file path and file name in
the Filename text area, or you can locate the folder where you would like the file to
reside and type only the file name.

The output from the last successful statement and the statement itself is saved to the
named text file.

If you run an SQL script, and then choose to save the output, all the commands in the
script file and their results are saved to the output file. If command display has been
turned off in a script with SET ECHO OFF, then SQL statements in the script are not saved
to the file.

Changing ISQL settings
You can change the current ISQL session settings in the SQL Options dialog. See “ISQL
preferences” on page 46 for more information on changing your ISQL settings.

Metadata information
You can display, extract, copy and print metadata scripts for the entire database or for a
specific table, view, function, procedure or any other database attribute displayed in the
tree pane using the object inspector.

Viewing metadata
The metadata which the Metadata tab of the object inspector displays depends on the
database that is selected in the Tree pane, or the item that is selected in the Work pane.

To view metadata for an entire database Select a connected database in the Tree pane,
and then click on View Metadata in the Work pane. The metadata is displayed in a text
window.

To view metadata for a specific database object Select a database element from the
hierarchy displayed in the Tree pane, and then double-click a database object associated
with that element in the Work pane.

The object inspector appears. To view metadata, select the Metadata tab.

METADATA INFORMATION

OPERATIONS GUIDE 195

FIGURE 9.2 Metadata tab

Examples If you want metadata for domains only, expand the desired database hierarchy (if it is
not already expanded), select Domains, click on a domain element in the Work pane,
and select the Metadata tab of the object inspector.

If you want metadata for roles only, expand the desired database hierarchy (if it is not
already expanded), select Roles and click on a role element in the Work pane, and select
the Metadata tab of the object inspector.

Use the drop down list at the top of the dialog to select other objects associated with the
database element.

CHAPTER 9 INTERACTIVE QUERY

196 INTERBASE 6

The following table lists the items for which you can view metadata for associated objects
with the object inspector.

Command-line isql tool
Command-line isql is a utility for processing SQL data definition (DDL) and data
manipulation (DML) statements from interactive input or from a source file. It enables
you to create and view metadata, add and modify data, grant user permissions, test
queries, and perform database administration tasks.

This section provides an introduction to using isql. For a description of the standard SQL
commands available in isql, see the Language Reference. For a description of special isql
commands, see “isql command reference” on page 204.

Invoking isql
You can use isql in the following ways:

g Interactively to process SQL statements, by entering statements at the isql prompt

Item Displays

Blob Filters Blob filters definition

Domains Metadata script, dependencies, datatype, description, check constraints, and
default values

Exceptions Description, exception number, exception message, metadata script, and
dependencies

External Functions UDFs definition

Generators Generator ID, current value, metadata script, and dependencies

Stored Procedures Metadata script, procedure body, input parameters, output parameters,
permissions, data, and dependencies

Roles Role definition

Tables Columns, datatypes, triggers, indexes, unique constraints, referential constraints,
check constraints, metadata script, permissions, data, and dependencies

Views Metadata script, permissions, data, and dependencies

TABLE 9.2 Metadata information items

COMMAND-LINE ISQL TOOL

OPERATIONS GUIDE 197

g Noninteractively to process SQL statements in a file

To start the isql utility, type the following at a UNIX shell prompt or Windows console
prompt:

isql [options] [database_name]

where options are command-line options and database_name is the name of the database to
connect to, including disk and directory path.

If no options are specified, isql starts an interactive session. If no database is specified,
you must connect to an existing database or create a new one. If a database was specified,
isql starts the interactive session by connecting to the named database.

If options are specified, isql starts interactively or noninteractively, depending on the
options. For example, reading an input file and writing to an output file are
noninteractive tasks, so the -input or -output options do not start an interactive session.
Additional noninteractive options include -a, -database, -extract, and -x, which are used
when extracting DDL statements.

When you start an interactive isql session, the following prompt appears:

SQL>

You must then end each command with a terminator character. The default terminator is
a semicolon (;). You can change the terminator to any character or group of characters
with the SET TERMINATOR command or with the -terminator command-line option. If you
omit the terminator, a continuation prompt appears (CON>).

Note For clarity, all of the commands and examples in this chapter end with the default
semicolon terminator.

4 Command-line options
Only the initial characters in an option are required. You can also type any portion of the
text enclosed in brackets, including the full option name. For example, specifying -n, -no,
or -noauto has the same effect.

CHAPTER 9 INTERACTIVE QUERY

198 INTERBASE 6

Option Description

-a Extracts all DDL for the named database

-d[atabase] name Used with -x; changes the CREATE DATABASE statement that is extracted to a file

• Without -d, CREATE DATABASE appears as a C-style comment and uses the database
name specified on the isql command line

• With -d, isql extracts an uncommented CREATE DATABASE and substitutes name as its
database argument

-c[ache] Set number of cache buffers for this connection to the database; see “Default
cache size per ISQL connection” on page 130.

-e[cho] Displays (echoes) each statement before executing it

-ex[tract] Same as -x

-i[nput] file Reads commands from an input file instead of from standard input

• Input files can contain -input commands that call other files, enabling execution to
branch and then return

• isql exits (with a commit) when it reaches the end of the first file
• In interactive sessions, use -input to read commands from a file

-m[erge_stderr] • Merges stderr output with stdout
• Useful for capturing output and errors to a single file when running isql in a shell

script or batch file

-n[oauto] Turns off automatic commitment of DDL statements; by default, DDL statements are
committed automatically in a separate transaction

-o[utput] file Writes results to an output file instead of to standard output; in interactive sessions,
use -output to write results to a file

-pas[sword]
password

Used with -user

• Specifies a password when connecting to a remote server
• For access, both password and user must represent a valid entry in the security

database

-page[length] n Prints column headers every n lines instead of the default 20

-q[uiet]

-r[ole] rolename Grants privileges of role rolename to user on connection to the database

TABLE 9.3 isql command-line options

COMMAND-LINE ISQL TOOL

OPERATIONS GUIDE 199

4 Examples
g Suppose createdb.sql contains DDL statements to create a database. To execute the

statements, enter:

isql -input createdb.sql

g The following example starts an interactive connection to a remote database. The remote
server, jupiter, accepts the specified user and password combination with the privileges
assigned to the STAFF role:

isql -user sales -password mycode -role ’staff’

’jupiter:/usr/customer.gdb’

g The next example starts an interactive session but does not attach to a database. isql
commands are displayed, and query results print column headers every 30 lines:

isql -echo -page 30

-s[qldialect] n Interprets subsequent commands as dialect n until end of session or until dialect is
changed by a SET SQL DIALECT statement

• For n = 1, commands are processed as in InterBase 5
• For n = 2, elements that have different interpretations in dialect 1 and 3 are all

flagged with warnings or errors to assist in migrating databases to dialect 3
• For n = 3, all statements are parsed as InterBase 6 SQL semantics: double quotes

are delimited identifiers, DATE datatype is SQL DATE, and exact numerics with
precision greater than 9 are stored as INT64

-t[erminator] x Changes the end-of-statement symbol from the default semicolon (;) to x, where x
is a single character or any sequence of characters

-u[ser] user Used with -password; specifies a user name when connecting to a remote server

• For access, both password and user must represent a valid entry in the security
database

-x Extracts DDL for the named database; displays DDL to the screen unless redirected
to a file

-z Displays the software version of isql

Option Description

TABLE 9.3 isql command-line options (continued)

CHAPTER 9 INTERACTIVE QUERY

200 INTERBASE 6

4 Exiting isql
To exit isql and roll back all uncommitted work, enter:

QUIT;

To exit isql and commit all work, enter:

EXIT;

4 Connecting to a database
If you do not specify a database on the command-line when invoking isql, you must either
connect to an existing database or create a new one. Use the CONNECT command to
connect to a database and CREATE DATABASE to create a database. For the full syntax of
CONNECT and CREATE DATABASE, see the Language Reference.

You can connect to a database in two ways. You can connect to:

g A local database on Windows NT or Windows 95/98. Use the CONNECT command with the
full path of the database as the argument. For example:

SQL> CONNECT ’C:/InterBase/examples/employee.gdb’ role ’staff’;

g A remote database on an Windows or UNIX server using TCP/IP. Use the CONNECT
command with the full node name and path of the database as the argument. Separate
the node name from the database path with a colon.

To connect to a database on a UNIX platform named jupiter:

SQL> CONNECT ’jupiter:/usr/interbase/examples/employee.gdb’;

To connect to a database on a Windows NT platform named venus:

SQL> CONNECT ’venus:c:/InterBase/InterBase

/examples/database/employee.gdb’;

Note Be careful not to confuse node names and shared disks, since both are specified
with a colon separator. If you specify a single letter that maps to a disk drive, it is assumed
to be a drive, not a node name.

Tip You can use either forward slashes (/) or backslashes (\) as directory separators.
InterBase automatically converts either type of slash to the appropriate type for the
server operating system.

COMMAND-LINE ISQL TOOL

OPERATIONS GUIDE 201

Transaction behavior in isql
When you start isql, InterBase begins a transaction. That transaction remains in effect
until you issue a COMMIT or ROLLBACK statement. You must issue a COMMIT or ROLLBACK
statement to end a transaction. Issuing one of these statements automatically starts a new
transaction. You can also start a transaction with the SET TRANSACTION statement.

isql uses a separate transaction for DDL statements. When these statements are issued at
the SQL> prompt, they are committed automatically as soon as they are completed. DDL
scripts should issue a COMMIT after every CREATE statement to ensure that new database
objects are available to all subsequent statements that depend on them. For more
information on DDL statements, see the Data Definition Guide.

Extracting metadata
You can extract the DDL statements that define the metadata for a database to an output
file with the -extract option. Adding the optional -output flag reroutes output to a named
file. Use this syntax:

isql [[-extract | -x][-a] [[-output | -o] outputfile]] database;

The -x option is an abbreviation for -extract. The -a flag directs isql to extract all database
objects. Note that the output file specification, outputfile, must follow the -output flag, while
you can place the name of the database being extracted at the end of the command.

You can use the resulting text file to:

g Examine the current state of a database’s system tables before you plan alterations to it,
or when a database has changed significantly since its creation.

g Use your text editor to make changes to the database definition or create a new database
source file.

The -extract option does not extract UDF code and Blob filters, because they are not part
of the database. It does extract the declarations to the database (with DECLARE EXTERNAL
FUNCTION and DECLARE FILTER).

Option Description

database File specification of the database from which metadata is being extracted

outputfile File specification of the text file to receive the extracted statements; if omitted, isql writes
the information to the screen

TABLE 9.4 isql extracting metadata arguments

CHAPTER 9 INTERACTIVE QUERY

202 INTERBASE 6

The -extract option also does not extract system tables, system views, or system triggers.

Because DDL statements do not contain references to object ownership, the extracted file
does not show ownership. The output file includes the name of the object and the owner
if one is defined. There is no way to assign an object to its original owner.

For example, the following statement extracts the system catalogs from the database
employee.gdb to a file called employee.sql:

isql -extract -output employee.sql employee.gdb;

The resulting output script is created with -commit following each set of commands, so
that tables can be referenced in subsequent definitions. This command extracts all
keywords and object names in uppercase when possible (some international metadata
has no uppercase).

To extract DDL statements from database employee.gdb and store in the file
employee.sql, enter:

isql -a employee.gdb -output employee.sql

The following example extracts the DDL statements from the database dev.gdb:

isql -x dev.gdb

This example combines the -extract and -output options to extract the DDL statements from
the database dev.gdb into a file called dev.out. The output database name must follow the
-output flag.

isql -extract -output dev.out dev.gdb

isql Commands
At the SQL> prompt, you can enter any of three kinds of commands:

g SQL data definition (DDL) statements, such as CREATE, ALTER, DROP, GRANT, and REVOKE.
These statements create, modify, or remove metadata and objects, and control user access
(via privileges) to the database. For more information about DDL, see the Data Definition
Guide.

g SQL data manipulation (DML) statements such as SELECT, INSERT, UPDATE, and DELETE.
These four data manipulation operations affect the data in a database. They retrieve,
modify, add, or delete data. For more information about DML statements, see the
Language Reference.

g isql commands that fall into three main categories:

· SHOW commands (to display metadata or other database information)

COMMAND-LINE ISQL TOOL

OPERATIONS GUIDE 203

· SET commands (to modify the isql environment)

· Other commands (for example, commands to read an input file, write to an output file,
or end an isql session)

Some isql commands have many options. See “isql command reference” on page 204.

4 SHOW commands
SHOW commands are used to display metadata, including tables, indexes, procedures, and
triggers.

SHOW commands list all of the specified objects or give information about a particular
object when used with name.

SHOW commands operate on a separate transaction from user statements. They run as
READ COMMITTED background statements and acknowledge all metadata changes
immediately.

4 SET commands
SET commands enable you to view and change the isql environment.

4 Other isql commands
The remaining isql commands perform a variety of useful tasks, including reading an SQL
file, executing shell commands, and exiting isql. The other isql commands are: BLOBDUMP,
EDIT, EXIT, HELP, INPUT, OUTPUT, QUIT, SHELL.

4 Exiting isql
To exit the isql utility and roll back all uncommitted work, enter:

SQL> QUIT;

To exit the isql utility and commit all work, enter:

SQL> EXIT;

Error handling
InterBase handles errors in isql and DSQL in the same way. To indicate the causes of an
error, isql uses the SQLCODE variable and the InterBase status array.

The following table lists values that are returned to SQLCODE:

CHAPTER 9 INTERACTIVE QUERY

204 INTERBASE 6

For a detailed discussion of error handling, see the Embedded SQL Guide. For a complete
listing of SQLCODE and InterBase status array codes, see the Language Reference.

isql command reference
This chapter describes the syntax and usage for commands available only in InterBase
isql (interactive SQL). These commands are also available in SQL scripts. For a description
of the standard DSQL commands available in isql, see the Language Reference.

Command-line isql supports the following special commands:

SQLCODE Message Meaning

< 0 SQLERROR Error occurred; statement did not execute

0 SUCCESS Successful execution

+1–99 SQLWARNING System warning or informational message

+100 NOT FOUND No qualifying rows found, or end of current active set of rows
reached

TABLE 9.5 SQLCODE and message summary

BLOBDUMP SET BLOBDISPLAY SHELL SHOW INDEX

EDIT SET COUNT SHOW CHECK SHOW INDICES

EXIT SET ECHO SHOW DATABASE SHOW PROCEDURES

HELP SET LIST SHOW DOMAINS SHOW ROLES

INPUT SET NAMES SHOW EXCEPTIONS SHOW SYSTEM

OUTPUT SET PLAN SHOW FILTERS SHOW TABLES

QUIT SET STATS SHOW FUNCTIONS SHOW TRIGGERS

SET SET TERM SHOW GENERATORS SHOW VERSION

SET AUTODDL SET TIME SHOW GRANT SHOW VIEWS

TABLE 9.6 isql commands

ISQL COMMAND REFERENCE

OPERATIONS GUIDE 205

BLOBDUMP
Places the contents of a BLOB column in a named file for reading or editing.

Syntax BLOBDUMP blob_id filename;

Description BLOBDUMP stores Blob data identified by blob_id in the file specified by filename.
Because binary files cannot be displayed, BLOBDUMP is useful for viewing or editing
binary data. BLOBDUMP is also useful for saving blocks of text (Blob data) to a file.

To determine the blob_id to supply in the BLOBDUMP statement, issue any SELECT
statement that selects a column of Blob data. When the table’s columns appear, any Blob
columns contain hexadecimal Blob IDs. The display of Blob output can be controlled
using SET BLOBDISPLAY.

Example Suppose that Blob ID 58:c59 refers to graphical data in JPEG format. To place this Blob
data into a graphics file named picture.jpg, enter:

BLOBDUMP 58:c59 picture.jpg;

See Also SET BLOBDISPLAY

EDIT
Allows editing and re-execution of isql commands.

Syntax EDIT [filename];

Description The EDIT command enables you to edit commands in:

Argument Description

blob_id System-assigned hexadecimal identifier, made up of two hexadecimal
numbers separated by a colon (:)

• First number is the ID of the table containing the BLOB column
• Second number is a sequential number identifying a particular instance of

Blob data

filename Name of the file into which to place Blob contents

Argument Description

filename Name of the file to edit

CHAPTER 9 INTERACTIVE QUERY

206 INTERBASE 6

g A source file and then execute the commands upon exiting the editor.

g The current isql session, then re-execute them.

On Windows 95/98 and Windows NT, EDIT calls the text editor specified by the EDITOR
environment variable. If this environment variable is not defined, then EDIT uses the
Microsoft mep editor.

On UNIX, EDIT calls the text editor specified by either the VISUAL environment variable or
EDITOR, in that order. If neither variable is defined, then EDIT uses the vi editor.

If given filename as an argument, EDIT places the contents of filename in an edit buffer.
If no file name is given, EDIT places the commands in the current isql session in the edit
buffer.

After exiting the editor, isql automatically executes the commands in the edit buffer.

Filenames with spaces You can optionally delimit the filename with double or single
quotes. This allows you to use filenames with spaces in EDIT statements.

Examples To edit the commands in a file called start.sql and execute the commands when done,
enter:

EDIT START.SQL;

In the next example, a user wants to enter SELECT DISTINCT JOB_CODE, JOB_TITLE
FROM JOB; interactively: Instead, the user mistakenly omits the DISTINCT keyword.
Issuing the EDIT command opens the statement in an editor and then executes the edited
statement when the editor exits.

SELECT JOB_CODE, JOB_TITLE FROM JOB;

EDIT;

See Also INPUT, OUTPUT, SHELL

EXIT
Commits the current transaction, closes the database, and ends the isql session.

Syntax EXIT;

Description Both EXIT and QUIT close the database and end an isql session. EXIT commits any
changes made since the last COMMIT or ROLLBACK, whereas QUIT rolls them back.

EXIT is equivalent to the end-of-file character, which differs across systems.

IMPORTANT EXIT commits changes without prompting for confirmation. Before using EXIT, be sure
that no transactions need to be rolled back.

ISQL COMMAND REFERENCE

OPERATIONS GUIDE 207

See Also QUIT, SET AUTODDL

HELP
Displays a list of ISQL commands and short descriptions.

Syntax HELP;

Description HELP lists the built-in isql commands, with a brief description of each.

Example To save the HELP screen to a file named isqlhelp.lst, enter:

OUTPUT isqlhelp.lst;

HELP;

OUTPUT;

After issuing the HELP command, use OUTPUT to redirect output back to the screen.

INPUT
Read and execute commands from the named file.

Syntax INPUT filename;\

Description INPUT reads commands from filename and executes them as a block. In this way, INPUT
enables execution of commands without prompting. filename must contain SQL
statements or isql commands.

Input files can contain their own INPUT commands. Nesting INPUT commands enables isql
to process multiple files. When isql reaches the end of one file, processing returns to the
previous file until all commands are executed.

The INPUT command is intended for noninteractive use. Therefore, the EDIT command
does not work in input files.

Using INPUT filename from within an isql session has the same effect as using
-input filename from the command line.

Unless output is redirected using OUTPUT, any results returned by executing filename
appear on the screen.

Argument Description

filename Name of the file containing SQL statements and SQL commands

CHAPTER 9 INTERACTIVE QUERY

208 INTERBASE 6

You can optionally delimit the filename with double or single quotes. This allows you to
use filenames with spaces in INPUT statements.

Examples For this example, suppose that file add.lst contains the following INSERT statement:

INSERT INTO COUNTRY (COUNTRY, CURRENCY)

VALUES (’Mexico’, ’Peso’);

To execute the command stored in add.lst, enter:

INPUT add.lst;

For the next example, suppose that the file, table.lst, contains the following SHOW
commands:

SHOW TABLE COUNTRY;

SHOW TABLE CUSTOMER;

SHOW TABLE DEPARTMENT;

SHOW TABLE EMPLOYEE;

SHOW TABLE EMPLOYEE_PROJECT;

SHOW TABLE JOB;

To execute these commands, enter:

INPUT table.lst;

To record each command and store its results in a file named table.out, enter

SET ECHO ON;

OUTPUT table.out;

INPUT table.lst;

OUTPUT;

See Also OUTPUT

OUTPUT
Redirects output to the named file or to standard output.

Syntax OUTPUT [filename];

Argument Description

filename Name of the file in which to save output; if no file name is given, results appear
on the standard output

ISQL COMMAND REFERENCE

OPERATIONS GUIDE 209

Description OUTPUT determines where the results of isql commands are displayed. By default, results
are displayed on standard output (usually a screen). To store results in a file, supply a
filename argument. To return to the default mode, again displaying results on the
standard output, use OUTPUT without specifying a file name.

By default, only data is redirected. Interactive commands are not redirected unless SET
ECHO is in effect. If SET ECHO is in effect, isql displays each command before it is executed.
In this way, isql captures both the results and the command that produced them. SET ECHO
is useful for displaying the text of a query immediately before the results.

Note Error messages cannot be redirected to an output file.

Using OUTPUT filename from within an isql session has the same effect as using the option
-output filename from the command line.

You can optionally delimit the filename with double or single quotes. This allows you to
use filenames with spaces in OUTPUT statements.

Example The following example stores the results of one SELECT statement in the file, sales.out.
Normal output processing resumes after the SELECT statement.

 OUTPUT sales.out;

 SELECT * FROM SALES;

 OUTPUT;

See Also INPUT, SET ECHO

QUIT
Rolls back the current transaction, closes the database, and ends the isql session.

Syntax QUIT;

Description Both EXIT and QUIT close the database and end an isql session. QUIT rolls back any
changes made since the last COMMIT or ROLLBACK, whereas EXIT commits the changes.

IMPORTANT QUIT rolls back uncommitted changes without prompting for confirmation. Before using
QUIT, be sure that any changes that need to be committed are committed. For example,
if SET AUTODDL is off, DDL statements must be committed explicitly.

See Also EXIT, SET AUTODDL

CHAPTER 9 INTERACTIVE QUERY

210 INTERBASE 6

SET
Lists the status of the features that control an isql session.

