

InterBase 6

Developer’s

Guide

S O F T W A R E C O R P O R A T I O N

100 Enterprise Way, Scotts Valley, CA 95066 http://www.borland.com

Borland

®

February 26, 2001 (D:\Holly\temp\devguide\devguidetitle.fm5)

Borland Software Corporation may have patents and/or pending patent applications covering subject matter in

this document. The furnishing of this document does not convey any license to these patents.

Copyright 2001 BorlandSoftware Corporation. All rights reserved. All InterBase and Borland products are

trademarks or registered trademarks of BorlandSoftware Corporation. Other brand and product names are

trademarks or registered trademarks of their respective holders.

1INT0060WW21000 21003

D4

iii

Table of Contents

List of Tables

. .

xv

List of Figures

. .

xvii

CHAPTER 1

Using the InterBase Developer’s Guide

Who should use this book

. .

19

Topics covered in this book

. .

20

CHAPTER 2

Client/Server Concepts

Definition of a client

. .

23

The InterBase client library

.

24

Definition of a server

. .

25

Application development

. .

26

Borland client tools applications

.

 26

Embedded applications

.

 27

API applications

. .

 28

Multi-database applications

.

 29

CHAPTER 3

Programming Applications with Delphi or C++ Builder

Optimizing the InterBase SQL Links driver

.

32

Setting the driver flags

.

 32

Setting the SQL pass-through mode

.

 33

Setting the SQL query mode

.

 33

Working with TQuery

. .

33

Why not to use TTable

. .

 33

Setting TQuery properties and methods

.

 33

Using generators

. .

34

CHAPTER 4

Programming Applications with JBuilder

Installing InterClient classes into JBuilder

.

37

Database application basics

.

 38

Using JDBC URLs

. .

 39

Installing and administering InterServer

.

40

iv

INTERBASE 6

Starting InterServer on Windows NT and Windows 2000

.

 40

Shutting down InterServer

.

 41

Viewing InterServer information and properties

.

 41

Programming with InterClient

.

42

InterClient architecture

.

 43

InterClient communication

.

 44

Developing InterClient programs

.

44

Using the JDBC interfaces

.

 45

About InterClient drivers

.

 47

Accessing InterClient extensions to the JDBC

.

 49

Opening a database connection

.

 50

Executing SQL statements

.

 53

Executing stored procedures

.

 58

Troubleshooting InterClient programs

.

60

Handling installation problems

.

 60

Debugging your application

.

 61

Deploying InterClient programs

.

62

Deploying InterClient programs as applets

.

 62

Deploying InterClient programs as applications

.

 64

InterClient/JDBC compliance specifications

.

65

InterClient extensions to the JDBC API

.

 65

JDBC features not implemented in InterClient

.

 66

InterClient implementation of JDBC features

.

 68

InterBase features not available through InterClient or JDBC

69

Java SQL datatype support

.

 69

SQL-to-Java type conversions

.

 70

Java-to-SQL type conversion

.

 71

InterClient class references

.

 72

CHAPTER 5

Programming Applications with ODBC

Overview of ODBC

. .

73

Configuring an ODBC driver

.

 74

Programming with the ODBC driver

.

74

v

Configuring and using ODBC data sources

.

75

Configuring data sources

.

 75

Connecting from Delphi using the ODBC data source

. . .

 76

CHAPTER 6

Working with UDFs and Blob Filters

About UDFs

. .

78

UDF overview

. .

78

Writing a function module

. .

78

Writing a UDF

. .

 79

Thread-safe UDFs

. .

 80

Compiling and linking a function module

.

82

Creating a UDF library

. .

 83

Modifying a UDF library

.

 83

Declaring a UDF to a database

.

83

Declaring UDFs