Syntax SET;

Description isql provides several SET commands for specifying how data is displayed or how other
commands are processed.

The SET command, by itself, verifies which features are currently set. Some SET
commands turn a feature on or off. Other SET commands assign values.

Many isql SET commands have corresponding SQL statements that provide similar or
identical functionality. In addition, some of the isql features controlled by SET commands
can also be controlled using isql command-line options. SET Statements are used to
configure the isql environment from a script file. Changes to the session setting from SET
statements in a script affect the session only while the script is running. After a script
completes, the session settings prior to running the script are restored.

The isql SET statements are:

Statement Description Default

SET AUTODDL Toggles the commit feature for DDL statements ON

SET BLOBDISPLAY n Turns on the display of Blob type n; the
parameter n is required to display Blob types

OFF

SET COUNT Toggles the count of selected rows on or off OFF

SET ECHO Toggles the display of each command on or off OFF

SET LIST string Displays columns vertically or horizontally OFF

SET NAMES Specifies the active character set OFF

SET PLAN Specifies whether or not to display the
optimizer’s query plan

OFF

SET STATS Toggles the display of performance statistics on
or off

OFF

SET TERM string Allows you to change to an alternate terminator
character

;

SET TIME Toggles display of time in DATE values ON

TABLE 9.7 SET statements

ISQL COMMAND REFERENCE

OPERATIONS GUIDE 211

By default, all settings are initially OFF except AUTODDL and TIME, and the terminator is a
semicolon (;). Each time you start an isql session or execute an isql script file, settings
begin with their default values.

SET statements are used to configure the isql environment from a script file. Changes to
the session setting from SET statements in a script affect the session only while the script
is running. After a script completes, the session settings prior to running the script are
restored to their values before the script was run. So you can modify the settings for
interactive use, then change them as needed in an isql script, and after running the script
they automatically return to their previous configuration.

Notes

g You cannot enter isql SET statements interactively in the SQL Statement area of IBConsole
ISQL. You can perform the same functions with menu items.

g SET GENERATOR and SET TRANSACTION (without a transaction name) are DSQL statements
and so you can enter them interactively in IBConsole ISQL or isql. These statements are
not exclusively isql statements, so they are not documented in this chapter. See the
Language Reference for details.

g SET DATABASE is exclusively an embedded SQL statement. See the Language Reference
and the Embedded SQL Guide for details.

Example To display the isql features currently in effect, enter:

SET;

Print statistics:OFF

Echo commands: OFF

List format: OFF

Row count: OFF

Autocommit DDL: OFF

Access plan: OFF

Display BLOB type:1

Terminator: ;

Time: OFF

The output shows that isql is set to not echo commands, to display Blob data if they are
of subtype 1 (text), to automatically commit DDL statements, and to recognize a
semicolon (;) as the statement termination character.

See Also SET AUTODDL, SET BLOBDISPLAY, SET COUNT, SET ECHO, SET LIST,
SET NAMES, SET PLAN, SET STATS, SET TERM, SET TIME

CHAPTER 9 INTERACTIVE QUERY

212 INTERBASE 6

SET AUTODDL
Specifies whether DDL statements are committed automatically after being executed or
committed only after an explicit COMMIT.

Syntax SET AUTODDL [ON | OFF];

Description SET AUTODDL is used to turn on or off the automatic commitment of data definition
language (DDL) statements. By default, DDL statements are automatically committed
immediately after they are executed, in a separate transaction. This is the recommended
behavior.

If the OFF keyword is specified, auto-commit of DDL is then turned off. In OFF mode, DDL
statements can only be committed explicitly through a user’s transaction. This mode is
useful for database prototyping, because uncommitted changes are easily undone by
rolling them back.

SET AUTODDL has a shorthand equivalent, SET AUTO.

Tip The ON and OFF keywords are optional. If they are omitted, SET AUTO switches from one
mode to the other. Although you can save typing by omitting the optional keyword,
including the keyword is recommended because it avoids potential confusion.

Examples The following example shows part of an isql script that turns off AUTODDL, creates a table
named TEMP, then rolls back the work.

. . .

SET AUTO OFF;

CREATE TABLE TEMP (a INT, b INT);

ROLLBACK;

. . .

This script creates TEMP and then rolls back the statement. No table is created. because
its creation was rolled back.

Argument Description

ON Turns on automatic commitment of DDL [default]

OFF Turns off automatic commitment of DDL

ISQL COMMAND REFERENCE

OPERATIONS GUIDE 213

The next script uses the default AUTODDL ON. It creates the table TEMP and then performs
a rollback:

. . .

CREATE TABLE TEMP (a INT, b INT);

ROLLBACK;

. . .

Because DDL is automatically committed, the rollback does not affect the creation of
TEMP.

See Also EXIT, QUIT

SET BLOBDISPLAY
Specifies subtype of Blob data to display.

Syntax SET BLOBDISPLAY [n | ALL | OFF];

Description SET BLOBDISPLAY has the following uses:

g To display Blob data of a particular subtype, use SET BLOBDISPLAY n. By default, isql
displays Blob data of text subtype (n = 1).

g To display Blob data of all subtypes, use SET BLOBDISPLAY ALL.

g To avoid displaying Blob data, use SET BLOBDISPLAY OFF. Omitting the OFF keyword has
the same effect. Turn Blob display off to make output easier to read.

In any column containing Blob data, the actual data does not appear in the column.
Instead, the column displays a Blob ID that represents the data. If SET BLOBDISPLAY is on,
data associated with a Blob ID appears under the row containing the Blob ID. If SET
BLOBDISPLAY is off, the Blob ID still appears even though its associated data does not.

SET BLOBDISPLAY has a shorthand equivalent, SET BLOB.

Argument Description

n Integer specifying the Blob subtype to display

• Use 0 for Blob data of an unknown subtype
• Use 1 for Blob data of a text subtype [default]
• Use other integer values for other subtypes

ALL Displays Blob data of all subtypes

OFF Turns off display of Blob data of all subtypes

CHAPTER 9 INTERACTIVE QUERY

214 INTERBASE 6

To determine the subtype of a BLOB column, use SHOW TABLE.

Examples The following examples show output from the same SELECT statement. Each example
uses a different SET BLOB command to affect how output appears. The first example
turns off Blob display.

SET BLOB OFF;

SELECT PROJ_NAME, PROJ_DESC FROM PROJECT;

With BLOBDISPLAY OFF, the output shows only the Blob ID:

PROJ_NAME PROJ_DESC

==================== =================

Video Database 24:6

DigiPizza 24:8

AutoMap 24:a

MapBrowser port 24:c

Translator upgrade 24:3b

Marketing project 3 24:3d

The next example restores the default by setting BLOBDISPLAY to subtype 1 (text).

SET BLOB 1;

SELECT PROJ_NAME, PROJ_DESC FROM PROJECT;

Now the contents of the Blob appear below each Blob ID:

PROJ_NAME PROJ_DESC

=====================================

Video Database 24:6

==

PROJ_DESC:

Design a video data base management system for

controlling on-demand video distribution.

PROJ_NAME PROJ_DESC

=====================================

DigiPizza 24:8

==

PROJ_DESC:

Develop second generation digital pizza maker

with flash-bake heating element and

digital ingredient measuring system.

. . .

See Also BLOBDUMP

ISQL COMMAND REFERENCE

OPERATIONS GUIDE 215

SET COUNT
Specifies whether to display number of rows retrieved by queries.

Syntax SET COUNT [ON | OFF];

Description By default, when a SELECT statement retrieves rows from a query, no message appears to
say how many rows were retrieved.

Use SET COUNT ON to change the default behavior and display the message. To restore the
default behavior, use SET COUNT OFF.

Tip The ON and OFF keywords are optional. If they are omitted, SET COUNT switches from
one mode to the other. Although you can save typing by omitting the optional keyword,
including the keyword is recommended because it avoids potential confusion.

Example The following example sets COUNT ON to display the number of rows returned by all
following queries:

SET COUNT ON;

SELECT * FROM COUNTRY

WHERE CURRENCY LIKE ’%FRANC%’;

The output displayed would then be:

COUNTRY CURRENCY

=============== ==========

SWITZERLAND SFRANC

FRANCE FFRANC

BELGIUM BFRANC

3 rows returned

Argument Description

ON Turns on display of the “rows returned” message

OFF Turns off display of the “rows returned” message [default]

CHAPTER 9 INTERACTIVE QUERY

216 INTERBASE 6

SET ECHO
Specifies whether commands are displayed to the isql Output area before being executed.

Syntax SET ECHO [ON | OFF];

Description By default, commands in script files are displayed (echoed) in the isql Output area,
before being executed. Use SET ECHO OFF to change the default behavior and suppress
echoing of commands. This can be useful when sending the output of a script to a file,
if you want only the results of the script and not the statements themselves in the output
file.

Command echoing is useful if you want to see the commands as well as the results in the
isql Output area.

Tip The ON and OFF keywords are optional. If they are omitted, SET ECHO switches from one
mode to the other. Although you can save typing by omitting the optional keyword,
including the keyword is recommended because it avoids potential confusion.

Example Suppose you execute the following script from IBConsole ISQL:

. . .

SET ECHO OFF;

SELECT * FROM COUNTRY;

SET ECHO ON;

SELECT * FROM COUNTRY;

EXIT;

Argument Description

ON Turns on command echoing [default]

OFF Turns off command echoing

ISQL COMMAND REFERENCE

OPERATIONS GUIDE 217

The output (in a file or the isql Output area) looks like this:

. . .

SET ECHO OFF;

COUNTRY CURRENCY

=========== ========

USA Dollar

England Pound

. . .

SELECT * FROM COUNTRY;

COUNTRY CURRENCY

=========== ========

USA Dollar

England Pound

. . .

The first SELECT statement is not displayed, because ECHO is OFF. Notice also that the SET
ECHO ON statement itself is not displayed, because when it is executed, ECHO is still OFF.
After it is executed, however, the second SELECT statement is displayed.

See Also INPUT, OUTPUT

SET LIST
Specifies whether output appears in tabular format or in list format.

Syntax SET LIST [ON | OFF];

Description By default, when a SELECT statement retrieves rows from a query, the output appears in
a tabular format, with data organized in rows and columns.

Use SET LIST ON to change the default behavior and display output in a list format. In list
format, data appears one value per line, with column headings appearing as labels. List
format is useful when columnar output is too wide to fit nicely on the screen.

Tip The ON and OFF keywords are optional. If they are omitted, SET LIST switches from one
mode to the other. Although you can save typing by omitting the optional keyword,
including the keyword is recommended because it avoids potential confusion.

Argument Description

ON Turns on list format for display of output

OFF Turns off list format for display of output [default]

CHAPTER 9 INTERACTIVE QUERY

218 INTERBASE 6

Example Suppose you execute the following statement in a script file:

SELECT JOB_CODE, JOB_GRADE, JOB_COUNTRY, JOB_TITLE FROM JOB

WHERE JOB_COUNTRY = ’Italy’;

The output is:

JOB_CODE JOB_GRADE JOB_COUNTRY JOB_TITLE

======== ========= =========== ====================

SRep 4 Italy Sales Representative

Now suppose you precede the SELECT with SET LIST ON:

SET LIST ON;

SELECT JOB_CODE, JOB_GRADE, JOB_COUNTRY, JOB_TITLE FROM JOB

WHERE JOB_COUNTRY = ’Italy’;

The output is:

JOB_CODE SRep

JOB_GRADE 4

JOB_COUNTRY Italy

JOB_TITLE Sales Representative

SET NAMES
Specifies the active character set to use in database transactions.

Syntax SET NAMES [charset];

Description SET NAMES specifies the character set to use for subsequent database connections in isql.
It enables you to override the default character set for a database. To return to using the
default character set, use SET NAMES with no argument.

Use SET NAMES before connecting to the database whose character set you want to specify.
For a complete list of character sets recognized by InterBase, see the Language Reference.

Choice of character set limits possible collation orders to a subset of all available collation
orders. Given a specific character set, a specific collation order can be specified when
data is selected, inserted, or updated in a column.

Argument Description

charset Name of the active character set; default is NONE

ISQL COMMAND REFERENCE

OPERATIONS GUIDE 219

Example The following statement at the beginning of a script file indicates to set the active
character set to ISO8859_1 for the subsequent database connection:

SET NAMES ISO8859_1;

CONNECT ’jupiter:/usr/interbase/examples/employee.gdb’;

. . .

SET PLAN
Specifies whether to display the optimizer’s query plan.

Syntax SET PLAN [ON | OFF];

Description By default, when a SELECT statement retrieves rows from a query, isql does not display
the query plan used to retrieve the data.

Use SET PLAN ON to change the default behavior and display the query optimizer plan. To
restore the default behavior, use SET PLAN OFF.

To change the query optimizer plan, use the PLAN clause in the SELECT statement.

Tip The ON and OFF keywords are optional. If they are omitted, SET PLAN switches from one
mode to the other. Although you can save typing by omitting the optional keyword,
including the keyword is recommended because it avoids potential confusion.

Example The following example shows part of a script that sets PLAN ON:

SET PLAN ON;

SELECT JOB_COUNTRY, MIN_SALARY FROM JOB

WHERE MIN_SALARY > 50000

AND JOB_COUNTRY = ’France’;

The output then includes the query optimizer plan used to retrieve the data as well as the
results of the query:

PLAN (JOB INDEX (RDB$FOREIGN3,MINSALX,MAXSALX))

JOB_COUNTRY MIN_SALARY

=============== ======================

France 118200.00

Argument Description

ON Turns on display of the optimizer’s query plan

OFF Turns off display of the optimizer’s query plan [default]

CHAPTER 9 INTERACTIVE QUERY

220 INTERBASE 6

SET STATS
Specifies whether to display performance statistics after the results of a query.

Syntax SET STATS [ON | OFF];

Description By default, when a SELECT statement retrieves rows from a query, isql does not display
performance statistics after the results. Use SET STATS ON to change the default behavior
and display performance statistics. To restore the default behavior, use SET STATS OFF.
Performance statistics include:

g Current memory available, in bytes

g Change in available memory, in bytes

g Maximum memory available, in bytes

g Elapsed time for the operation

g CPU time for the operation

g Number of cache buffers used

g Number of reads requested

g Number of writes requested

g Number of fetches made

Performance statistics can help determine if changes are needed in system resources,
database resources, or query optimization.

Tip The ON and OFF keywords are optional. If they are omitted, SET STATS switches from one
mode to the other. Although you can save typing by omitting the optional keyword,
including the keyword is recommended because it avoids potential confusion.

Do not confuse SET STATS with the SQL statement SET STATISTICS, which recalculates the
selectivity of an index.

Argument Description

ON Turns on display of performance statistics

OFF Turns off display of performance statistics [default]

ISQL COMMAND REFERENCE

OPERATIONS GUIDE 221

Example The following part of a script file turns on display of statistics and then performs a
query:

SET STATS ON;

SELECT JOB_COUNTRY, MIN_SALARY FROM JOB

WHERE MIN_SALARY > 50000

AND JOB_COUNTRY = ’France’;

The output displays the results of the SELECT statement and the performance statistics for
the operation:

JOB_COUNTRY MIN_SALARY

=============== ======================

France 118200.00

Current memory = 407552

Delta memory = 0

Max memory = 412672

Elapsed time= 0.49 sec

Cpu = 0.06 sec

Buffers = 75

Reads = 3

Writes = 2

Fetches = 441

See Also SHOW DATABASE

SET TERM
Specifies which character or characters signal the end of a command.

Syntax SET TERM string;

Description By default, when a line ends with a semicolon, isql interprets it as the end of a
command. Use SET TERM to change the default behavior and define a new termination
character.

Argument Description

string Specifies a character or characters to use in terminating a statement; default
is semicolon (;)

CHAPTER 9 INTERACTIVE QUERY

222 INTERBASE 6

SET TERM is typically used with CREATE PROCEDURE or CREATE TRIGGER. Procedures and
triggers are defined using a special “procedure and trigger language” in which statements
end with a semicolon. If isql were to interpret semicolons as statement terminators, then
procedures and triggers would execute during their creation, rather than when they are
called.

A script file containing CREATE PROCEDURE or CREATE TRIGGER definitions should include
one SET TERM command before the definitions and a corresponding SET TERM after the
definitions. The beginning SET TERM defines a new termination character; the ending SET
TERM restores the semicolon (;) as the default.

Note You do not need to change the terminator before entering an interactive CREATE
PROCEDURE or CREATE TRIGGER statement in the IBConsole ISQL SQL statement area. The
contents of the SQL statement area is always treated as one DSQL statement, even if it
contains semicolons. Use of SET TERM is necessary only in command-line isql and when
running SQL script files from command-line isql or IBConsole ISQL.

Example The following example shows a text file that uses SET TERM in creating a procedure. The
first SET TERM defines “##” as the termination characters. The matching SET TERM
restores “;” as the termination character.

SET TERM ## ;

CREATE PROCEDURE ADD_EMP_PROJ (EMP_NO SMALLINT, PROJ_ID CHAR(5))

AS

BEGIN

BEGIN

INSERT INTO EMPLOYEE_PROJECT (EMP_NO, PROJ_ID)

VALUES (:emp_no, :proj_id);

WHEN SQLCODE -530 DO

EXCEPTION UNKNOWN_EMP_ID;

END

RETURN;

END ##

SET TERM ; ##

ISQL COMMAND REFERENCE

OPERATIONS GUIDE 223

SET TIME
Specifies whether to display the time portion of a DATE value.

Syntax SET TIME [ON | OFF];

Description The InterBase Date datatype includes a date portion (including day, month, and year)
and a time portion (including hours, minutes, and seconds).

By default, isql displays only the date portion of Date values. SET TIME ON turns on the
display of time values. SET TIME OFF turns off the display of time values.

Tip The ON and OFF keywords are optional. If they are omitted, the command toggles time
display from ON to OFF or OFF to ON.

Example The following example shows the default display of a DATE datatype, which is to display
day, month, and year:

SELECT HIRE_DATE FROM EMPLOYEE WHERE EMP_NO = 145;

HIRE_DATE

2-MAY-1994

This example shows the effects of SET TIME ON, which causes the hours, minutes and
seconds to be displayed as well:

SET TIME ON;

SELECT HIRE_DATE FROM EMPLOYEE WHERE EMP_NO = 145;

HIRE_DATE

2-MAY-1994 12:25:00

Argument Description

ON Turns on display of time in DATE value

OFF Turns off display of time in DATE value [default]

CHAPTER 9 INTERACTIVE QUERY

224 INTERBASE 6

SHELL
Allows execution of an operating system command or temporary access to an operating
system shell.

Syntax SHELL [<os_command>];

Description The SHELL command provides temporary access to operating system commands in an
isql session. Use SHELL to execute an operating-system command without ending the
current isql session.

If os_command is specified, the operating system executes the command and then
returns to isql when complete.

If no command is specified, an operating system shell prompt appears, enabling you to
execute a sequence of commands. To return to isql, type exit. For example, SHELL can
be used to edit an input file and run it at a later time. By contrast, if an input file is edited
using the EDIT command, the input file is executed as soon as the editing session ends.

Using SHELL does not commit transactions before it calls the shell.

This isql statement has no equivalent function in IBConsole ISQL.

Example The following example uses SHELL to display the contents of the current directory:

SHELL DIR;

See Also EDIT

Argument Description

os_command An operating system command; if no command is specified, isql provides
interactive access to the operating system

ISQL COMMAND REFERENCE

OPERATIONS GUIDE 225

SHOW CHECK
Displays all CHECK constraints defined for a specified table.

Syntax SHOW CHECK table;

Description SHOW CHECK displays CHECK constraints for a named table in the current database. Only
user-defined metadata is displayed. To see a list of existing tables, use SHOW TABLE.

Example The following example shows CHECK constraints defined for the JOB table. The SHOW
TABLES command is used first to display a list of available tables.

SHOW TABLES;

COUNTRY CUSTOMER

DEPARTMENT EMPLOYEE

EMPLOYEE_PROJECT JOB

PHONE_LIST PROJECT

PROJ_DEPT_BUDGET SALARY_HISTORY

SALES

SHOW CHECK JOB;

CHECK (min_salary < max_salary)

See Also SHOW TABLES

SHOW DATABASE
Displays information about the current database.

Syntax SHOW [DATABASE | DB];

Description SHOW DATABASE displays the current database’s file name, page size and allocation, and
sweep interval.

The output of SHOW DATABASE is used to verify data definition or to administer the
database. For example, use the backup and restore utilities to change page size or
reallocate pages among multiple files, and use the database maintenance utility to change
the sweep interval.

SHOW DATABASE has a shorthand equivalent, SHOW DB.

Argument Description

table Name of an existing table in the current database

CHAPTER 9 INTERACTIVE QUERY

226 INTERBASE 6

Example The following example connects to a database and displays information about it:

CONNECT ’employee.gdb’;

Database: employee.gdb

SHOW DB;

Database: employee.gdb

Owner: SYSDBA

PAGE_SIZE 1024

Number of DB pages allocated = 422

Sweep interval = 20000

SHOW DOMAINS
Lists all domains or displays information about a specified domain.

Syntax SHOW {DOMAINS | DOMAIN name};

Options To see a list of existing domains, use SHOW DOMAINS without specifying a domain name.
SHOW DOMAIN name displays information about the named domain in the current
database. Output includes a domain’s datatype, default value, and any CHECK constraints
defined. Only user-defined metadata is displayed.

Example The following example lists all domains and then shows the definition of the domain,
SALARY:

SHOW DOMAINS;

FIRSTNAME LASTNAME

PHONENUMBER COUNTRYNAME

ADDRESSLINE EMPNO

DEPTNO PROJNO

CUSTNO JOBCODE

JOBGRADE SALARY

BUDGET PRODTYPE

PONUMBER

Argument Description

name Name of an existing domain in the current database

ISQL COMMAND REFERENCE

OPERATIONS GUIDE 227

SHOW DOMAIN SALARY;

SALARY NUMERIC(15, 2) Nullable

DEFAULT 0

CHECK (VALUE > 0)

SHOW EXCEPTIONS
Lists all exceptions or displays the text of a specified exception.

Syntax SHOW {EXCEPTIONS | EXCEPTION name};

Description SHOW EXCEPTIONS displays an alphabetical list of exceptions. SHOW EXCEPTION name
displays the text of the named exception.

Examples To list all exceptions defined for the current database, enter:

SHOW EXCEPTIONS;

Exception Name Used by, Type

================== ==

UNKNOWN_EMP_ID ADD_EMP_PROJ, Stored procedure

Invalid employee number or project ID.

. . .

To list the message for a specific exception and the procedures or triggers that use it, enter
the exception name:

SHOW EXCEPTION CUSTOMER_CHECK;

Exception Name Used by, Type

=========================== =======================================

CUSTOMER_CHECK SHIP_ORDER, Stored procedure

 Overdue balance -- can’t ship.

Argument Description

name Name of an existing exception in the current database

CHAPTER 9 INTERACTIVE QUERY

228 INTERBASE 6

SHOW FILTERS
Lists all Blob filters or displays information about a specified filter.

Syntax SHOW {FILTERS | FILTER name};

Options To see a list of existing filters, use SHOW FILTERS. SHOW FILTER name displays information
about the named filter in the current database. Output includes information previously
defined by the DECLARE FILTER statement, the input subtype, output subtype, module (or
library) name, and entry point name.

Example The following example lists all filters and then shows the definition of the filter,
DESC_FILTER:

SHOW FILTERS;

DESC_FILTER

SHOW FILTER DESC_FILTER;

BLOB Filter: DESC_FILTER

Input subtype: 1 Output subtype -4

Filter library is: desc_filter

Entry point is: FILTERLIB

Argument Description

name Name of an existing Blob filter in the current database

ISQL COMMAND REFERENCE

OPERATIONS GUIDE 229

SHOW FUNCTIONS
Lists all user-defined functions (UDFs) defined in the database or displays information
about a specified UDF.

Syntax SHOW {FUNCTIONS | FUNCTION name};

Options To see a list of existing functions defined in the database, use SHOW FUNCTIONS. SHOW
FUNCTION name displays information about the named function in the current database.
Output includes information previously defined by the DECLARE EXTERNAL FUNCTION
statement: the name of the function and function library, the name of the entry point,
and the datatypes of return values and input arguments.

Example The following example lists all UDFs and then shows the definition of the MAXNUM()
function:

SHOW FUNCTIONS;

ABS MAXNUM

TIME UPPER_NON_C

UPPER

SHOW FUNCTION maxnum;

Function MAXNUM:

Function library is /usr/interbase/lib/gdsfunc.so

Entry point is FN_MAX

Returns BY VALUE DOUBLE PRECISION

Argument 1: DOUBLE PRECISION

Argument 2: DOUBLE PRECISION

Argument Description

name Name of an existing UDF in the current database

CHAPTER 9 INTERACTIVE QUERY

230 INTERBASE 6

SHOW GENERATORS
Lists all generators or displays information about a specified generator.

Syntax SHOW {GENERATORS | GENERATOR name};

Description To see a list of existing generators, use SHOW GENERATORS. SHOW GENERATOR name
displays information about the named generator in the current database. Output
includes the name of the generator and its next value.

SHOW GENERATOR has a shorthand equivalent, SHOW GEN.

Example The following example lists all generators and then shows information about
EMP_NO_GEN:

SHOW GENERATORS;

Generator EMP_NO_GEN, Next value: 146

Generator CUST_NO_GEN, Next value: 1016

SHOW GENERATOR EMP_NO_GEN;

Generator EMP_NO_GEN, Next value: 146

SHOW GRANT
Displays privileges for a database object.

Syntax SHOW GRANT object;

Description SHOW GRANT displays the privileges defined for a specified table, view, or procedure.
Allowed privileges are DELETE, EXECUTE, INSERT, SELECT, UPDATE, or ALL. To change
privileges, use the SQL statements GRANT or REVOKE.

Before using SHOW GRANT, you might want to list the available database objects. Use
SHOW PROCEDURES to list existing procedures; use SHOW TABLES to list existing tables; use
SHOW VIEWS to list existing views.

Argument Description

name Name of an existing generator in the current database

Argument Description

object Name of an existing table, view, or procedure in the current database

ISQL COMMAND REFERENCE

OPERATIONS GUIDE 231

Example To display GRANT privileges on the JOB table, enter:

SHOW GRANT JOB;

GRANT SELECT ON JOB TO ALL

GRANT DELETE, INSERT, SELECT, UPDATE ON JOB TO MANAGER

SHOW GRANT can also show role membership:

SHOW GRANT DOITALL;

GRANT DOITALL TO SOCKS

See Also SHOW PROCEDURES, SHOW TABLES, SHOW VIEWS

SHOW INDEX
Displays index information for a specified index, for a specified table, or for all tables in
the current database.

Syntax SHOW {INDICES | INDEX {index | table} };

Description SHOW INDEX displays the index name, the index type (for example, UNIQUE or DESC), and
the columns on which an index is defined.

If the index argument is specified, SHOW INDEX displays information only for that index.
If table is specified, SHOW INDEX displays information for all indexes in the named table;
to display existing tables, use SHOW TABLES. If no argument is specified, SHOW INDEX
displays information for all indexes in the current database.

SHOW INDEX has a shorthand equivalent, SHOW IND. SHOW INDICES is also a synonym for
SHOW INDEX. SHOW INDEXES is not supported.

Examples To display indexes for database employee.gdb, enter:

SHOW INDEX;

RDB$PRIMARY1 UNIQUE INDEX ON COUNTRY(COUNTRY)

CUSTNAMEX INDEX ON CUSTOMER(CUSTOMER)

CUSTREGION INDEX ON CUSTOMER(COUNTRY, CITY)

RDB$FOREIGN23 INDEX ON CUSTOMER(COUNTRY)

. . .

Argument Description

index Name of an existing index in the current database

table Name of an existing table in the current database

CHAPTER 9 INTERACTIVE QUERY

232 INTERBASE 6

To display index information for the SALES table, enter:

SHOW IND SALES;

NEEDX INDEX ON SALES(DATE_NEEDED)

QTYX DESCENDING INDEX ON SALES(ITEM_TYPE, QTY_ORDERED)

RDB$FOREIGN25 INDEX ON SALES(CUST_NO)

RDB$FOREIGN26 INDEX ON SALES(SALES_REP)

RDB$PRIMARY24 UNIQUE INDEX ON SALES(PO_NUMBER)

SALESTATX INDEX ON SALES(ORDER_STATUS, PAID)

See Also SHOW TABLES

SHOW PROCEDURES
Lists all procedures or displays the text of a specified procedure.

Syntax SHOW {PROCEDURES | PROCEDURE name};

Description SHOW PROCEDURES displays an alphabetical list of procedures, along with the database
objects they depend on. Deleting a database object that has a dependent procedure is
not allowed. To avoid an isql error, delete the procedure (using DROP PROCEDURE) before
deleting the database object.

SHOW PROCEDURE name displays the text and parameters of the named procedure.

SHOW PROCEDURE has a shorthand equivalent, SHOW PROC.

Argument Description

name Name of an existing procedure in the current database

ISQL COMMAND REFERENCE

OPERATIONS GUIDE 233

Examples To list all procedures defined for the current database, enter:

SHOW PROCEDURES;

Procedure Name Dependency Type

================= ==================== =======

ADD_EMP_PROJ EMPLOYEE_PROJECTTable

 UNKNOWN_EMP_IDException

DELETE_EMPLOYEE DEPARTMENTTable

EMPLOYEETable

EMPLOYEE_PROJECTTable

PROJECTTable

REASSIGN_SALESException

SALARY_HISTORYTable

SALES Table

DEPT_BUDGET DEPARTMENTTable

DEPT_BUDGETProcedure

. . .

To display the text of the procedure, ADD_EMP_PROJ, enter:

SHOW PROC ADD_EMP_PROJ;

Procedure text:

===

BEGIN

BEGIN

INSERT INTO EMPLOYEE_PROJECT (EMP_NO, PROJ_ID) VALUES (:emp_no,

:proj_id);

WHEN SQLCODE -530 DO

EXCEPTION UNKNOWN_EMP_ID;

END

RETURN;

END

===

Parameters:

EMP_NO INPUT SMALLINT

PROJ_ID INPUT CHAR(5)

CHAPTER 9 INTERACTIVE QUERY

234 INTERBASE 6

SHOW ROLES
Displays the names of SQL roles for the current database.

Syntax SHOW {ROLES | ROLE}

Description SHOW ROLES displays the names of all roles defined for the current database. To show
user membership in roles, use SHOW GRANT rolename.

Example SHOW ROLES;

DOITALL DONOTHING

DOONETHING DOSOMETHING

See Also SHOW GRANT

SHOW SYSTEM
Displays the names of system tables and system views for the current database.

Syntax SHOW SYSTEM [TABLES];

Description SHOW SYSTEM lists system tables and system views in the current database. SHOW SYSTEM
accepts an optional keyword, TABLES, which does not affect the behavior of the
command.

SHOW SYSTEM has a shorthand equivalent, SHOW SYS.

Example To list system tables and system views for the current database, enter:

SHOW SYS;

RDB$CHARACTER_SETS RDB$CHECK_CONSTRAINTS

RDB$COLLATIONS RDB$DATABASE

RDB$DEPENDENCIES RDB$EXCEPTIONS

RDB$FIELDS RDB$FIELD_DIMENSIONS

RDB$FILES RDB$FILTERS

RDB$FORMATS RDB$FUNCTIONS

RDB$FUNCTION_ARGUMENTS RDB$GENERATORS

RDB$INDEX_SEGMENTS RDB$INDICES

RDB$LOG_FILES RDB$PAGES

RDB$PROCEDURES RDB$PROCEDURE_PARAMETERS

RDB$REF_CONSTRAINTS RDB$RELATIONS

RDB$RELATION_CONSTRAINTS RDB$RELATION_FIELDS

RDB$ROLES RDB$SECURITY_CLASSES

RDB$TRANSACTIONS RDB$TRIGGERS

ISQL COMMAND REFERENCE

OPERATIONS GUIDE 235

RDB$TRIGGER_MESSAGES RDB$TYPES

RDB$USER_PRIVILEGES RDB$VIEW_RELATIONS

See Also For more information about system tables, see the Language Reference.

SHOW TABLES
Lists all tables or views, or displays information about a specified table or view.

Syntax SHOW {TABLES | TABLE name};

Description SHOW TABLES displays an alphabetical list of tables and views in the current database. To
determine which listed objects are views rather than tables, use SHOW VIEWS.

SHOW TABLE name displays information about the named object. If the object is a table,
command output lists column names and definitions, PRIMARY KEY, FOREIGN KEY, and
CHECK constraints, and triggers. If the object is a view, command output lists column
names and definitions, as well as the SELECT statement that the view is based on.

Examples To list all tables or views defined for the current database, enter:

SHOW TABLES;

COUNTRY CUSTOMER

DEPARTMENT EMPLOYEE

EMPLOYEE_PROJECT JOB

PHONE_LIST PROJECT

PROJ_DEPT_BUDGET SALARY_HISTORY

SALES

To show the definition for the COUNTRY table, enter:

SHOW TABLE COUNTRY;

COUNTRY (COUNTRYNAME) VARCHAR(15) NOT NULL

CURRENCY VARCHAR(10) NOT NULL

PRIMARY KEY (COUNTRY)

See Also SHOW VIEWS

Argument Description

name Name of an existing table or view in the current database

CHAPTER 9 INTERACTIVE QUERY

236 INTERBASE 6

SHOW TRIGGERS
Lists all triggers or displays information about a specified trigger.

Syntax SHOW {TRIGGERS | TRIGGER name};

Description SHOW TRIGGERS displays all triggers defined in the database, along with the table they
depend on. SHOW TRIGGER name displays the name, sequence, type, activation status,
and definition of the named trigger.

SHOW TRIGGER has a shorthand equivalent, SHOW TRIG.

Deleting a table that has a dependent trigger is not allowed. To avoid an isql error, delete
the trigger (using DROP TRIGGER) before deleting the table.

Examples To list all triggers defined for the current database, enter:

SHOW TRIGGERS;

Table name Trigger name

=========== ============

EMPLOYEE SET_EMP_NO

EMPLOYEE SAVE_SALARY_CHANGE

CUSTOMER SET_CUST_NO

SALES POST_NEW_ORDER

To display information about the SET_CUST_NO trigger, enter:

SHOW TRIG SET_CUST_NO;

Triggers:

SET_CUST_NO, Sequence: 0, Type: BEFORE INSERT, Active

AS

BEGIN

new.cust_no = gen_id(cust_no_gen, 1);

END

Argument Description

name Name of an existing trigger in the current database

ISQL COMMAND REFERENCE

OPERATIONS GUIDE 237

SHOW VERSION
Displays information about software versions.

Syntax SHOW VERSION;

Description SHOW VERSION displays the software version of isql, the InterBase engine, and the on-disk
structure (ODS) of the database to which the session is attached.

Certain tasks might not work as expected if performed on databases that were created
using older versions of InterBase. To check the versions of software that are running, use
SHOW VERSION.

SHOW VERSION has a shorthand equivalent, SHOW VER.

Example To display software versions, enter:

SHOW VER;

ISQL Version: WI-V5.5.5

InterBase/Windows NT (access method), version ’WI-V5.5.5’

on disk structure version 9.1

See Also SHOW DATABASE

SHOW VIEWS
Lists all views or displays information about a specified view.

Syntax SHOW {VIEWS | VIEW name};

Description SHOW VIEWS displays an alphabetical list of all views in the current database. SHOW VIEW
name displays information about the named view.

Example To list all views defined for the current database, enter:

SHOW VIEWS;

PHONE_LIST

See Also SHOW TABLES

Argument Description

name Name of an existing view in the current database

CHAPTER 9 INTERACTIVE QUERY

238 INTERBASE 6

Using SQL scripts
The basic steps for using script files are:

1. Create the script file using a text editor.

2. Run the file with isql or IBConsole.

3. View output and confirm database changes.

Creating an isql script
You can use any text editor to create an SQL script file, as long as the final file format is
plain text (ASCII).

Every SQL script file must begin with either a CREATE DATABASE statement or a CONNECT
statement (including username and password) that specifies the database on which the
script file is to operate. The CONNECT or CREATE statement must contain a complete
database file name and directory path.

An SQL script can contain any of the following elements:

g SQL statements, as described in the Language Reference

g isql SET commands as described in this chapter

g Comments.

Each SQL statement in a script must be terminated by a semicolon (;) or the current
terminator if it has been changed with SET TERM.

Note The SQL statement silently fails if significant text follows the terminator character
on the same line. Whitespace and comments can safely follow the terminator, but other
statements cannot.

Each SQL script file should end with either EXIT to commit database changes made since
the last COMMIT, or QUIT to roll back changes made by the script. If neither is specified,
then database changes are committed by default.

For the full syntax of CONNECT and CREATE DATABASE, see the Language Reference.

USING SQL SCRIPTS

OPERATIONS GUIDE 239

Running an SQL script
The following steps execute all the SQL statements in the specified script file. The
contents of the script are not displayed in the SQL Input Area.

To run a script file containing SQL statements using IBConsole:

1. If you are not already in the SQL window, click the Launch SQL toolbar
button or choose Tools | Interactive SQL.

2. If you are not running the SQL script on the database to which you are
currently connected, then check that the file begins with a valid,
uncommented, CONNECT or CREATE DATABASE statement.

3. Choose Query | Load Script.

4. Enter or locate the desired script filename in the Open dialog, and click Open
to load the script into the SQL input area.

5. Click the Execute toolbar button, or choose Query | Execute.

If IBConsole encounters an error, an information dialog appears indicating the error.
Once IBConsole finishes executing the script, the script results are displayed in the SQL
output window.

After a script executes, all ISQL session settings prior to executing the script are restored
as well as the previous database connection, if any. In other words, any isql SET commands
in the script affect only the isql session while the script is running.

Committing work in an SQL script
Changes to the database from data definition (DDL) statements—for example, CREATE
and ALTER statements—are automatically committed by default. This means that other
users of the database see changes as soon as each DDL statement is executed. To turn off
automatic commit of DDL in a script, use SET AUTODDL OFF, or set it in the Query Options
dialog. See “ISQL preferences” on page 46 for more information.

Note When creating tables and other database objects with AUTODDL OFF, it is good
practice to put a COMMIT statement in the SQL script after each CREATE statement or group
of related statements. This ensures that other users of the database see the objects
immediately.

Changes made to the database by data manipulation (DML) statements—for example
INSERT and UPDATE—are not permanent until they are committed. Commit changes in a
script with COMMIT. To undo all database changes since the last COMMIT, use ROLLBACK.
For the full syntax of COMMIT and ROLLBACK, see the Language Reference book.

CHAPTER 9 INTERACTIVE QUERY

240 INTERBASE 6

Adding comments in an isql script
isql scripts are commented exactly like C programs:

/* comment */

A comment can occur on the same line as an SQL statement or isql command and can be
of any length, as long as it is preceded by “/*” and followed by “*/”.

OPERATIONS GUIDE 241

CHAPTER

10
Chapter 10Database and Server

Performance

This chapter describes techniques for designing and operating an InterBase client/server
system for best speed and efficiency.

The guidelines in this chapter are organized into the following categories:

g Hardware configuration

g Operating system configuration

g Network configuration

g Database properties

g Database design principles

g Database tuning tasks

g Application design techniques

g Application development tools

CHAPTER 10 DATABASE AND SERVER PERFORMANCE

242 INTERBASE 6

Introduction
One of the most important requirements for a database as part of your application is to
store and retrieve data as quickly as possible. Like any software development technique,
there is always more than one method to implement a given specified software solution,
and it takes knowledge and experience to choose the design that results in the most
efficient operation and the highest performance.

Each project offers unique challenges and requires specific solutions. The suggestions in
this chapter augment your own software engineering discipline, which should include
careful analysis, testing, and experimentation to implement the best design for your
specific project.

Hardware configuration
This section gives guidelines for platform hardware sizing. The suggestions focus on
requirements for a server platform.

Choosing a processor speed
The performance of database systems tends by nature to be bound by I/O bandwidth or
network bandwidth. An application often waits for I/O or network operations, instead of
being computationally intensive. A fast CPU clock speed gives definite performance
advantage, but a 10% increase in CPU clock speed is less important for server
performance than some other hardware factors, such as RAM configuration, I/O system,
or network hardware.

CPU clock speed is often more important on client platforms, because applications that
use data might perform CPU-intensive computational analysis on data, or might render
sophisticated visualization of data in a computationally costly manner.

It’s not appropriate for this document to recommend a specific CPU clock speed for your
server, because it is likely that such a recommendation would be obsolete as you read it.
You should evaluate the benefit of spending more money on a faster CPU, because the
price/performance curve becomes steep for the latest CPU hardware.

HARDWARE CONFIGURATION

OPERATIONS GUIDE 243

Using multiprocessor servers
With current InterBase Superserver implementation, you are likely to gain only a modest
performance improvement by using multiprocessor hardware. The InterBase Superserver
engine is certified to work on symmetric multiprocessor (SMP) hardware, but doesn’t
currently implement parallel execution features.

The reason that the multithreaded Superserver does not take full advantage of SMP
configurations is that the InterBase lock manager is a single-threaded section of code.
Database requests tend to serialize in order to acquire locks. This usually isn’t a severe
bottleneck, because lock management is a high-throughput operation, compared to
physical I/O.

The InterBase Classic implementation, which executes an individual process on the
server for each client connection, benefits more than Superserver from SMP. However,
Classic does not benefit from performance and scalability features that Superserver
provides when the number of simultaneous users grows: the shared data cache and fast
interthread concurrency management.

SMP systems do benefit the InterBase server in that additional CPUs can take the load of
other processing for the server, such as network services, desktop management, and
other application processes. The amount of performance improvement in this case
depends on the demands of other processes relative to the InterBase server process.
Expect between a 5 and 20 percent performance improvement on a multipurpose server
by using multiple processors instead of a single processor.

On a dedicated server, SMP actually tends to decrease performance of InterBase on
Windows NT. See “Understanding Windows NT pitfalls” on page 251.

Sizing memory
It is important to equip your server with a sufficient amount of physical memory to
ensure good performance.

While InterBase can function in a low-profile hardware configuration, with as little as
32MB of RAM on most operating systems, it is recommended to have at least 64MB of
RAM on a server system. Database servers that experience a high load can benefit from
more RAM.

The base RAM requirement of the ibserver executable and for each connected user is low:
approximately 1500KB, plus 28KB for each client connection. ibserver caches metadata
and data for each database to which it connects. User operations such as sorting
temporarily consume additional memory. A heavily loaded server with dozens of clients
performing concurrent queries requires up to 256MB of RAM.

CHAPTER 10 DATABASE AND SERVER PERFORMANCE

244 INTERBASE 6

On Windows NT, you can use the Task Manager, Performance Monitor, and other tools
to monitor the resource use of ibserver. UNIX and Linux servers have similar resource
consumption reporting tools. Add RAM to a system that shows too many page faults.

Using high-performance I/O subsystems
A multiuser database server’s hard drives are no place to be thrifty, especially in today’s
market of inexpensive storage. Configuring a relatively high-end I/O system is a
cost-effective way to increase performance.

Slow disk subsystems are often the weak link in an otherwise high-performance server
machine. The top-rated CPU and maximum memory helps. But if a cheap disk I/O
interface limits the data transfer rate, then the money spent on the expensive components
is wasted.

It’s not appropriate for this document to recommend a particular configuration. The
technology changes so quickly that any recommendation here would be outdated. When
you specify the machine for a server platform, research the best hardware solution
available.

Read the following guidelines for principles:

g Advanced SCSI technology offers superior I/O throughput. The following graph
illustrates the relative maximum throughput of different disk interfaces.

FIGURE 10.1 Comparing external transfer rate of disk I/O interfaces

Ultra3 SCSI 160MB/sec

Ultra2 SCSI 80MB/sec

Ultra Wide SCSI 40MB/sec

Ultra ATA (DMA-33) 33MB/sec

Fast Wide/Ultra SCSI 20MB/sec

Fast/Wide SCSI-2 10MB/sec

SCSI-2 5MB/sec

IDE 2.5MB/sec

ATA PIO mode 2 8.3MB/sec

ATA PIO mode 3 (EIDE) 11.1MB/sec

ATA PIO mode 4 (EIDE) 16.6MB/sec

HARDWARE CONFIGURATION

OPERATIONS GUIDE 245

g The external interface capacity usually exceeds the internal or sustained transfer rate of
any individual device. Only systems that use multiple disk devices make full use of a
high-capacity I/O interface.

g Bus-mastering I/O controllers use less CPU resources. This is particularly important on
I/O-intensive server machines. SCSI is generally bus-mastering, and newer PCI EIDE
interfaces are bus-mastering. IDE is not.

g Use a disk controller with built in cache memory. The controller cache reduces the need
for the operating system to use system RAM for disk cache.

g Don’t assume all disks of a given size perform equally; research performance ratings
made by independent testing labs.

Distributing I/O
Disk device I/O is orders of magnitude slower than physical memory accesses or CPU
cycles. There is a delay while the disk device seeks the data requested. While an
application is waiting for data it has requested from a disk device, it is advantageous for
the application to spend the time executing other tasks. One appropriate way to do this
is to spread multiple data requests over multiple devices. While one disk is preparing to
return data, the application requests another disk to start seeking another set of data. This
is called distributed I/O or parallel I/O.

This section describes ways you can persuade InterBase to distribute I/O over multiple
disk devices.

4 Using RAID
You can achieve up to a ten times performance improvement by using RAID.

RAID (redundant array of inexpensive disks) is a hardware design that is intended to give
benefits to performance and reliability by storing data on multiple physical disk devices.
It is transparent for software applications to use RAID, because it is implemented in the
operating system or at the hardware level. InterBase uses operating system I/O interfaces,
so InterBase supports RAID as would any other application software.

Disk striping (included in RAID levels 0, 3, or 5) provides performance benefits by
distributing I/O across multiple disks.

Hardware RAID is faster than software RAID or software disk mirroring. RAID
implemented with software provides only protection from hard disk failure; it is actually
slower than operating without RAID.

CHAPTER 10 DATABASE AND SERVER PERFORMANCE

246 INTERBASE 6

4 Using multiple disks for database files
Similarly to RAID, you can distribute files of a multifile InterBase database among
multiple physical disk drives.

For example, if you have a server with four physical disks, C:, D:, E:, and F:, and a 10GB
database, you can create your database to take advantage of parallel I/O with the
following database creation statement:

CREATE DATABASE ’C:\data\bigdata1.gdb’ PAGE_SIZE 4096

FILE ’D:\data\bigdata2.gdb’ STARTING AT PAGE 1000000

FILE ’E:\data\bigdata3.gdb’ STARTING AT PAGE 2000000

FILE ’F:\data\bigdata4.gdb’ STARTING AT PAGE 3000000;

4 Using multiple disk controllers
If you have so much disk activity on multiple disks that you saturate the I/O bus, you
should equip the server with multiple disk controllers, and connect the multiple drivers
to the controllers as evenly as possible.

For example, if you have sixteen disk devices hosting database files, you might benefit
from using four disk controllers, and attaching four disks to each controller.

4 Making drives specialized
A database server makes heavy use of both the operating system’s virtual memory page
file and of temporary disk space. If possible, equip the server with multiple disks and
configure the virtual memory file, temporary directory, and database files on separate
physical disk devices. This can use parallel I/O to the fullest advantage.

For example, on Windows NT you could locate the operating system files and pagefile.sys
on C:, the temporary directory and infrequently-used files on D:, and database files on
drives E: and higher.

Change the location of the virtual memory file with Control Panel | System | Performance |
Virtual Memory.

Change the location of the InterBase temporary directory by either specifying a system
environment variable INTERBASE_TMP, or editing the ibconfig file and specifying the path
of the appropriate directory as a value for the TMP_DIRECTORY entry.

Using high-bandwidth network systems
For client/server systems, hardware that supports high network bandwidth is as
important as I/O capacity. The speed of the network often becomes a bottleneck for
performance when many users are making demands on the network simultaneously.

HARDWARE CONFIGURATION

OPERATIONS GUIDE 247

Inexpensive 10 Base-T ethernet equipment is common today, but this technology is bare
minimum for LAN configuration. It is recommended to use at least 100 Base-T for a
high-performance network. The following graph illustrates relative bandwidth rates for
various network interface technology.

FIGURE 10.2 Comparing bandwidth of network interfaces

The maximum bandwidth of gigabit ethernet extends beyond the scale of the graph
above.

At the time of this writing, most gigabit ethernet network interface cards (NICs) provide
only 600 to 700Mbps bandwidth. Switches, routers, and repeaters also have constrained
capacity. It is expected that the state of this technology will continue to improve.

It is recommended that you research reviews and experiment to learn the true throughput
of all network hardware in your environment. The slowest component ultimately
determines the true throughput.

Tip Network cables develop flaws surprisingly frequently. The result can be sporadic lost
packets, for which operating systems compensate by automatically resending packets.
This translates into mysterious network performance degradation. You should test
network cables regularly. Replacing flawed cables is a low-cost way to keep your
network running at peak efficiency.

Gigabit ethernet 1000Mbps

Fast ethernet 100Mbps

T-3 (DS3) 43Mbps

DSL 32Mbps (downstream) / 1Mbps (upstream)

Ethernet 10 Base-T 10Mbps

PPP over analog phones 53Kbps

ISDN 128Kbps

T-1 1.544Mbps

CHAPTER 10 DATABASE AND SERVER PERFORMANCE

248 INTERBASE 6

Using high-performance bus
Bus is important for both I/O controllers and network interface hardware.

FIGURE 10.3 Comparing throughput of bus technologies

While 32-bit full-duplex PCI bus is capable of up to 264Mbps, PCI cards actually range
from 40Mbps to 130Mbps.

Tip Use controllers on an integrated local PCI bus, it’s faster than peripheral cards that plug
into the motherboard.

Useful links
g The T10 Committee home page:
http://www.symbios.com/t10/
This is a useful place to find information on various storage interface technology.

g PC Guide Hard disk interface & configuration:
http://www.pcguide.com/ref/hdd/if/index.htm

g The SCSI Trade Association:
http://www.scsita.org
News and vendor information about the state of SCSI technology and products.

g The Gigabit Ethernet home page:
http://www.gigabit-ethernet.org/

g The Fibre Channel home page.
http://www.fibrechannel.com/
Fibre Channel (FC-AL) is an emerging extended bus technology for network, storage,
video transmission, and clustering.

PCI 264 Mbps

Microchannel 150+ Mbps

EISA 60+ Mbps

ISA 10Mbps

OPERATING SYSTEM CONFIGURATION

OPERATIONS GUIDE 249

Operating system configuration
After you have equipped your server hardware appropriately, you should spend time
tuning your operating system for server performance.

Disabling screen savers
Screen savers can have a serious impact on the performance of a server. Because servers
are often set aside in a machine room, it’s easy for the performance impact of a screen
saver to be overlooked. Screen savers demand a surprising amount of CPU resources to
run, and these programs run continuously, 24 hours a day.

Screen savers are evasive in their ability to disappear when a database administrator logs
in to the console to diagnose a mysterious drop in performance. The server seems
responsive to the DBA as soon as she touches the server, but the speed degrades soon
after she leaves the server.

Not all screen savers have the same performance cost. The Windows NT OpenGL screen
savers perform continuous floating-point computations to draw three-dimensional
shaded shapes in real time. They demand up to 90% of the system CPU, and cause
InterBase and other services to slow to one-tenth their normal speed.

The Windows Marquee screen saver is one of the least demanding ones, especially when
it is configured to pass text across the screen slowly. Some system administrators like to
configure a Marquee on each screen in the machine room, to display the respective
machine’s hostname. This becomes a machine-name label, in raster form.

A screen saver can also be entertainment, but these should be reserved for workstations.
A server in a machine room should be unattended, not used as a workstation.

If you must have phosphor burn protection for a monitor that you leave on, get an Energy
Star approved monitor that has a power conservation mode. This mode blackens the
screen after a configurable period of idleness. This not only protects against phosphor
burn, but it conserves power. This is like a simple black screen saver, but it is handled by
the electronics of the monitor, instead of by software.

The best option is to simply turn off the monitor when you aren’t using it. This saves the
phosphors, saves electricity, and decreases the amount of heat in the machine room.

CHAPTER 10 DATABASE AND SERVER PERFORMANCE

250 INTERBASE 6

Console logins
Don’t leave the console logged in on a Windows NT database server. Even if the desktop
is idle, it could be using as much as 30% of the machine’s CPU resources just maintaining
the interface. You should log out of the server’s console when you aren’t using it.
IBConsole enables you to perform most InterBase maintenance and monitoring tasks
from another workstation, without logging in at the server’s console.

Sizing a temporary directory
When you configure a temporary directory (see “Temporary file management” on
page 59), choose a location that has plenty of free disk space. For some operations such
as building an index, InterBase can use a great deal of space for sorting. InterBase can
even use an amount of space up to twice the size of your database.

The effects of insufficient temporary space include rapid virtual memory page faults,
called thrashing, which causes a dramatic performance penalty. Another possible effect
is a series of “I/O error” related messages printed to the interbase.log file on the server.

Use a dedicated server
Using a server for both workgroup file and print services and as a database server is like
letting another user play a video game on your workstation. It detracts from the
performance of the workstation, and it’s not the intended use for the machine.

Use a secondary server as the file and print server, and a new machine for the database
server. Alternately, use the secondary server for InterBase, depending on the relative
priority of these tasks—the database server benefits from having a dedicated machine,
even if it is not the fastest model available. Whatever is the most important service should
be given the best machine as dedicated hardware.

If performance is a high priority, you can spend money more effectively by buying a
dedicated machine instead of trying to increase resources such as RAM on a machine that
is providing another competing service. Compare the cost of the hardware with the cost
of having less than maximum performance.

Similarly, it is best to put a database on a dedicated drive, so that the database I/O doesn’t
compete with the operating system virtual memory paging file or other operating system
I/O. See “Making drives specialized” on page 246.

OPERATING SYSTEM CONFIGURATION

OPERATIONS GUIDE 251

Optimizing Windows NT for network applications
It is recommended to set the Windows NT server to optimize for network applications.
Without this setting, you might see the CPU usage of InterBase peak for a few seconds
every minute. With this setting, these peaks should vanish.

On Windows NT Server, the server is configured by default to give priority to filesharing
services. You can change this configuration on the server:

· Windows NT 4.0: Control Panel | Network | Services | Server. In the Optimization panel, choose
Optimize Throughput For Network Applications.

· Windows NT 3.51: Control Panel | Network | Installed Network Software | Configure. Choose
Balance or Database Server.

This change can result in a dramatic improvement of performance for InterBase, as well
as other services.

Understanding Windows NT pitfalls
Windows NT has a peculiar way of balancing processes on SMP machines. If a process is
exercising one CPU and the other CPU is relatively idle, Windows NT tries to switch the
context of the process to the less burdened CPU. On a dedicated database server, the
ibserver process is likely to be the only significant user of CPU resources. Unfortunately,
Windows NT still tries to reassign the context of the process to the other CPU in this case.
Once Windows NT has moved the ibserver process to the idle CPU, the first CPU becomes
less burdened. Windows NT detects this and tries to move ibserver back to the first CPU.
The second CPU becomes less burdened. This continues many times per minute, and the
overhead of switching the process context between the CPUs degrades performance.

There are several possible solutions:

· Run ibserver on an SMP server that has enough other duties to occupy the other CPU

· Run ibserver only on a single-CPU machine

· Assign CPU affinity to the ibserver process:

1. Launch the Task Manager

2. Highlight the ibserver process

3. Right-click to raise a window that includes CPU affinity settings

This technique works only if you run ibserver as an application, not as a service. If you
run InterBase as a service, you must use the Windows API to programmatically set the
CPU affinity of the ibserver process.

CHAPTER 10 DATABASE AND SERVER PERFORMANCE

252 INTERBASE 6

g On some operating systems, using a ram disk is a technique for forcing very heavily used
files to be in memory, but still allow them to be opened and closed like any other file. If
you consider using a ram disk on Windows NT, be aware that the Microsoft ram disk
utility for Windows NT uses paged memory to allocate the ram disk. The ram disk itself
can be paged out of RAM and stored on the physical disk in pagefile.sys. It is futile to use
a ram disk on Windows NT to create a high-performance filesystem.

Understanding Linux pitfalls
g By default, Linux network performance is about 1/3 that of Windows NT when using a

Windows client to access a Linux server host. This is due to a TCP/IP kernel driver
implementation on Linux called the Nagle algorithm. You can disable this feature on
Linux by rebuilding the Linux kernel with the No Nagle option.

You can also turn off the Nagle algorithm just for the InterBase server. Follow the steps
below:

1. Write the C code below into a file called set_tcp_nodelay.c.

#include <stdio.h>

#include <unistd.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <netinet/tcp.h>

void main(int argc, char *argv[])

{

int value = 1;

setsockopt(0, IPPROTO_TCP, TCP_NODELAY, (char *)&value, sizeof(int));

setsockopt(1, IPPROTO_TCP, TCP_NODELAY, (char *)&value, sizeof(int));

setsockopt(2, IPPROTO_TCP, TCP_NODELAY, (char *)&value, sizeof(int));

execl(argv[1], NULL);

}

2. Compile this program:

gcc -o set_tcp_nodelay set_tcp_nodelay.c

3. Move the program to an appropriate location:

mv set_tcp_nodelay /usr/local/bin

OPERATING SYSTEM CONFIGURATION

OPERATIONS GUIDE 253

4. Edit your /etc/inetd.conf and change the gds_db entry. Find the arguments that
by default read:

/usr/interbase/bin/gds_inet_server gds_inet_server

5. Change these arguments to:

/usr/local/bin/set_tcp_nodelay gds_inet_server

/usr/interbase/bin/gds_inet_server

6. Force inetd to reconfigure itself based on the new inetd.conf entry:

kill -HUP inet_pid

Warning: Disabling the Nagle algorithm introduces conflicts with a bug in the
Windows 95 TCP/IP networking driver. Client applications on Windows 95 sometimes
crash when connecting to InterBase on a Linux host that has its Nagle algorithm disabled.
This bug doesn’t affect Windows 98, Windows NT, or other operating systems.

Understanding NetWare pitfalls
g NetWare 4.x and 3.x has no technology for supporting virtual memory. All server memory

resources rely on physical RAM. The InterBase database server runs as a NetWare
Loadable Module (NLM) on the server, and is bound by the server memory configuration.
You must equip the NetWare server with enough RAM to operate, under the assumption
that there is no virtual memory page file.

InterBase generally requires moderate amounts of memory under most conditions. It
should be adequate to equip a NetWare server with 64MB of RAM. Memory requirements
can increase under several conditions:

· Database metadata increases in complexity, especially with large numbers of triggers or
stored procedures

· The number of simultaneous users increases

· User applications submit complex queries to the server

If InterBase is slow or does not function under these conditions, add RAM to the server
until the problem abates.

g You can use Novell NetWare as a file and print server in addition to an InterBase database
server, but the InterBase server module is given a lower priority than the file/print service.
File/print services always have the highest priority, over all other NLMs. The result is that
as users read and write files on NetWare volumes belonging to the InterBase server
machine, the performance of InterBase (and that of all other NLMs on that server) suffers.

CHAPTER 10 DATABASE AND SERVER PERFORMANCE

254 INTERBASE 6

The solution is to give InterBase a dedicated server that does not function as a file server.
If you cannot dedicate a separate NetWare server for InterBase, expect the performance
of NLM services such as InterBase to degrade at times of peak demand on the file and
print services.

Network configuration
This section describes performance considerations you should know when configuring a
network configuration.

Choosing a network protocol
InterBase supports three protocols: NetBEUI when connecting to a Windows NT server,
IPX/SPX when connecting to a Novell NetWare server, and TCP/IP when connecting to
any server. See “Network protocols” on page 65 for more details.

4 NetBEUI and IPX/SPX
You can use NetBEUI on a network with fewer than 20 users, and IPX/SPX on a network
with fewer than 400 users, without significant performance costs. Use TCP/IP if you have
more active users on your network simultaneously.

NetBEUI and IPX/SPX are network protocols designed for use on small local area
networks. These protocols are commonly used for filesharing services. They are
connectionless protocols, which means they broadcast packets to the entire network. This
causes a growing amount of “noise” on a LAN. Noise, from the point of view of any given
host, can be defined as network traffic that is not intended for the given host. On a LAN
with many hosts, enabling NetBEUI or IPX/SPX can overwhelm the network and reduce
the available bandwidth for everyone to use. On most enterprise networks, IT experts
discourages use of NetBEUI and IPX/SPX.

4 TCP/IP
TCP/IP is a connection-based protocol, which means packets are routed to the intended
recipient. This reduces the saturation of the network and the load on individual hosts.
There is effectively more bandwidth available to all hosts, and a large number of hosts
can share the same network with less performance penalty.

NETWORK CONFIGURATION

OPERATIONS GUIDE 255

Configuring hostname lookups
Each host on a TCP/IP network has a designated IP address, and TCP/IP traffic is routed
to hosts by address. TCP/IP requires a mechanism for clients to translate hostnames to
their numeric addresses. Each client host can store the hostname/address associations in
a file called hosts. You can alternately store this information on a central server, and the
clients then retrieve the information on demand using a protocol called DNS. The client
requests that the DNS server resolve a hostname, and the server returns the IP address.
Then the client can use the IP address to communicate directly with the intended
destination. In this configuration, the client must keep only one IP address locally: that
of the DNS server host.

Depending on the load on the network and the DNS server itself, hostname resolution
can take several seconds. This translates directly into delays when making a network
connection. This is related to the message you might see in a web browser, “Looking up
host name…” followed by, “Connecting to host name…” This indicates the delay while
querying a DNS server to resolve a hostname.

You can speed up hostname resolution. Instead of relying on DNS, add the
hostname/address mapping of the database server to the hosts file on the client computer.
The client can resolve the hostname to its address much faster and more reliably by
looking it up in a local file than by querying a service running on another host over the
network. This reduces the hostname resolution delay when initiating connections to hosts
listed in the local hosts file.

Note If you use this technique and later change the address of your database server, you
must manually update the hosts files on each client workstation. Depending on the
number of workstations in your enterprise, this can be tedious and time consuming.
That’s why DNS was invented, to centralize TCP/IP address administration. The
suggestion to keep the database server address in a local file is intended to provide
improved connection performance, but you should be aware of the administrative
workload that it requires.

Tip If you object to the general IP address administration tasks required by using TCP/IP
(independently from the DNS issue), consider using DHCP to simplify the task of
assigning and tracking IP addresses of each host on the network. InterBase works in a
DHCP environment as long as the client host has some means to resolve the server’s IP
address correctly at the time a client application requests an InterBase connection.

CHAPTER 10 DATABASE AND SERVER PERFORMANCE

256 INTERBASE 6

Database properties
Changing database properties can give an improvement in performance without
changing anything in the design of your database. Applications require no change in their
coding or design. Property changes are transparent to the client and database design.

Choosing a database page size
InterBase pages are 1KB by default. A typical production InterBase database gains 25 to
30 percent performance benefit from using a page size of 4KB. This larger page size
results in better performance for the following reasons:

g Fewer record fragments are split across pages

It is common for records to be larger than the default 1KB page size. This means that
InterBase fragments records and stores them on multiple pages. Querying a given
record requires multiple page reads from the database.

By increasing the size of a page, InterBase can reduce the number of multiple page
reads and can store record fragments more contiguously.

g Index B-trees are more shallow

Indexes are B-trees of pointers to data pages containing instances of specific indexed
values. If the index B-tree is larger than one page, InterBase allocates additional
database pages for the index tree. If the index pages are larger, InterBase needs fewer
additional pages to store the pointers. It is easier for the database cache to store the
entire B-tree in memory, and indexed lookups are much faster.

g I/O is more contiguous

It is fairly likely for a query to request successive records in a table. For example, this
is done during a table scan, or query that returns or aggregates all records in a table.
InterBase stores records on the first page that is unused, rather than ensuring that they
are stored near each other in the file. Doing a table scan can potentially require
retrieval of data by seeking all over the database. Seeks take time just as reading data
takes time.

Any given page can store records from only one table. This indicates that a larger page
is certain to contain more data from the same table, and therefore reading that page
returns more relevant data.

g Default number of cache buffers is a larger amount of memory

InterBase allocates the database cache in number of pages, rather than a fixed
number of bytes. Therefore defining a larger page size increases the cache size. A
larger cache is more likely to have a better hit rate than a smaller cache.

DATABASE PROPERTIES

OPERATIONS GUIDE 257

g Most operating systems perform low-level I/O in 4096 byte blocks

InterBase performs a page read or write at the OS level by reading in 4096 byte
increments regardless of the size of the database page. Therefore, by defining the
database with a page size of 4096, the database I/O matches the low-level I/O and this
results in greater efficiency when reading and writing pages.

Although 4KB seems to be the best page size for most databases, the optimal size depends
on the structure of the specific metadata and the way in which applications access the
data. For this reason, you should not consider the 4KB page size guideline to be a magic
value. Instead, you should perform testing with your application and database under
several different page sizes to analyze which configuration gives the best performance.

Setting the database page fill ratio
Data pages store multiple versions of data records, as applications update data. When a
database is restored, the gbak utility fills pages with data only up to 80% of the capacity
of each page, to leave space for new record version deltas to be stored, hopefully on the
same page with the original record. But in a database that is used mostly for reading data
rather than updating it, applications never benefit from this 80% fill ratio. In this case, it
makes sense to restore data using the full capacity of each page. By storing 25% more
data on each page, it reduces the amount of record fragmentation and increases the
amount of data returned in each page read. You can specify the option to use all the space
of every page for storing data during a database restore using the command:

gbak -c -use_all_space backup_file.gbk database_file.gdb

Sizing database cache buffers
InterBase maintains a cache in the server’s RAM of database pages currently in use. If you
have a highly active database, you can gain some additional benefit by raising the default
cache up from its default of 256 database pages to as many as 10,000 database pages. As
with any cache system, at some point you find diminishing returns. Some
experimentation reveals that point.

See “Configuring the Superserver cache” on page 129 for details about server cache
settings.

The ibserver process running on an InterBase server maintains a cache in memory of
recently used data and index pages. Like any cache, it depends on repeated use of data
on a given page to help speed up subsequent access. In InterBase Superserver
implementations, the cache is shared by all clients connected to the database.

CHAPTER 10 DATABASE AND SERVER PERFORMANCE

258 INTERBASE 6

By default, InterBase allocates enough memory for 256 database pages. If the page size
of the current database is 1 kilobyte, then 256K of memory is used. If the page size is
4KB, then ibserver uses 1MB of RAM for cache. The InterBase API provides a method for
any individual client to request that the size of the cache be higher. In InterBase 5 and
later, you can set a property on an individual database that establishes a different default
cache size when any client connects to that database:

gfix -buffers 5000 database.gdb

The default of 256 is a lean configuration for smaller-memory systems that need
InterBase to refrain from excessive memory use. Using more memory for cache is
beneficial to performance. It is highly recommended to raise the cache size property for
a database if you have enough memory to accommodate it. Consider the following points:

g It is not useful to raise the cache size so high that the memory used by ibserver starts to
page into virtual memory. That defeats the benefit of caching data from disk in memory.

g It is not useful to raise the cache size higher than the number of pages in the database
(which you can view with View Database Statistics in IBConsole, or with the gstat
command-line program). There’s no benefit to this, since any given page from disk
occupies only one page in the cache, and isn’t duplicated.

g One block of memory is allocated for cache per database. If a client connects to two
separate databases on one server, the ibserver process maintains two separate cache areas
of memory. For example, if database1.gdb has a default cache size of 2000 pages of 4KB
each, and database2.gdb has a default cache size of 10,000 pages of 4KB each, then while
both databases have at least one connection, ibserver allocates a total of 8MB + 40MB of
RAM.

You should experiment with larger cache sizes and analyze the performance
improvements. At some point, you will observe diminishing returns. A typical application
should achieve up to 30% performance increase from proper cache sizing.

Buffering database writes
InterBase on Windows platforms implements a write-through cache by default. Every
write operation to a page in cache is immediately written out to the operating system’s
disk I/O, which itself might have a cache.

By contrast, a write-back cache defers flushing of the contents of a given cache page until
a later time. InterBase performs multiple writes to a cache page in RAM before it writes
the page out to disk. This results in better response time for the majority of write
operations. Write-back cache consolidates I/O efficiently, and therefore it is much faster
than write-through cache.

DATABASE DESIGN PRINCIPLES

OPERATIONS GUIDE 259

InterBase offers write-back cache as the default on UNIX and Linux, and as an option on
Windows and NetWare platforms. You can configure this at the database level using
gfix -write async or by disabling forced writes for the database in IBConsole (Database
Properties | General tab | Options).

The real benefit of using asynchronous writes (write-back cache) is about four times
performance in the typical case. Some users have reported up to 20 times performance
improvement from configuring asynchronous writes, in applications that make heavy use
of write operations (INSERT, UPDATE, DELETE). The more writing an application does to the
database—including write operations spawned by triggers—the more benefit the
application gains.

The risk of asynchronous writes is that data in cache might be lost if the server has a
power loss, or if ibserver exits abnormally for any reason. Write-through cache protects
against data loss, at some performance cost. If you test your server host and client/server
application thoroughly and they aren’t susceptible to crashes, then it is highly
recommended to use asynchronous writes.

Tip Use an uninterruptible power supply (UPS) to help protect your server against sudden
power loss. A modest UPS is inexpensive relative to the cost of losing your data, and
easy to install. This can allow you to gain the benefits of the asynchronous I/O mode in
safety.

Database design principles
This section presents guidelines for database design techniques that benefit performance.

Defining indexes
Proper use of indexes is an important factor in database performance. Effective policies
for defining and maintaining indexes can be the key to a very high performance
client/server system. The self-tuning nature of indexes in InterBase greatly benefits
performance, but you can gain some additional benefit by periodic maintenance tasks.

4 What is an index?
An index in InterBase is a Balanced-Tree data structure stored inside the database file that
provides a quick lookup mechanism for the location of specific values in a table. Queries
make use of appropriate indexes automatically by means of the cost-based optimizer,
which analyzes the tables and columns used in a given query and chooses indexes that
speed up the searching, sorting, or joining operations.

CHAPTER 10 DATABASE AND SERVER PERFORMANCE

260 INTERBASE 6

Defining indexes for some columns is part of designing a production database. Indexes
dramatically improve performance of SELECT queries. The greater the number of rows in
the table, the greater the benefit of using an index. Intelligently analyzing your database
and defining indexes appropriately always improves performance.

Indexes incur a small cost to maintain the index B-tree data structure during INSERT and
UPDATE operations. Because of this cost, it is not recommended to be overly liberal with
index definitions. Don’t create redundant indexes, and don’t make an index on every
column as a substitute for database usage analysis.

You shouldn’t define an index for columns that have few distinct data values. For
example, a column FISCAL_QUARTER might have only four distinct values over a
potentially very large data set. An index doesn’t provide much benefit for retrieval of data
with this kind of distribution of values, and the work required to maintain the index tree
might outweigh the benefits.

4 What queries use an index?
InterBase uses indexes to speed up data fetching for the following types of query
elements:

g Primary and foreign keys

g Join keys

g Sort keys, including DISTINCT and GROUP BY

g Search criteria (WHERE)

In general, you should define indexes on all columns that you use in JOIN criteria or as
sorting keys in an ORDER BY clause. You don’t have to define indexes on primary or
foreign key columns, because these table constraints implicitly create indexes.

4 What queries don’t use indexes?
InterBase doesn’t employ an index in the following operations, even if an index exists for
the specified columns:

g Search criteria for CONTAINING, LIKE, and <> inequality operations

g Columns used in aggregate functions, like COUNT()

g Other expressions, like UPPER()

4 Directional indexes
Indexes are defined as either ASCENDING or DESCENDING. To sort in both directions, you
need one index of each type. This is also very important if you are using a scrolling list
in a Delphi form, or when using the TTable.Last method.

DATABASE TUNING TASKS

OPERATIONS GUIDE 261

Normalizing databases
Design your database with proper normalization of data. Records that have lots of
repeating groups of fields are larger than they need to be. Large records can increase the
cost of sorting, and also cause records to span more pages than is necessary, resulting in
more page fragmentation and needlessly large databases.

Denormalized table design can be more convenient for some types of client applications.
You can use InterBase views and stored procedures to in effect store a denormalized
query on the server, for convenient access from client applications. Meanwhile, the
physical storage of the data is kept in a more efficient, normalized form.

See the Data Definition Guide for details on views and stored procedures.

Choosing Blob segment size
A Blob is a datatype with an unbounded size. It can be many megabytes in size, much
larger than any database interface can handle in a single I/O transfer. Therefore, Blobs
are defined as a series of segments of uniform size, and the I/O interface transfers Blobs
one segment at a time. By default, InterBase Blobs have a segment size of 80 bytes.

It is advantageous to define a Blob with a segment size equal to the page size. If both the
page size and the Blob segment size are 4096 bytes, queries of large Blobs can achieve a
data transfer rate of up to 20MB per second. InterBase ceases to be any kind of bottleneck
in this situation; it is more likely that the hardware I/O bus, the network bandwidth, or
the middleware are the limiting factors for throughput.

Database tuning tasks
This section describes ways you can perform periodic maintenance on your database to
keep it running with the best performance.

Tuning indexes
Periodic maintenance of indexes can improve their performance benefit. You can write
SQL scripts to automate these tasks. See “Using SQL scripts” on page 238.

CHAPTER 10 DATABASE AND SERVER PERFORMANCE

262 INTERBASE 6

4 Rebuilding indexes
Periodically, a B-tree data structure might become imbalanced, or it might have some
values in the tree that have been deleted from the database (this should not happen in
InterBase versions later than 5, due to index garbage collection).

You should periodically rebuild indexes by turning them off and on:

ALTER INDEX name INACTIVE;
ALTER INDEX name ACTIVE;

4 Recalculating index selectivity
The selectivity of an index is an indicator of its uniqueness. The optimizer uses selectivity
in its cost-based analysis algorithm when deciding whether to use a given index in a
query execution plan. If the selectivity is out of date and doesn’t accurately represent the
state of the index, the optimizer might use or discount the index inappropriately. This
doesn’t usually have a great performance penalty unless the selectivity is highly out of
date.

You should recalculate the index selectivity if a change to the table affects the average
distribution of data values:

SET STATISTICS INDEX name;

Performing regular backups
There are several performance-related benefits to doing periodic backup and restore of
an InterBase database. See “Benefits of backup and restore” on page 145.

4 Increasing backup performance
g Disable garbage collection if you’re just going to replace the database immediately

anyway; this can make the backup execute faster.

g Back up to a different disk drive.

4 Increasing restore performance
g Restore from a different disk drive.

g Disable indexes on restore; this makes the restore execute faster so you have a usable
database quickly. You must then have to manually activate the indexes after the restore
is complete.

APPLICATION DESIGN TECHNIQUES

OPERATIONS GUIDE 263

Tip Create a SQL script with all the ALTER INDEX statements necessary to activate your
indexes, and keep that handy. Use it like a batch file with isql -i script.sql to help automate
this procedure. You can create this script with this query:

SELECT ’ALTER INDEX ’ || RDB$INDEX_NAME || ’ ACTIVE;’

FROM RDB$INDICES

WHERE RDB$SYSTEM_FLAG = 0 OR RDB$SYSTEM_FLAG IS NULL;

You can get the database up and restored more quickly, then activate indexes afterwards.
The data is accessible even if the indexes are inactive, but it’s slower to query the tables.

Facilitating garbage collection
By default, InterBase databases have a built-in function to automatically sweep old record
versions when they become too numerous. However, sweeping is partially inhibited by
outstanding active transactions. If the server cannot do complete garbage collection, it
has to do extra work to maintain each client’s snapshot of the database.

Design your client applications to explicitly start and COMMIT transactions promptly, to
reduce the number of outstanding transactions.

See “Overview of sweeping” on page 126 for more details on sweeping, garbage
collection, and the database snapshot.

Application design techniques
This section describes general application programming methods for InterBase, that help
to create high-performance clients.

Using transaction isolation modes
InterBase’s multigenerational architecture requires that any query or other operation be
associated with an active transaction. Without a transaction, an operation has no context
with which to maintain its snapshot of the database. IBConsole and BDE tools do a
certain amount of automatic transaction management, but it is helpful for performance
to manually start and finish transactions.

CHAPTER 10 DATABASE AND SERVER PERFORMANCE

264 INTERBASE 6

In the InterBase server engine, a snapshot is generated by making a copy of the state of
all other transactions in the database. This snapshot is static for the current transaction.
This means that any data committed to the database after the snapshot is created is not
visible to operations using that snapshot. This is the repeatable read transaction mode.
Two identical queries made at different times are guaranteed to get the same result set,
even if other clients are updating data in the database.

Starting a transaction and making a snapshot data structure for the new transaction
incurs some amount of overhead. This overhead is magnified when using automatic
transaction-handling, because the typical automatic transaction behavior is to start a new
transaction and commit it for every statement executed against the database!

Another mode the default mode for BDE is called read committed. In this mode, the
snapshot is updated every time the state of any transaction changes. This allows
operations in the current transaction to view or act on data that has been committed since
the snapshot was created. Updating the snapshot also costs a little bit in performance, so
it is recommended to always use the repeatable read mode in InterBase. To do this,
configure BDE driver flags to the value 512 or 4608.

Using correlated subqueries
Subqueries are SELECT statements which are included as a clause or expression within
another statement. They are typically used to generate a value or result set that are used
in conditions of the superior query.

A correlated subquery is one in which the conditions of the subquery are different for
each row in the parent query, because they depend on values that vary from row to row.
InterBase executes the subquery many times, once for each row in the parent query.
Evaluating each row has a large cost in performance relative to a non-correlated
subquery. InterBase optimizes non-correlated subqueries out of the loop, executes once,
and uses the result as a fixed dataset.

Example as correlated subquery:

SELECT * FROM DEPARTMENT D

WHERE EXISTS (SELECT * FROM EMPLOYEE E

WHERE E.EMP_NO = D.MNGR_NO AND E.JOB_COUNTRY = ’England’)

Example as join:

SELECT D.*

FROM DEPARTMENT D JOIN EMPLOYEE E

ON D.MNGR_NO = E.EMP_NO WHERE E.JOB_COUNTRY = ’England’

APPLICATION DESIGN TECHNIQUES

OPERATIONS GUIDE 265

InterBase’s optimizer executes a non-correlated subquery once, and uses the result set as
many times as necessary in the parent query.

Sometimes a correlated subquery is necessary, given the semantics of the SQL language.
However, these types of queries should be used with care and with the understanding that
their performance is geometric in relation to the size of the dataset on which they
operate.

Preparing parameterized queries
Any dynamic SQL (DSQL) statement must go through a cycle of parse, prepare, and
execute. You can submit a DSQL statement to go through this process for each invocation,
or you can separate the steps. If you have a situation where you execute the same
statement multiple times, or the same form of statement with different parameters, you
should explicitly prepare the statement once, then execute it as your looping action.

With parameterized queries, you can prepare a statement, but defer supplying the
specific values for certain elements of the query.

InterBase supports parameterized queries in DSQL, for cases when a given statement is
to be executed multiple times with different values. For example, loading a table with
data might require a series of INSERT statements with values for each record inserted.
Executing parameterized queries has a direct performance benefit, because the InterBase
engine keeps the internal representation and optimization of the query after preparing it
once.

Use parameterized DSQL queries in Delphi by following these steps:

1. Place a named parameter in the statement with the Delphi :PARAMETER
syntax. in place of a constant value in a query. InterBase supports parameters
in place constants; tables and column names cannot be parameterized.

2. Prepare the statement. Use the TQuery method Prepare. Delphi
automatically prepares a query if it is executed without first being prepared.
After execution, Delphi unprepares the query. When a query will be executed
a number of times, an application should always explicitly prepare the query
to avoid multiple and unnecessary prepares and unprepares.

3. Specify parameters. For example, with the TQuery component, use the
ParamByName method to supply values for each parameter in the query.

CHAPTER 10 DATABASE AND SERVER PERFORMANCE

266 INTERBASE 6

4. Execute the statement. SELECT statements should use the Open method of
TQuery. INSERT, UPDATE, and DELETE statements should use the ExecSQL
method. These methods prepares the statement in SQL property for
execution if it has not already been prepared. To speed performance, an
application should ordinarily call Prepare before calling ExecSQL for the first
time.

5. Repeat steps 3 and 4 as needed.

6. Unprepare the query.

In some real-world cases involving repetitive operations, using parameterized queries has
increased performance 100%.

Designing query optimization plans
The optimization plan describes the way the optimizer has chosen to execute a query.
For certain types of queries, the optimizer might not select the truly optimal plan. A
human can analyze different alternate plans and specify a plan overriding the optimizer’s
analysis. The result can be amazing improvements in performance for some types of
queries. In some dramatic cases, this has been used to reduce a 15 minute query to three
seconds.

The elements of plan selection are:

g Assigning indexes

g Combining indexes

g Determining join order

g Generating rivers

g Cost estimation

g Sort merges

InterBase supports syntax with the SELECT expression in embedded SQL and DSQL to
allow the user to specify the PLAN for a query. The syntax also works with SELECT
statements in the body of a view, a stored procedure, or a trigger.

It is beyond the scope of this chapter to describe in detail the syntax of the PLAN clause
for specifying the execution plan, or techniques for analyzing queries manually. The
section on SELECT in the Language Reference includes some examples of using PLAN.

APPLICATION DEVELOPMENT TOOLS

OPERATIONS GUIDE 267

Deferring index updates
INSERTing and UPDATEing data requires indexes to be updated, which can cause
performance to suffer during data INSERT or UPDATE. Some cost incurred while data is
entered can result in a big performance win during later data queries.

To minimize the performance hit during INSERT, consider temporarily disabling indexes
during high-volume INSERTs. This “turns off” the indexes, making them unavailable to
help speed up queries, but also making them not be updated by data INSERTs. Then
re-enable the indexes after INSERTing data. This updates and rebalances the indexes once
for all the inserted data.

Application development tools
This section describes ways you can develop applications that are efficient, using various
popular development environments and tools.

InterBase Express™ (IBX)
InterBase engineers at Borland have created a full-featured set of data-aware VCL
components for use with the TDataSet architecture in Delphi 5. See the Developer’s Guide
for full documentation of InterBase Express.

IB Objects
Another set of VCL components is available for projects with Delphi 2 and 3. It is
designed to provide very sophisticated data component technology that is optimized for
use with InterBase. The demo product can be downloaded from
http://www.ibobjects.com.

Borland Database Engine
You should change the default values for BDE driver options in the BDE Administrator.
This section provides guidelines for the driver options, and recommends values that you
should use for better performance.

4 BDE driver flags
The recommended value for the DRIVER FLAGS is 4608.

CHAPTER 10 DATABASE AND SERVER PERFORMANCE

268 INTERBASE 6

By adding 512 to the DRIVER FLAGS in BDE Config tool, you specify that the default
transaction mode is repeatable read transactions. This reduces the overhead that
automatic transaction control incurs.

By adding 4096 to the DRIVER FLAGS, you specify that the InterBase SQL Links driver
should use soft commits. Soft commits are a feature of InterBase that let the driver retain
the cursor when committing changes. Soft commits improve performance on updates to
large sets of data. When using hard commits, the BDE must refetch all the records in a
dataset, even for a single record change. This is less expensive when using a desktop
database, because the data is transferred in core memory. For a client/server database like
InterBase, refreshing a dataset consumes the network bandwidth and degrades
performance significantly. With soft commits, the client retains the cursor and doesn’t
perform a refetch.

Caveat: soft commits are never used in explicit transactions started by BDE client
applications. This means that if you use explicit transaction start and commit, then the
driver flag for soft commit is not used.

4 SQL passthru mode
The recommended value for this property is SHARED NOAUTOCOMMIT.

SQLPASSTHRU MODE specifies whether the BDE and passthrough SQL statements can share
the same database connections. In most cases, SQLPASSTHRU MODE is set by default to
SHARED AUTOCOMMIT. If however, you want to pass SQL transaction control statements to
your server, you must use the SQL Explorer to set the BDE SQLPASSTHRU MODE to NOT
SHARED. Depending on the quantity of data the client handles, you can achieve up to 10
times performance improvement by using the SHARED NOAUTOCOMMIT setting.

Use explicit transaction control and avoid autocommitted statements. Use the following
methods: TDatabase.StartTransaction, and TDatabase.Commit.

4 SQL query mode
The recommended value for this property is SERVER.

Driver flags Isolation level Commit type

0 Read committed Hard commit

512 Repeatable read Hard commit

4096 Read committed Soft commit

4608 Repeatable read Soft commit

TABLE 10.1 Matrix of BDE driver flags values

APPLICATION DEVELOPMENT TOOLS

OPERATIONS GUIDE 269

The Active Server of InterBase includes a dynamic SQL parser and execution engine. In
order for BDE to execute your SQL queries by sending them to the InterBase SQL engine,
you must choose the value SERVER in this property. Otherwise, BDE parses and executes
your query, which it does by fashioning a new SQL query and executing it by sending it
to the InterBase server. There is no benefit to forcing BDE to reconstruct SQL that you
have already written, only performance cost.

Visual components
This section describes visual components that developers commonly use in Delphi and
C++Builder to access data from InterBase. Follow the recommendations below for better
client/server performance.

4 Understanding fetch-all operations
In a client/server configuration, a “fetch-all” is the nadir of performance, because it forces
BDE to request that the database generate a dataset again and send it over the network.

InterBase and most relational databases do not keep datasets in cache on the server in
case the client requests a refresh. InterBase must execute the SQL query again when the
BDE requests a refresh. If the query involves a large quantity of data, or complex joining
or sorting operations, it is likely to take a long time to generate the dataset.

It is also costly for the server to transfer a large dataset across a network interface. It is
more costly by far than it is for a desktop database like Paradox to return a dataset,
because a desktop database typically runs locally to the application

It is often the case that software developers choose to use a relational database like
InterBase because they are managing a larger amount of data than a desktop database
like Paradox can handle efficiently. Naturally, larger datasets take more time to generate
and to send over a network.

The person using the client application perceives that it has better performance if the user
doesn’t have to wait for refreshes. The less often the client application requests a refresh
of the dataset, the better it is for the user.

IMPORTANT A principle of client/server application design is therefore to reduce the number of
costly refresh operations as much as possible.

4 TQuery
g CachedUpdates = False

Allows the server to handle updates, deletes, and conflicts.

CHAPTER 10 DATABASE AND SERVER PERFORMANCE

270 INTERBASE 6

g RequestLive = False

Setting RequestLive to False can prevent the VCL from keeping a client-side copy of rows;
this has a benefit to performance because it reduces the network bandwidth requirement

g Below are some operations in which a TQuery perform a fetch-all. Avoid these as much
as possible, or be aware of the cost that such operations.

Using the Locate method

You should use Locate only on local datasets.

Using the RecordCount property

It’s convenient to get the information on how many records are in a dataset, but when
using InterBase, calculation of the RecordCount itself forces a fetch-all. For this reason,
referencing the RecordCount property takes as much time as fetching the entire result
dataset of the query.

A common use of RecordCount is to determine if the result set of an opened TQuery
contains any records, or if it contains zero records. If this is the case, you can determine
this without performing a fetch-all by testing for both EOF and BOF states. If both end of
file and beginning of file are true for the dataset, then no records are in the result set.
These operations do not involve a fetch-all.

For example, for a given TQuery instance called qryTest:

qryTest.Open;

if qryTest.BOF and qryTest.EOF then begin

// There are no result set records.

end

else begin

// There are some result set records.

end;

Using the Constraints property

Let the server enforce the constraint.

Using the Filter property

For the TQuery to filter records, it must request a much larger dataset than that which it
subsequently displays. The InterBase server can perform the filtering in a much more
efficient manner before returning the filtered dataset. You should use a WHERE clause in
your SQL query. Even if you use a WHERE clause, any use of the TQuery.Filter property
still forces a fetchall.

APPLICATION DEVELOPMENT TOOLS

OPERATIONS GUIDE 271

4 TTable
The TTable component is designed for use on relatively small tables in a local database,
accessed in core memory. TTable gathers information about the metadata of the table,
and tries to maintain a cache of the dataset in memory. TTable refreshes its client-side
copy of data when you issue the TTable.post method and when you use the
TDatabase.rollback method. This incurs a huge network overhead for client/server
databases, which tend to have larger datasets and are accessed over a network. You can
observe the activity of TTable with the SQL Monitor tool. This reports all calls to the BDE
and InterBase API.

Though TTable is very convenient for its RAD methods and its abstract data-aware model,
you should use it sparingly with InterBase or any other client/server database. TTable was
not designed to be used for client/server applications.

CHAPTER 10 DATABASE AND SERVER PERFORMANCE

272 INTERBASE 6

OPERATIONS GUIDE 273

CHAPTER

11
Chapter 11Data Replication

This chapter documents the InterBase Replication Server, IBReplicator. It covers the
following topics:

g IBReplicator and its components

g Data replication

g How to use IBReplicator

About IBReplicator
IBReplicator provides a data replication service: with it, you can ensure that changes to
the data in any InterBase database can be duplicated in any number of other InterBase
databases, even databases with different structures.

IBReplicator is a native InterBase-to-InterBase data replication system that is both simple
to install and easy to maintain. It consists of two elements: a Windows95/NT based
Manager Tool with a graphical user interface for easy configuring of replication schemas
and a C based Replication Engine. IBReplicator connects directly to InterBase through its
API. There is no reliance on middleware and drivers and as a result the system is small
and fast.

CHAPTER 11 DATA REPLICATION

274 INTERBASE 6

Requirements
This section describes supported platforms, supported InterBase versions, and OS
requirements.

4 Platforms currently supported
Microsoft Windows 95

Microsoft Windows 98

Microsoft Windows 2000 (not tested)

Microsoft Windows NT

Sun Solaris 2.6/7

4 InterBase support
The Replication Server and Replication Manager must run on a machine that has an
InterBase 6 client installed. The Replication Configuration database must be created on
an InterBase 6 Server.

The Replication Server can replicate from/to InterBase 6 databases, from/to InterBase 5.x
databases, and probably InterBase 4.x databases (not tested, or supported), or any
combination of the above. The only proviso is that the Replication Server must run on a
machine with at least the InterBase 6 client installed.

4 Windows system requirements

REPLICATION MANAGER

Microsoft Win NT4.0 Service Pack 5, Windows 2000, Win 98 and Win 95

Memory: 16 megabytes minimum; 64 or more recommended

Processor/Hardware model: 486 minimum; Pentium II recommended

Disk space: 2Mb for the application

InterBase Version: 5.5 and 6.0

REPLICATION SERVER

Microsoft Win NT4.0 Service Pack 5, Windows 2000, Win 98 and Win 95

Memory: 16 megabytes minimum; 64 or more recommended

Processor/Hardware model: 486 minimum; Pentium II recommended

Disk space: 2Mb for the application

ABOUT IBREPLICATOR

OPERATIONS GUIDE 275

InterBase Version: 5.5 and 6.0

4 Sun Solaris 2.5.x or 2.6.x system requirements
Memory: 32 megabytes minimum; 64 or more recommended

Processor/Hardware model: SPARC or UltraSPARC

Disk space: 2Mb for the application

InterBase Version: 5.5 and 6.0

IBReplicator features
This section describes the large range of functionality available in IBReplicator:

4 Overview
g Fast Replication occurs directly between servers: there are no intervening layers of

processing from database engines or drivers, for example. Our benchmarks indicate that
actual replication speeds range from five operations per second over a 28.8 dial-up
connection to 200 operations per second between two 200Mhz Pentium machines on a
10BaseT network, where an “operation” is an insert, an update or a delete.

g Small IBReplicator consists only of the necessary code; there is none of the overhead
associated with any form of middleware. The Replication Engine requires 2Mb of disk
space on the Server and a further 2Mb on the Replication Manager machine. In a
Windows environment these may run on the same machine.

g Inexpensive IBReplicator does not rely on any other software, so we pay no royalties,
which means a cheaper product for you.

4 InterBase advanced features
g Advanced datatypes IBReplicator can replicate all supported InterBase datatypes,

including Blobs and Arrays. It handles multi-segment primary keys where each segment
can be any supported InterBase datatype.

g Event alerters Replication can occur in response to database events.

g Internationalization IBReplicator international character sets are supported.

4 Ease of use
A replication tool is, in its nature, a complex piece of software, especially if it is a highly
configurable one, like IBReplicator. Nonetheless, careful design has ensured that our
Replication Server is exceptionally easy to install and use:

CHAPTER 11 DATA REPLICATION

276 INTERBASE 6

g Point-and-click configuration This tool allows you to select which tables and fields are
to be replicated, and to view and edit optional settings; it also generates the required
triggers on the source database for you. A Publish and Subscribe model is used to
configure replication schemas.

g Minimal configuration Target databases need no configuration at all.

g Manual Conflict Resolution This tool allows logged conflicts to be resolved manually.

g Help The Replication Manager includes a comprehensive, context-sensitive online help
file with detailed explanations of procedures and controls.

Components of IBReplicator
IBReplicator is a system that includes several components, of which the management tool
is the most used. The following list is an overview of these components.

g The Replication Server performs the actual replication of your data. It is available as a
service under Windows NT (IBRepl.exe), and also as an application that can run under all
of the Win32 platforms (IBReplicator.exe).

Note There is a utility (IBReplSrvcInstall.exe) that installs, runs, stops, and removes the
Replication service on Windows NT. Make sure that the correct path to ibrepl.exe is
displayed when installing the service.

g The configuration database saves the details of which data to replicate, and where it
should be replicated to (these replication specifications are called schemata). You can
create as many configuration databases as are required.

g The Replication Manager (IBRplManager.exe) provides a central user interface from which
you can define schemata, manage your configuration databases, and run several supplied
utilities. It also includes a comprehensive, context-sensitive online help file with detailed
explanations of procedures and controls.

g The scheduler defines the intervals at which replication should occur. This tool is
available as a service under Windows NT (IBScheduler.exe), and also as an application so
that it can be run under Windows 95 and 98 (IBReplScheduleManager.exe). It can also be run
from within the Replication manager.

g Replication Monitor This tool provides a real-time graph showing the status of ongoing
replications. It also provides information and statistics on all related connections,
throughput and activity in the environment.

ABOUT DATA REPLICATION

OPERATIONS GUIDE 277

About data replication
Essentially, a replication server ensures that changes to a source database are duplicated
on other, target, databases so that all databases contain the same data. These source and
target databases can be on the same machine, but are usually separated and need to be
connected with a local- or wide-area network, or with a dial-up connection.

In principle, this is a straightforward idea, but reality quickly introduces complications.
For example:

g N-way replication A single database can be both a source of data and a target of other
databases at the same time (see “Choosing the source database” on page 291).

g Heterogeneous replication Source and target databases are often structured differently:
tables can have a different number of columns with different names and data-types, some
tables can be present in some databases and absent in others, and so on (see “Choosing
replicated tables and stored procedures” on page 294).

g Conflicts Typically, target databases are being maintained by their own users who are
busily adding, deleting and updating rows without knowing or caring about the changes
that are being made on a distant source database at the same time. So, a replication server
might discover that a row that has been updated is entirely missing on a target, or it might
find that it needs to add a row to a target which already is already using its primary key
(see “Customizing default settings” on page 290 and “Choosing the source database” on
page 291).

g Replication timing In some contexts, it is enough for replication to happen every so often,
perhaps monthly, or daily, or only in response to explicit requests. This asynchronous
replication requires only a low-end network setup and can be scheduled to occur during
idle times such as at night or over weekends, but, of course, the various databases are
almost always more or less out of date. In contexts where databases must always be up
to date, synchronous replication is needed. In this case, changes are replicated as they
occur, with all the consequent pressures on the network. In general, a compromise
solution is adequate, with critical data being replicated near-synchronously, and less
topical data being replicated asynchronously (see “Customizing default settings” on
page 290 and “Choosing the source database” on page 291).

g Data subsetting Often, only certain rows in a table should be replicated; in some cases it
is necessary to replicate certain rows to one target, and other rows to other databases (see
“Choosing replicated tables and stored procedures” on page 294).

CHAPTER 11 DATA REPLICATION

278 INTERBASE 6

g Synchronization In general, changes in source databases only need to be replicated. You
don’t need to synchronize. Synchronization is useful for tasks such as filling a new, empty
database with all the data already in a source database and for bringing an database
restored from an old backup up to date. Note that synchronization is used only under
these fairly rare circumstances. If a target database has simply been offline, there is no
need to synchronize it as normal replication will catch up with the backlog

IBReplicator handles all these cases, and it takes pains to make the configuration of a
replication environment as straightforward and yet as flexible as possible.

You will appreciate, however, that it is imperative that you design your environment
carefully. For example, it would be a mistake to replicate data from database A to
database B, and then to cause B’s changes to be replicated back to A, and this can happen
easily in cases where A replicates to B, C, D and E, while B is busy replicating to X, Y and
Z, which in their turn are replicating backwards and forwards, and so on.

Note Some authorities discuss “published” databases replicating to “subscribed”
databases. They are using a metaphor which sees a database as a sort of journal which
provides data to other databases that are on its mailing list. IBReplicator simply sees a
database as being either a source of information, or as a target for it (or both, of course).

These two models are not quite identical. The published/subscribed metaphor implies
that the published side of the replication needs to be configured to provide the data for
all its subscribers. This complicates heterogeneous replications where different
subscribers need different subsets of the available data, and also involves reconfiguring
the publisher whenever a subscriber with different needs is added.

IBReplicator’s source/target model allows each target to specify whatever data it needs,
but it does mean that identical targets need to be configured one by one (see “Cloning
targets” on page 294).

How IBReplicator works
As you define your replication schemata, the Replication Manager maintains the
configuration database in which they are stored. When a schema has been defined, you
complete its implementation by telling the Manager to create IBReplicator’s system
objects in the source database.

These system objects are triggers and tables that ensure that every change to the data in
the source database is saved in a table called the Replication Log that stores the action
that was performed (an insert, update or delete) and the primary key value of the row
affected.

HOW IBREPLICATOR WORKS

OPERATIONS GUIDE 279

The basic sequence
The Replication Server can receive an instruction to replicate from any of several sources:

g Your explicit request

g A timed signal from the Scheduler

g An InterBase event

When the server receives such an instruction, it first consults the configuration database
to determine which databases are involved. Next it queries its system replication log table
in the source database to find the rows that have changed. Finally, it retrieves those rows
(which contain the very latest data), and duplicates the action in each target database:

g An insert is replicated by inserting a new row with the same primary key values and the
same values in each column that is to be replicated.

g An update is replicated by finding the row with same primary key and updating its
replicated columns to their new values.

g A delete is replicated by finding the row with the same primary key and deleting it.

This design helps make IBReplicator easy to use because you need to configure only your
source databases; their targets are left untouched.

Furthermore, the design makes the replicator flexible enough for you to organize your
network in any way that suits your needs. On the one hand, even the most complex of
configurations can be implemented with only a single instance of IBReplicator running
on a single server with a single configuration database. But you can also have the
replicator running on several or all of your servers, and each instance of the replicator
can use its own configuration database (or databases), or various instances can share a
configuration, all at your convenience.

IBReplicator’s strategies
g Row-level replication Also called Domain Replication. This enables the limiting of data

sent to a particular target to a particular domain. For example only replicate rows for
Departments ‘A’ and ‘C’ to Machine X, and replicate rows for Departments ‘S’ and ‘Q’ to
Machine Y.

g Sequence of events All changes are processed in exactly the same sequence on the target
database, as they were originally done on the source database.

g Sequence of changes Changes are replicated in their original order.

CHAPTER 11 DATA REPLICATION

280 INTERBASE 6

g Optimization IBReplicator optimizes operations. For example, if a series of updates
follows an insert for the same row, then those updates need not be replicated since the
insert used the latest data in the first place.

g Multisegment primary keys IBReplicator recognizes primary keys made up of multiple
columns, and allows each column to be of any InterBase datatype.

g Supertransactions IBReplicator replicates only complete transactions. The Replication
Server bundles transactions into supertransactions for efficiency.

g Encryption All passwords that are stored in a database or in the system registry are
encrypted.

g Field names Target tables need not have exactly the same field names and datatypes as
their sources.

g Altered replication schemas The server can reload configuration settings on command
from the Configuration Tool.

Resolving precedence issues
Each Source/Target database pair can have its own conflict resolution settings.
IBReplicator provides three ways to handle cases where replicated data conflicts with
existing data in the target database:

g Priority-based

Databases can be given priorities, and the database with the higher priority takes
precedence.

If the source database has precedence the following occurs:

· An UPDATE finding no identical key record in the target database is converted into an
INSERT.

· An INSERT finding a record in the target database with an identical key is converted into
an UPDATE.

· A DELETE finding no identical key record in the target database is ignored.

g Time-stamped

The latest change takes effect.

g Master/slave

The source database always takes precedence.

HOW IBREPLICATOR WORKS

OPERATIONS GUIDE 281

Replication involving new InterBase 6 datatypes
In InterBase 6, data is NUMERIC and DECIMAL fields that have a precision greater than 9 is
stored as INT64. This means that when replicating to InterBase 5, the data may not fit,
especially if the InterBase 5 field is being stored as an INT32. The Replication Server
checks to see if the data fits, and returns an error if it does not.

InterBase 6 TIME and DATE and TIMESTAMP fields replicate to InterBase 5 DATE fields.
IBReplicator adds a a 17-NOV-1858 date to TIME field in order to make it into a proper IB
5 DATE field.

Operation logging
Each Source/Target database pair can have its own error/information logging settings
and log file.

IBReplicator can record its transactions in a log that can be either a window on screen or
a disk file according to a minimum severity level. You can choose to have it write any of
the following items to the error log:

· All errors (for example: can’t ping target, record already exists, no record to delete,
record locked).

· Replication statistics: performance and warnings

· Database connections made

· Values of Key Fields

· SQL Statements generated

· Transactions that have failed for any reason

Viewing schema
IBReplicator provides a Schema view utility that provides a visual representation of your
replication setup. It can help you to confirm that your design has been implemented
correctly.

To run the Schema View utility, go to the Replication Manager and choose Tools | Schema
view.

CHAPTER 11 DATA REPLICATION

282 INTERBASE 6

Running the Replication Server
The server portion of IBReplicator can run on both Windows and Solaris. On Windows it
can run as either an application or a service. This section describes the binaries and their
functions.

Windows platforms
There are two executables for the various windows platforms IBReplserver.exe, which is a
standard GUI executable, and IBRepl.exe which runs as a service. The service version can
only run on NT or on Windows 2000 (not tested), while the GUI version can run on any
of the windows platforms.

A utility, IBReplSrvcInstall.exe, has been provided to install/run/stop/remove the Replication
service. Make sure that the correct path to the Ibrepl.exe executable is displayed when
installing the service.

The Replication Manager contains a Replication Scheduler, which can be configured to
invoke the Replication Server at the required intervals. This scheduler can also be run as
a service. The required executable is called IBScheduler.exe and is installed and removed as
follows:

To install Replication Scheduler:

IBScheduler /install

To remove Replication Scheduler:

IBScheduler /remove

You must use Control Panel Services applet to start and stop the Replication Scheduler.

Solaris platforms
There are two executables supplied on the Solaris platform:

replserver The binary for the server itself

replmgr The binary for the utility that starts and stops the Replication Server and displays
a list of running instances of the Server

g To start the replserver executable directly, pass the relevant parameters to either replserver
or replmgr.

g To stop the server, you must use replmgr.

RUNNING THE REPLICATION SERVER

OPERATIONS GUIDE 283

Replication Server parameters:

replserver -u[ser] <username> -p[assword] <password> configdbpath

Replication Manager parameters:

replmgr -u[ser] username -p[assword] password
-a[ction] <start/stop/force> configdbpath

or

replmgr -a[ction] view

Notes:

1. You should not run the Replication Server more than once against the same
Configuration database. The results are unpredictable, since the same data
may be replicated more than once.

2. By default, replmgr will not allow the Replication Server to be run more than
once on the same machine, for the above reason. However it is permissible
to run the server more than once on the same machine, as long as each
instance of the Replication Server is run against a different configuration
database. Use the ‘force’ action to force the Replication Server to run more
than once.

3. When stopping the Replication Server with ‘-action stop’, you need to specify
the same config database path as when you started the server. This is because
replmgr uses InterBase Events to communicate with the running Replication
Server, so it must connect to the same database.

4. If you are running multiple instances of the Replication Server on one
machine (each connecting to its own config database), you will need to run
‘replmgr -action stop’ multiple times, once each for each active configuration
database.

5. There are four available environment variables:

Variable Use

ISC_USERNAME Contains the required username

ISC_PASSWORD Contains the required password

ISC_ROLENAME Contains the required role name

IBPATH Contains the name of the directory where the server executable is
located if it is not in /usr/interbase/bin

CHAPTER 11 DATA REPLICATION

284 INTERBASE 6

Using IBReplicator
Once you have installed IBReplicator, you need to define your replication schemata so
that the Replication Server can identify your source and target databases, log into them,
and replicate only the desired data. You use the management tool, Replication Manager,
to design replication schemata.

g The replication engine doesn’t have to be running on either the Source or the Target
database server for replication to occur; it can be running on any machine on your
network or intranet.

g The Replication Server is available for most platforms supported by InterBase, including
flavors of UNIX, but the management tool is a Win32 application: it must be run on a
Windows 95, 98 or NT machine that has access to the machine running the Replication
Server.

g IBReplicator creates a default log file in which all fatal errors, including those that occur
during start-up, are logged. This file is stored in InterBase's root directory on the machine
where the replication server is running; it is called Replication.log. You can specify your
own log file when you define your replications later on.

g When IBReplicator is installed, a default log file, replserver.log, is created in the server’s root
directory; any startup errors are logged there.

g You can extend the standard replication capabilities by writing additional replication
logic in stored procedures.

Steps in replication
Replication Manager’s main window provides three important controls, which
correspond to the three steps needed to define a replication schema for IBReplicator to
implement for you:

1. The Configurations combo-box, where you choose the configuration
database that you need to work on.

2. The Databases tab, where you identify the databases to be involved in
replication.

3. The Replications tab, where you to define the replication schemata which
identify the databases, tables, columns and rows to be replicated.

Each of these steps is discussed in the following sections of this chapter.

IMPORTANT The Replication Manager includes a comprehensive, context-sensitive online help file
with detailed explanations of procedures and controls.

USING IBREPLICATOR

OPERATIONS GUIDE 285

Managing configuration databases
When you run Replication Manager for the first time, it notifies you that you must create
a configuration database. The Replication Server uses this database to establish what it is
supposed to replicate, where it should find the data, and where that data should be sent.

Configuration databases are defined in a special Configuration Databases dialog that you
access from the File | Configurations menu pick in the Replication Manager. With this tool,
you can:

g Create and drop configuration databases.

g Edit each configuration database’s connection parameters.

g Make a configuration database the default.

g Add existing configuration databases to the list of those known to IBReplicator, and
remove them from the list without dropping the database.

All these functions are available from the toolbar, and from the Configurations menu.

4 Creating a configuration database
To create a new configuration database, follow these steps:

1. In Replication Manager, choose File | Configurations to display the Configuration
Databases Editor.

FIGURE 11.1 The Configuration Editor

CHAPTER 11 DATA REPLICATION

286 INTERBASE 6

2. In the Configuration Databases Editor, choose Configurations | Create.

3. Give the new configuration a descriptive name. This name allows you to
identify your configurations when you select the configuration database to
edit in the management tool, so the name should be self-explanatory and
unique.

4. Supply the path and filename for the new database, and the user name that
the Replication Server should use when connecting to it.

5. Choose Configurations | Save; this creates the new database immediately.

4 Working with configurations
g To add a configuration database, choose Configurations | Add and follow the same steps used

to create a new configuration (see above). The one difference is that the filename you
supply must identify a configuration database that has already been created.

Note that each instance of the Replication Server must have its own configuration
database; instances cannot share a configuration.

g To remove a configuration database, choose Configurations | Remove. Notice that removing a
configuration does not destroy the database; it simply means that IBReplicator can no
longer access it.

g To destroy a configuration database, choose Configurations | Destroy. This drops the
database. Be aware that a dropped database cannot be restored later on!

4 The default configuration
One of your configuration databases must be identified as being the default:

g To make a configuration the default, choose Configurations | Default. At the prompt, supply
the password that the replicator and its tools should use when connecting to that
database.

When you run the Replication Server as a service under NT (see “About IBReplicator” on
page 273), it always connects to the default configuration. However, when you run the
server as an application by running IBReplicator.exe, you can specify which configuration
to use.

Registering databases
When you have chosen or created a configuration database, you are ready to define the
replications that you need, and this is done in Replication Manager’s main window. The
first step is to identify the databases to be involved using the Databases tab.

USING IBREPLICATOR

OPERATIONS GUIDE 287

You need to register all the databases involved in the replication, both those that serve as
sources of data, and those that receive it (the targets). Registering a database identifies a
database for IBReplicator, and provides values for the parameters it needs to connect to
that database.

IMPORTANT Registering a database does not create the database, and does not cause any replications
to happen.

FIGURE 11.2 The Database tab of the Replication Manager

The Databases tab contains three controls:

1. A Tree view that lists all the databases that have been registered and saved in
the current configuration database.

2. A Field Editor that lists the connection parameters, displays their current
values, and allows you to edit those values.

3. A Toolbar that gives quick access to the commands relevant to database
registration. These commands are also available from the Databases menu.

Some of the database parameters must have values; the others can be set if they are
applicable, and ignored if they are not. The essential parameters are:

g Server The network path and filename of the database file. Be sure that the syntax of this
path conforms to the syntax for the kind of network connection that InterBase uses to
connect to that database.

CHAPTER 11 DATA REPLICATION

288 INTERBASE 6

g Administrative Username and Password. The username and password which the
management tool should use when connecting to the database. Compare the replication
username and password used by the Replication Server when replicating (see “Choosing
the source database” on page 291 and “Choosing the target databases” on page 293). Of
course, the administrative and replication usernames and passwords can be identical.

g The Administrative Role parameter is optional, and applies only to InterBase 6 databases.

g The descriptive name is another optional but import3nt field. It is optional in the sense
that the Replication Server doesn’t use it. It is important because it makes your replication
schemata easy for users to follow. A name of “Head Office (employee.gdb)” is more helpful
than the default “New database”!

Defining replication schemata
When you have registered the databases that will be involved in replication, your next
and final step is to identify the data which is to be replicated. This is done by defining
replication schemata on the Replications tab of Replication Manager’s main window. This
tab contains two controls:

1. A Tree view which displays all the objects that are to be involved in
replications, including source and target databases, tables, and columns.

2. A control panel which presents commands that are applicable to the selected
node in the Tree view. These commands are all available from the Replication
menu as well, but note that only some of the available commands are
relevant at any time, and just which these are depends on the node that has
been selected in the Tree view. For example, if you have selected a target
database, then commands for identifying replicated columns are not
applicable because you have to identify the table which contains those
columns first.

The following section describes the various nodes in the replications Tree view, and their
commands. A Tree view is an hierarchical control, so simply working through the
following paragraphs in sequence is, in fact, a step-by-step guide to defining your
replications. The paragraph headings have, therefore, been numbered.

DEFINING A REPLICATION STEP BY STEP

OPERATIONS GUIDE 289

Defining a replication step by step
The material in the following sections of this chapter is summarized here. For a thorough
discussion of each step, refer to the section describing that step.

So, to specify which data should be replicated and where it should be replicated to, use
Replication Manager’s Replications tab and:

FIGURE 11.3 Replication Manager’s Replication tab

Step Task Node See page

1 (optional) Customize default settings Defined Replication Schemata 290

2 Create schema Defined Replication Schemata 291

3 Choose source database Source Database 291

4 Choose target database(s) Target Databases 293

5 Choose replicated tables Replicated Tables 294

6 Choose replicated columns Data Columns 300

7 Create system objects A source database node 301

CHAPTER 11 DATA REPLICATION

290 INTERBASE 6

Customizing default settings
Every schema you define has a variety of customizable settings that control replication
intervals, conflict resolution strategies, synchronization, and event logging. All of these
have been initialized to reasonable values for you, and it is these values that will be
supplied to each new schema you create.

To customize IBReplicator’s default settings, and to define a new schema, select the root
node, Defined Replication Schemata, in the replication Tree view.

To change the default values for these settings, double-click the Edit Default Settings icon
in the replication list view or choose Replication | Default settings to open up the Default
Settings dialog.

g These defaults are stored in the configuration database, so different configurations can
have different defaults.

g Changing default settings does not change the settings of existing schemata.

Setting Description

Replication timing Replication can occur at scheduled intervals (defined with the scheduler
utility), or in response to an event alert from a source database.

Conflict resolution strategy When new data from a source database has a primary key which is already
used by one of the target databases, IBReplicator can:

• Preserve the data from the database with higher priority (as defined
when the databases were registered), or

• Preserve the most recent version of the data, or
• Replicate the source database’s version regardless.
You can also have the Replication Server log conflicts for you to resolve
later by choosing Tools | Conflicts from Replication Manager’s main menu.

Synchronization Synchronization involves updating a target database which is missing
data that should have been replicated to it. You can enable
synchronization, and you can allow reverse synchronization, where the
target updates its source.

Event logging The Replication Server can log its activities for you to inspect, either to a
window or to a file.

DEFINING A REPLICATION STEP BY STEP

OPERATIONS GUIDE 291

Creating schemata
A replication schema contains information about which data should be replicated, where
the data can be found, and where it should be sent.

4 To define a new schema
1. Select the replication Tree view’s root node.

2. Run the New Schema command by either double-clicking its icon in
Replication Manager’s control panel, or by choosing Replication | Schema | New
from the menu. This opens the New Schema dialog.

3. Give your schema a descriptive name.

4. If desired, you can also override the default synchronization settings

5. Choose OK to add a schema node to the Tree view as a child of the Defined
Replication Schemata node.

4 To edit a schema
To edit a schema’s name and synchronization settings, select a schema node and
double-click Edit Schema or choose Replication | Schema | Edit.

4 To delete a schema
To delete a schema, double-click Delete Schema or choose Replication | Schema | Delete.

Deleting a schema removes all the replication information within that schema, and none
of that schema’s replications will occur from then on.

4 The schema node
Expanding a schema node reveals two descriptive nodes that exist only to explain their
child nodes. The first node contains the source database, and the second contains the
target databases.

Choosing the source database
To specify the database from which replicated data will originate, follow these steps:

1. Expand a schema node and select its Source Database node.

2. Double-click the Add Source Database icon or choose Replication | Source | Add
to open the Source Database dialog.

CHAPTER 11 DATA REPLICATION

292 INTERBASE 6

FIGURE 11.4 The Source Database dialog

3. Choose one of your registered databases to be the source of the data that is
to be replicated (see “Registering databases” on page 286).

4. Supply a username and password for the Replication Server to use when it
connects to that database to retrieve the data that is to be replicated.

When replicating from an InterBase 6 database, you can specify a replication role as
well. (Compare the administrative user name, password and role described in
“Registering databases” on page 286).

There are also miscellaneous settings for customizing IBReplicator’s behavior. These
are initialized to default values (see “Customizing default settings” on page 290). You
can override them for the particular source database that you are defining.

5. Choose OK to add a source database node to the Tree view as a child of the
Source Databases node.

Selecting a source database node gives access to the commands for editing and removing
a source database; these commands can also be accessed by choosing Replication | Source |
Edit or Replication | Source | Delete.

There is also a command for creating system objects. This vitally important command is
discussed in “Creating system objects” on page 301).

DEFINING A REPLICATION STEP BY STEP

OPERATIONS GUIDE 293

g Each schema can have only one source database, so define a schema for each of your
source databases.

g A source database in one schema can be a target database too, but only in another
schema.

Choosing the target databases
A target database is one to which replicated data can be sent. When identical data is to
be sent to more than one target, it is possible to define one target and then copy or
“clone” that definition and apply it to other targets. This section describes these
operations.

4 Specifying a target database
To specify a database to which replicated data can be sent, follow these steps:

1. Expand a schema node and select its Target Databases node.

2. Double-click the Add Target Database icon or choose Replication | Targets | Add
to display the Target Database dialog.

FIGURE 11.5 The Add Target Database dialog

CHAPTER 11 DATA REPLICATION

294 INTERBASE 6

3. Choose one of your registered databases as the source of the data to be
replicated (see “Registering databases” on page 286).

4. Supply a username and password for the Replication Server to use when
connecting to that database to retrieve the data which is to be replicated.
When replicating from an InterBase 6 database, you may want to specify a
replication role as well. (Compare the administrative username, password
and role described in “Registering databases” on page 286).

You can also use the Target Database dialog to specify synchronization settings that
override the schema’s settings for that particular target (see “Creating schemata” on
page 291).

5. Choose OK to add a target database node to the Tree view as a child of the
Target Databases node.

Editing and deleting targets Selecting a particular target database node gives access to
the commands for editing and removing that target database; these commands can also
be accessed by choosing Replication | Target | Edit or Replication | Target | Delete.

4 Cloning targets
The tables, columns and rows to be replicated are defined for each target database
involved. This allows different data to be replicated to different targets. Typically,
however, all the targets in a schema will be receiving similar or identical data, and setting
up numerous identical targets can become very tedious indeed.

For this reason, it is possible to clone targets within a schema. To clone a target, follow
these steps:

1. Either drag a target database node onto the schema’s Target Databases node,
or select a target database in the Tree view and choose Replication | Target | Clone.

2. Supply the name of the target database. All information for its replicated
tables, columns, and rows is automatically duplicated.

The new target must have the same structure as the target being cloned.

Note A schema can supply one or several targets for its source database, and different
data can be replicated to different targets (see “Choosing replicated tables and stored
procedures” on page 294 and “Choosing replicated columns” on page 300 for the
details).

Choosing replicated tables and stored procedures
The next step is to identify which tables contain data to be replicated.

DEFINING A REPLICATION STEP BY STEP

OPERATIONS GUIDE 295

4 Specifying replicated tables
To identify the tables that contain data which is to be replicated, follow these steps:

1. Expand a node representing a target database and select the Replicated
Tables node.

2. Double-click the Replicated Tables icon in Replication Manager’s control
panel, or choose Replication | Tables | Define. This opens the Replicated Tables
and Procedures dialog.

3. Map tables in the target database to the tables in the source database by
clicking and dragging them.

4 Removing replicated tables
Use the Replicated Tables dialog to remove source-target table mappings, or choose
Replication | Tables | Remove.

Note You are free to define heterogeneous mappings where source and target tables have
different names and even different columns, provided that:

· The two tables both have primary keys that uniquely identify the rows that contain the
data to be replicated.

· The columns containing data to be replicated must have compatible datatypes.

4 Table settings and row-level replication.
To override a source-target table mapping’s default settings (see “Customizing default
settings” on page 290), follow these steps:

1. Select the node in the Tree view that represents the mapping,

2. Double-click the Table Settings icon in Replication Manager’s control panel
or choose Replication | Tables | Settings to open the Table Settings dialog.

4 Using SELECT statements to identify rows
You can use the Table Settings dialog to provide a SELECT condition that identifies which
rows in the table should be replicated.

The basic syntax of the SQL SELECT statement can be represented informally as:

SELECT columnlist
FROM table
WHERE condition

As an example, a request to find all unpaid invoices might look like this:

SELECT *

CHAPTER 11 DATA REPLICATION

296 INTERBASE 6

FROM SALES

WHERE PAID = “n”

So, if you want to replicate only rows detailing unpaid invoices, set the Row-level
Replication Condition in the Table Settings dialog to:

:PAID = “n”

This is a very simple condition, but there is no limit to the condition’s complexity: any
condition that is legal in a SELECT statement is legal as a replication condition.

IMPORTANT You really should test your condition with a select statement in IBConsole and then copy
and paste it into the replication condition’s edit box. A syntactically illegal expression is
inconvenient rather than disastrous: your log file will be filled with SQL errors. But a
legal condition which identifies the wrong rows can indeed be disastrous: consider the
case where the condition is being used to replicate public data and leave confidential
data behind. Be careful here!

Note Identify each column name in the replication condition with a prefixed colon; this
allows IBReplicator to add the NEW. and OLD. that the system’s triggers need to
implement row-level replication.

4 Replicating to stored procedures
Displaying target stored procedures The Replicated Tables dialog shows the tables in the
target database by default. To see the target’s stored procedures instead, check the Stored
Procedures radio button. This allows you to map target stored procedures to the source
tables.

Sophisticated users can define stored procedures to do the work of inserting, updating or
deleting rows on the target database. This allows you to customize IBReplicator to handle
specialized cases.

To define a stored procedure for IBReplicator to call, follow these steps:

DEFINING A REPLICATION STEP BY STEP

OPERATIONS GUIDE 297

1. Provide one parameter for each field to be replicated, with data fields listed
first, in alphabetical order, and then the key fields, also in alphabetical order.
The last parameter defines the action to be taken. It should be a single
character, which the server will set when it calls the procedure. The possible
values are:

2. Return an integer value indicating the action’s result:

In many cases, your procedure will be able to handle both conditions 1 and 2 and will
therefore always return zero. For example, an inserted row may be there already, so
the procedure can choose to change the insert into an update, or to insert the row
somewhere else, or to give it a new primary key. In such cases, the procedure can
safely return zero, indicating success.

3. The procedure can also raise an exception for the Replication Server to trap.
When an exception is raised, the server rolls back its current transaction and
the exception appears in the log, unless it indicates a primary key violation
that occurred while inserting; in this case, the conflict resolution rules are
used to handle the exception.

Example The source database contains this table:

CREATE TABLE T (

 K1 INTEGER NOT NULL,

 K2 VARCHAR(10) NOT NULL,

 K3 DATE NOT NULL,

 F1 VARCHAR(20),

 F2 DOUBLE PRECISION,

 F3 INTEGER,

D The row identified by the key fields’ values should be deleted

I A row should be inserted with the supplied values in its fields

U The row identified by the key fields’ values should be updated to the supplied values

0 Success

1 • For inserts, a row with the specified key already exists (a primary key violation
occurred)

• For updates and deletes, no row with the specified key was found

2 • For updates and deletes, too many rows were found to act upon
• For inserts, an unexpected error that was not a primary key violation occurred.

CHAPTER 11 DATA REPLICATION

298 INTERBASE 6

 F4 VARCHAR(100),

 F5 NUMERIC(4,1),

 F6 NUMERIC(9,2),

 F7 NUMERIC(15,2),

 PRIMARY KEY (K1,K2,K3)

);

A stored procedure can then be defined on a target database with the

same table as follows:

CREATE PROCEDURE REPLICATE_T (

 F1 VARCHAR(20),

 F2 DOUBLE PRECISION,

 F3 INTEGER,

 F4 VARCHAR(100),

 F5 NUMERIC(4, 1),

 F6 NUMERIC(9, 2),

 F7 NUMERIC(15, 2),

 K1 INTEGER,

 K2 VARCHAR(10),

 K3 DATE,

 TYPE CHAR(1)

) RETURNS (RESULT INTEGER)

AS

 DECLARE VARIABLE COUNTER INTEGER;

BEGIN

 RESULT = 0; /*default return value*/

 SELECT COUNT(*) FROM T

 WHERE K1 = :K1 AND K2 = :K2 AND K3 = :K3

 INTO :COUNTER;

/* Inserts: If the row already exists, then exit with result=1. This

 * causes the Replication Server to apply conflict rules, which will

 * probably cause the procedure to be called again, but with an

 * with a TYPE of “U”. An alternative approach would simply change

 * TYPE to “U” and proceed to update the row instead.

 */

 IF (TYPE = 'I' AND COUNTER > 0) THEN

 BEGIN

 RESULT = 1;

 EXIT;

 END

DEFINING A REPLICATION STEP BY STEP

OPERATIONS GUIDE 299

/* Updates: If the row does not exist, then exit with result=1. This

 * causes the Replication Server to apply conflict rules, which will

 * probably cause the procedure to be called again, but with a TYPE

 * of “I”. An alternative approach would simply change TYPE to “I”

 * and proceed to insert the row instead.

 */

 IF (TYPE = 'U' AND COUNTER = 0) THEN

 BEGIN

 RESULT = 1;

 EXIT;

 END

/* Deletes: If the row does not exist then exit with result=1. The

 * Replication Server will log the error, but otherwise ignore it.

 */

 IF (TYPE = 'D' AND COUNTER = 0) THEN

 BEGIN

 RESULT = 1;

 EXIT;

 END

 IF (TYPE = 'I') THEN

 INSERT INTO T(K1,K2,K3,F1,F2,F3,F4,F5,F6,F7)

 VALUES (:K1,:K2,:K3,:F1,:F2,:F3,:F4,:F5,:F6,:F7);

 IF (TYPE = 'U') THEN

 UPDATE T

 SET F1 = :F1,

 F2 = :F2,

 F3 = :F3,

 F4 = :F4,

 F5 = :F5,

 F6 = :F6,

 F7 = :F7

 WHERE K1 = :K1

 AND K2 = :K2

 AND K3 = :K3;

 IF (TYPE = 'D') THEN

 DELETE FROM T

 WHERE K1 = :K1

CHAPTER 11 DATA REPLICATION

300 INTERBASE 6

 AND K2 = :K2

 AND K3 = :K3;

 EXIT;

END

Note InterBase stored procedures do not currently support Blob and array types as
parameters, so such columns cannot be replicated with stored procedures.

Choosing replicated columns
IBReplicator needs to know which of the columns in each replicated table contain the
data that should be replicated, and it also needs to know which columns in the tables
should be treated as primary keys.

4 Defining primary keys
1. To identify a replicated table’s primary key columns, expand a node

representing a source and target table mapping and select the Key Columns
node.

2. Double-click the Define Primary Key icon or choose Replication | Columns | Key to
open the Key Columns dialog

3. To map target and source columns, click and drag the target table’s key
columns to their corresponding columns in the source table.

4 Identifying data columns
1. To identify the columns that contain data which is to be replicated, expand

one of the nodes representing a source and target table mapping and select
the Data Columns node.

2. Double-click the Define Data Columns icon or choose Replication | Columns | Data
to open the Data Columns dialog.

3. To map columns in the target table to their corresponding columns in the
source table, click and drag them.

PROBLEMS AND WORKAROUNDS

OPERATIONS GUIDE 301

Creating system objects
When you have completed a replication schema by specifying a source database and its
targets, and mapping the source and target tables and columns to each other, your final
step is to tell Replication Manager to create for you the system’s tables and triggers in the
source database. Do this by selecting a source database node in the replications Tree view
and then double-clicking the Create System Objects icon in Replication Manager’s control
panel, or choose Replication | Source | Create system objects.

Problems and workarounds
The following is a list of problems that some users have encountered along with the
techniques for surmounting them.

Known bugs with workarounds where applicable

The following list provides details of all logged IBReplicator bugs and work-arounds
where they are applicable and available.

Problem: Array fields

Array fields are supported, but they are copied across in one unit. This may cause
problems for very large arrays.

Workaround

Don’t replicate large array fields.

Problem: Computed fields

If you select a computed field for replication, IBReplicator display an error message and
does not replicate any data for the table in question. This will be fixed in a later release.

Workaround

Don’t select computed fields for replication.

Problem: Redundant replication

When only certain of a table’s fields have been selected for replication, then data in that
table is be replicated, even if the changes affect only fields not selected for replication.

Workaround

None needed.

CHAPTER 11 DATA REPLICATION

302 INTERBASE 6

Problem: Floating-point primary keys

Fields that store floating-point numbers should not be identified as primary key fields in
the replication configuration. The inevitable rounding errors make these fields unsuitable
for uniquely identifying the rows in a table.

Workaround

This problem will probably vanish with Interbase 6.

Problem: Shared resource error

“Cannot create shared resource” error when trying to run either the replication or the
scheduler managers.

Workaround

Shut down the scheduler, and restart it after using the manager.

Problem: Replicating new datatypes to IB5.5

Interbase 5.5 crashes when attempting to replicate new IB6 TIME or DATE fields to IB5.5
DATE fields. This may happen with Blobs as well.

Workaround

Do not replicate these datatypes to IB5.x from IB6.

OPERATIONS GUIDE 303

APPENDIX

A
Appendix AInterBase Document

Conventions

This appendix covers the following topics:

g The InterBase 6 documentation set

g The printing conventions used to display information in text

g The printing conventions used to display information in syntax, code, and examples

APPENDIX A INTERBASE DOCUMENT CONVENTIONS

304 INTERBASE 6

The InterBase documentation set
The InterBase documentation set is an integrated package designed for all levels of users.
It consists of six full-length printed books plus the Installation Guide. Each of these
books is also provided in Adobe Acrobat PDF format and is accessible on line. If Adobe
Acrobat is not already installed on your system, you can find it on the InterBase
distribution CD-ROM or at http//www.adobe.com/prodindex/acrobat/readstep.html. Acrobat is
available for Windows NT, Windows 95, and most flavors of UNIX.

Book Description

Operations Guide Provides an introduction to InterBase and an explanation of tools and
procedures for performing administrative tasks on databases and
database servers; also includes full reference on InterBase utilities,
including isql, gbak, gfix, and others

Data Definition Guide Explains how to create, alter, and delete database objects using the SQL
language

 Developer’s Guide Provides both reference and task-oriented material for users of the
Borland RAD tools (Delphi, C++ Builder, and JBuilder); includes chapters
on writing UDFs, driver configuration, developing embedded installation
applications, and using the new InterBase Data Access Components

Language Reference Describes the SQL language syntax and usage; includes references for
procedure and trigger language, InterBase keywords, functions in the
InterBase UDF library, error codes, character sets, and the system tables

Embedded SQL Guide (formerly called the Programmer’s Guide) Describes how to write
embedded SQL database applications in a host language, precompiled
through gpre

API Guide Explains how to write database applications using the InterBase API

TABLE A.1 Books in the InterBase 6 documentation set

PRINTING CONVENTIONS

OPERATIONS GUIDE 305

Printing conventions
The InterBase documentation set uses various typographic conventions to identify objects
and syntactic elements.

The following table lists typographic conventions used in text, and provides examples of
their use:

Convention Purpose Example

UPPERCASE SQL keywords, SQL functions, and names of
all database objects such as tables, columns,
indexes, and stored procedures

• the SELECT statement retrieves data from the CITY column
in the CITIES table

• can be used in CHAR, VARCHAR, and BLOB text columns
• the CAST() function

italic New terms, emphasized words, all elements
from host languages, and all user-supplied
items

• isc_decode_date()
• the host variable, segment_length
• contains six variables, or data members

bold File names, menu picks, and all commands
that are entered at a system prompt,
including their switches, arguments, and
parameters

• gbak, isql, gsec. gfix
• specify the gpre -sqlda old switch
• a script, ib_udf.sql, in the examples subdirectory
• the employee.gdb database; the employee database
• the Session | Advanced Settings command

TABLE A.2 Text conventions

APPENDIX A INTERBASE DOCUMENT CONVENTIONS

306 INTERBASE 6

Syntax conventions
The following table lists the conventions used in syntax statements and sample code, and
provides examples of their use:

Convention Purpose Example

UPPERCASE Keywords that must be typed exactly as
they appear when used

•SET TERM !!;
•ADD [CONSTRAINT] CHECK

italic User-supplied parameters that cannot be
broken into smaller units

•CREATE TRIGGER name FOR table;
•ALTER EXCEPTION name ' message'

<italic> Parameters in angle brackets can be
broken into smaller syntactic units; the
expansion syntax for these parameters
follows the current syntax statement

WHILE (<condition>) DO <compound_statement>

[] Optional syntax: you do not need to
include anything that is enclosed in
square brackets; when elements within
these brackets are separated by the pipe
symbol (|), you can choose only one

•CREATE [UNIQUE][ASCENDING | DESCENDING]

•[FILTER [FROM subtype] TO subtype]

{ } You must include one and only one of the
enclosed options, which are separated by
the pipe symbol (|)

{INTO | USING}

| You can choose only one of a group whose
elements are separated by this pipe
symbol

SELECT [DISTINCT | ALL]

... You can repeat the clause enclosed in
brackets with the “…” symbol as many
times as necessary

(<col> [,<col>…])

TABLE A.3 Syntax conventions

OPERATIONS GUIDE i

A
accessing databases 89–94
activating shadows 122
adding

comments in ISQL script files 240
database file 108
shadow files 123
users 96, 99–101

application development
InterBase Express 267

assigning passwords 96, 98, 99
AUTO mode 121
automatic commit of DDL statements 47, 198
average

data length 179
fill 176

B
backing up databases

converting external files to internal
tables 151, 160

metadata only 149, 160
options 148, 160
preventing sweeping 150, 160
upgrading the on-disk structure 146

binary
data 205
files 205

BLOB data
displaying 48
editing 205
ID numbers, retrieval 205
improving access time 155
saving 205

BLOB filters 228
BLOBDUMP 205
buffered writes vs. forced writes 131

C
cache buffers, number of 129, 179
changing

character set 192
database page size 155, 163
gsec entries 101
user names 101

character set, changing 48, 192
CHECK constraints 225, 226
checksums

header page 178
ignoring 150, 160

column headers, changing page length 198
commands

gbak 158–167
gfix 141–143
gsec 99–101
isql 202–203

displaying 207, 209
editing 205
executing 190, 192, 207

comments in ISQL scripts 240
COMMIT 201, 239
commit

after each table 156, 163
automatic 47, 198

conditional shadows 122
CONNECT 200
connecting to databases 71–74

denying new connections 136
troubleshooting 74–81

connections
databases 200
denying 136
remote servers 67, 82, 198, 199, 200

constraints 225, 226
continuation prompt 197
corrupt databases

backing up by ignoring checksums 150, 160

Index

ii INTERBASE 6

repairing 134
CREATE DATABASE 198, 200
creating

conditional shadows 122
databases 113
multifile databases 108
shadows 118–122, 156

creation date, database 179

D
data page slots 176
data pages 176
database administration 96

adding users 99
changing users 96, 101
overview 24
security utility 98–101

database statistics
gstat 181
IBConsole 173

databases
accessing 89–94
backing up 147, 158, 160, 161
closing 73, 206, 209
connecting to 71–74
creating 113
creating multifile 108
creation date 179
deactivating indexes 156
deleting 115
denying new connections 136
disabling validity checking 157, 163
dropping 115
extracting metadata 149, 160
file naming conventions 107
file, adding 108
gbak and gsplit 29
locking statistics 182
name information 177
overwriting 156, 163
page size 155, 163, 178
read-only 112, 142, 163
registering 70
repairing 134–135
replacing 156, 163

restarting 135, 138
shadowing 117–123, 156
shutdown and restart 135
shutting down 135
structure, retrieving 225
sweeping 126–128, 142

immediately 128, 142
sweep interval 128

testing connections 82
unregistering 73
upgrading the on-disk structure 146
validating 131–133, 143
viewing structure 225

DDL
automatic commits 47, 198
defined 202
extracting 198, 199, 201–202
processing 196
transactions 201

deactivating indexes 156, 163
deadlocks 182
DECLARE FILTER 201, 228
default terminator 197, 211
deleting

databases 115
shadows 123
users 97

disabling
garbage collection 150, 160
validity checking 157, 163

disabling automatic internet dialup 78
displaying

BLOB data 48
error messages 209
metadata 194, 203
objects 232
query plan 47, 219
statements 198
statistics 220
version numbers 199

DML 202
processing 196

domains 226
DROP SHADOW 123
dropping

OPERATIONS GUIDE iii

databases 115
shadows 123
users 97

E
echoing 198
EDIT 205

INPUT and 207
editing

BLOB data 205
input files 224
isql commands 205

editors 206
environments, isql 203
errors

connection refused 74
connection rejected 77
gbak 168, 172
gfix 144
gsec 102
isql 203

exceptions 227
EXIT 206

QUIT vs. 209
extracting

DDL 198, 199
metadata 149, 201–202

F
files

input 192, 198
naming conventions 107
shadow 119, 123, 156
writing to 193, 198, 201

fill distribution 176, 179
filters, displaying 196, 228
forced writes vs. buffered writes 131

G
garbage collection, disabling 150, 160
gbak

commands 158–167
errors 168–172

generators, displaying 196, 230

gfix
activating shadows 122
commands 141–143
errors 144
killing shadows 122

global header information 182
gsec 98–101

adding users 99–101
changing entries 101
commands 99–101
deleting entries 101
errors 102
exiting 98
help 99
options 100
running remotely 98
starting 98, 101

gsplit 29
gstat 181

H
header page generation 178
help

gsec 99
IBConsole 35
InterBase 35
ISQL commands 207
UNIX 52

I
IBConsole

character sets 48
commit and rollback 193
denying new connections 136
displaying metadata 194–196
executing SQL statements 190–194
restarting databases 138
saving ISQL input and output 193
script file, adding comments 240
security 95
settings 45
toolbar 36
Tree pane 38
viewing statistics 173

iv INTERBASE 6

Work pane 39
ignoring

checksums 150, 160
limbo transactions 150, 160

implementation ID 178
index root page 176
indexes

correcting duplicate values 156
deactivating 156, 163
depth 179
displaying 203, 231
improving performance 155
retrieving 231

INPUT 207
input files 192, 198, 207

editing 224
interactive SQL. See isql
InterBase

API, user administration 97
developing database applications with

IBX 267
on UNIX 52
running as an application on Windows NT 50
shutting down on Windows 95 51
shutting down on Windows NT 50
version numbers 199, 237

ISC4.GDB 91, 98
viewing contents 99

isql 196–204
commands 202–203
connecting to databases 200
displaying help 207
editing 205
errors 203
executing 190, 192, 207
exiting 200, 203, 206, 209
options 197–199
output 209
saving input and output 193
script files, adding comments in

IBConsole 240
SET statements 210–223
setting environment 203
specifying database 197
starting 197, 200

terminator characters 48, 197, 199

K
killing shadows 122

L
leaf buckets 179
limbo transactions

ignoring 150, 160
two-phase commit 138

lock
manager 182
table 182

locks 182
logging in to a server 68

M
MANUAL mode 121
max dup 179
metadata

command-line ISQL 196
displaying 194, 203
extracting 149, 201–202
in IBConsole 194–196

multifile databases 108

N
name information 177
nesting INPUT commands 207
next

connection ID 178
header page 179
transaction 178

node names, shared disks vs. 200
nodes 179
number of cache buffers 179

O
objects

deleting 232
displaying 232

ODS. See on-disk structure

OPERATIONS GUIDE v

oldest
active transaction 178
transaction 178

on-disk structure
upgrading 146
version 178

operating system shells 224
OUTPUT 208
output

files 193, 198, 201
isql 193, 209
metadata 194, 203
redirecting 193, 208
statements 198
user-defined functions 196, 229
verbose 151, 158, 161

P
page size

changing 155, 163
default 114
displaying current 178

passwords
assigning 96, 98, 99
connecting to remote servers 198

primary pointer page 176
procedures, listing 203, 232

Q
query

displaying plan 47, 219
testing 196

QUIT 209
EXIT vs. 206

R
read-only databases 112, 142, 163
registering

databases 70
servers 66

remote servers, connecting to 67, 82, 198, 199,
200

repairing databases 134–135
replacing databases 156, 163

restarting databases 135, 138
restore options 155
ROLLBACK 201

S
saving ISQL input and output 193
security

adding a user 96, 99
displaying privileges 230
dropping users 97, 101
IBConsole 95
modifying user configuration 96, 101

sequence number 178
servers

log 62
logging in 68
registering 66
shutting down on Windows NT 50
starting on UNIX 52
unregistering 69

SET 210
SET AUTODDL 212
SET BLOBDISPLAY 213
SET COUNT 215
SET ECHO 216
SET LIST 217
SET NAMES 218
SET PLAN 219
SET statements 210–223
SET STATS 220
SET TERM 221–222
SET TERMINATOR 197
SET TIME 223
SET TRANSACTION 201
shadow count 178
shadows

activating 122
adding files 123
advantages 118
AUTO mode 121
conditional 122
creating 118–122, 156
dropping 123
killing 122
limitations 118

vi INTERBASE 6

MANUAL mode 121
overview 117–118

shared disks, node names vs. 200
SHELL 224
SHOW CHECK 225
SHOW DATABASE 119, 225
SHOW DOMAINS 226
SHOW EXCEPTIONS 227
SHOW FILTERS 228
SHOW FUNCTIONS 229
SHOW GENERATORS 230
SHOW GRANT 230
SHOW INDEX 231
SHOW PROCEDURES 232
SHOW SYSTEM 234
SHOW TABLES 235
SHOW TRIGGERS 236
SHOW VERSION 237
SHOW VIEWS 237
shutting down databases

denying new connections 136
denying new transactions 137
forced shutdown after timeout 137, 141
timeout options 136

SQL dialect 114
SQL statements

commiting in IBConsole 193
executing in IBConsole 190–194
rolling back in IBConsole 193

SQLCODE 203
starting

gsec 98, 101
InterBase Guardian 49
InterBase Server 49
isql 197, 200
options 49, 51

statements
displaying 198
terminator characters 48, 197, 199

statistics
displaying 220
gstat 181
IBConsole 173

sweeping databases 126–128, 142
disabling 128

immediately 128, 142
preventing during a backup 150, 160
sweep interval 128

SYSDBA 90
system

editors 206
shells 224
tables 234
views 234

T
tables

constraints 225, 226
listing 196, 203

TCP/IP 200
terminator characters

default 48, 197
isql 48, 197, 199

testing
database connection 82
queries 196

text
editors 206
saving blocks to file 205

toolbar 36
total dup 179
transactions

committing 201, 206
DDL 201
denying new transactions 137
isql 201
oldest 178
oldest active 178
rolling back 201, 209
rolling back limbo transactions 150
two-phase commit 138

Tree pane 38
triggers, listing 203, 236
troubleshooting, database connection 74–81
trusted host 90
two-phase commit 138, 150

U
unregistering

OPERATIONS GUIDE vii

databases 73
servers 69

upgrading the on-disk structure (ODS) 146
use all space 157
user administration with the InterBase API 97
user names 199

adding 98, 99–101
changing 101
dropping 97
UNIX 90

user-defined functions
listing 196, 229
viewing 229

V
validating databases 131–133, 143
validity checking, disabling 157
verbose output 151, 158, 161
version

numbers, displaying 199, 237
on-disk structure 178

views, listing 196, 237

W
Windows NT commands 224
Work pane 39

viii INTERBASE 6

	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Who should use this guide
	Topics covered in this guide
	System requirements and server sizing
	Windows system requirements
	UNIX system requirements

	Primary InterBase features
	SQL support
	Multiuser database access
	Transaction management
	Multigenerational architecture
	Optimistic row-level locking
	Database administration
	Managing server security
	Backing up and restoring databases
	Maintaining a database
	Viewing statistics

	InterBase Specifications

	Overview of command-line tools
	isql
	gbak
	gfix
	gsec
	gstat
	iblockpr (gds_lock_print)
	ibmgr

	IBConsole: The InterBase�Interface
	IBConsole
	The IBConsole window
	IBConsole menus
	Context menus
	IBConsole toolbar
	Tree pane
	Work pane
	Standard text display window
	InterBase Security
	Server Management
	Database Management

	Server Configuration
	Server configuration using IBConsole
	The Alias tab
	The General tab

	IBConsole Preferences
	ISQL preferences
	Windows NT service
	Starting and stopping the service
	Selecting service startup options
	Shutting down the server on Windows NT
	Running InterBase as an application on Windows NT

	Windows 95 peer-to-peer server application
	Selecting startup options
	Shutting down InterBase on Windows 95

	UNIX daemon
	Starting the server
	Stopping the server
	Starting the server automatically

	InterBase Guardian process
	Starting Guardian
	Starting the server without Guardian
	Running the server as an application
	Running the server as a service

	The attachment governor
	Environment variables
	ISC_USER and ISC_PASSWORD
	The INTERBASE environment variable
	The TMP environment variable

	Temporary file management
	Configuring history files
	Configuring sort files

	Configuration parameters in isc_config
	Diagnostic log files

	Network Configuration
	Network protocols
	Connection specification
	Registering a server
	Logging in to a server
	Logging out from a server
	Unregistering a server
	Registering a database
	Connecting to a database
	Connect
	Connect as

	Disconnecting a database
	Unregistering a database
	Connection-specific examples

	Connection troubleshooting
	Connection Refused errors
	Connection Rejected errors
	Disabling automatic Internet dialup
	Reorder network adapter bindings
	Internet Explorer
	Disabling autodial in the registry
	Disabling RAS autodial
	Preventing RAS from dialing out for local network activity

	Other errors
	When all else fails...

	Communication Diagnostics
	DB Connection tab
	To run a DB Connection test:
	Sample output (local connection)

	TCP/IP tab
	NetBEUI tab
	SPX tab

	Database Security
	Security model
	The SYSDBA user
	Other users
	Users on UNIX

	Security database isc4.gdb
	SQL privileges
	Groups of users
	ANSI SQL 3 roles
	UNIX groups

	Other security measures
	Restriction on using InterBase tools
	Protecting your databases

	User administration with IBConsole
	Displaying the User Information dialog
	Adding a user
	Modifying user configurations
	Deleting a user

	User administration with the InterBase API
	gsec command-line tool
	Running gsec remotely
	Security utility commands
	Displaying the security database
	Adding entries to the security database
	Modifying the security database
	Deleting entries from the security database

	Using gsec from the command prompt

	gsec error messages

	Database Configuration and�Maintenance
	Database files
	Database file size
	Dynamic file sizing
	External files
	Temporary files
	File naming conventions
	Primary file specifications
	Secondary file specifications

	Multifile databases
	Adding database files
	Altering database file sizes
	Maximum number of files
	Application considerations
	Reorganizing file allocation

	Networked filesystems

	On-disk structure (ODS)
	Read-write and read-only databases
	Read-write databases
	Read-only databases
	Properties of read-only databases
	Making a database read-only
	Read-only with older InterBase versions

	Creating databases
	Database options
	Page size
	Default character set
	SQL dialect

	Dropping databases
	Backup file properties
	Removing database backup files
	Shadowing
	Tasks for shadowing
	Advantages of shadowing
	Limitations of shadowing
	Creating a shadow
	Creating a single-file shadow
	Creating a multifile shadow
	Auto mode and manual mode
	Conditional shadows

	Activating a shadow
	Dropping a shadow
	Adding a shadow file

	Database configuration using IBConsole
	Alias tab
	General tab

	Sweep interval and automated housekeeping
	Overview of sweeping
	Setting the sweep interval
	Disabling automatic sweeping
	Performing an immediate database sweep

	Configuring the Superserver cache
	Default cache size per database
	Default cache size per server
	Default cache size per ISQL connection
	Setting cache size in applications
	Verifying cache size

	Forced writes vs. buffered writes
	Validation and repair
	Repairing a corrupt database

	Database shutdown and restart
	Shutting down a database
	Shutdown Timeout options
	Shutdown options

	Restarting a database

	Limbo transactions
	Recovering transactions
	Transaction tab
	Advice tab

	gfix command-line tool
	gfix error messages

	Database Backup and�Restore
	Benefits of backup and restore
	Backing up a database
	Backup options
	Format
	Metadata Only
	Garbage Collection
	Transactions in Limbo
	Checksums
	Convert to Tables
	Verbose Output
	To transfer a database to a server running on a different operating system:

	Restoring a database
	Database ownership
	Restore options
	Page Size
	Overwrite
	Commit After Each Table
	Create Shadow Files
	Deactivate Indexes
	Validity Conditions
	Use All Space
	Verbose Output

	gbak command-line tool
	Database backup
	Backing up a database with gbak
	Restoring a database
	The -service option
	The user name and password
	Some backup and restore examples
	Backup examples

	gbak error messages

	Database and Server Statistics
	Viewing statistics using IBConsole
	Database statistics options
	All Options
	Data Pages
	Database Log
	Header Pages
	Index Pages
	System Relations

	gstat command-line tool
	Viewing lock statistics
	Retrieving statistics programmatically

	Interactive Query
	ISQL
	The ISQL window
	ISQL menus
	ISQL toolbar
	ISQL work areas
	Status bar

	Temporary files
	Executing SQL statements
	Executing SQL interactively
	Preparing SQL statements
	Legal SQL statements
	Loading and executing an SQL script file

	Commit and Rollback
	Saving ISQL input and output
	Saving SQL input
	Saving SQL output

	Changing ISQL settings

	Metadata information
	Viewing metadata

	Command-line isql tool
	Invoking isql
	Command-line options
	Examples
	Exiting isql
	Connecting to a database

	Transaction behavior in isql
	Extracting metadata
	isql Commands
	SHOW commands
	SET commands
	Other isql commands
	Exiting isql

	Error handling

	isql command reference
	BLOBDUMP
	EDIT
	EXIT
	HELP
	INPUT
	OUTPUT
	QUIT
	SET
	SET AUTODDL
	SET BLOBDISPLAY
	SET COUNT
	SET ECHO
	SET LIST
	SET NAMES
	SET PLAN
	SET STATS
	SET TERM
	SET TIME
	SHELL
	SHOW CHECK
	SHOW DATABASE
	SHOW DOMAINS
	SHOW EXCEPTIONS
	SHOW FILTERS
	SHOW FUNCTIONS
	SHOW GENERATORS
	SHOW GRANT
	SHOW INDEX
	SHOW PROCEDURES
	SHOW ROLES
	SHOW SYSTEM
	SHOW TABLES
	SHOW TRIGGERS
	SHOW VERSION
	SHOW VIEWS

	Using SQL scripts
	Creating an isql script
	Running an SQL script
	Committing work in an SQL script
	Adding comments in an isql script

	Database and Server Performance
	Introduction
	Hardware configuration
	Choosing a processor speed
	Using multiprocessor servers
	Sizing memory
	Using high-performance I/O subsystems
	Distributing I/O
	Using RAID
	Using multiple disks for database files
	Using multiple disk controllers
	Making drives specialized

	Using high-bandwidth network systems
	Using high-performance bus
	Useful links

	Operating system configuration
	Disabling screen savers
	Console logins
	Sizing a temporary directory
	Use a dedicated server
	Optimizing Windows NT for network applications
	Understanding Windows NT pitfalls
	Understanding Linux pitfalls
	Understanding NetWare pitfalls

	Network configuration
	Choosing a network protocol
	NetBEUI and IPX/SPX
	TCP/IP

	Configuring hostname lookups

	Database properties
	Choosing a database page size
	Setting the database page fill ratio
	Sizing database cache buffers
	Buffering database writes

	Database design principles
	Defining indexes
	What is an index?
	What queries use an index?
	What queries don’t use indexes?
	Directional indexes

	Normalizing databases
	Choosing Blob segment size

	Database tuning tasks
	Tuning indexes
	Rebuilding indexes
	Recalculating index selectivity

	Performing regular backups
	Increasing backup performance
	Increasing restore performance

	Facilitating garbage collection

	Application design techniques
	Using transaction isolation modes
	Using correlated subqueries
	Preparing parameterized queries
	Designing query optimization plans
	Deferring index updates

	Application development tools
	InterBase Express™ (IBX)
	IB Objects
	Borland Database Engine
	BDE driver flags
	SQL passthru mode
	SQL query mode

	Visual components
	Understanding fetch-all operations
	TQuery
	TTable

	Data Replication
	About IBReplicator
	Requirements
	Platforms currently supported
	InterBase support
	Windows system requirements
	Sun Solaris 2.5.x or 2.6.x system requirements

	IBReplicator features
	Overview
	InterBase advanced features
	Ease of use

	Components of IBReplicator
	About data replication
	How IBReplicator works
	The basic sequence
	IBReplicator’s strategies
	Resolving precedence issues
	Replication involving new InterBase 6 datatypes
	Operation logging
	Viewing schema

	Running the Replication Server
	Windows platforms
	Solaris platforms

	Using IBReplicator
	Steps in replication
	Managing configuration databases
	Creating a configuration database
	Working with configurations
	The default configuration

	Registering databases
	Defining replication schemata

	Defining a replication step by step
	Customizing default settings
	Creating schemata
	To define a new schema
	To edit a schema
	To delete a schema
	The schema node

	Choosing the source database
	Choosing the target databases
	Specifying a target database
	Cloning targets

	Choosing replicated tables and stored procedures
	Specifying replicated tables
	Removing replicated tables
	Table settings and row-level replication.
	Using SELECT statements to identify rows
	Replicating to stored procedures

	Choosing replicated columns
	Defining primary keys
	Identifying data columns

	Creating system objects

	Problems and workarounds

	InterBase Document Conventions
	The InterBase documentation set
	Printing conventions
	Syntax conventions

	Index

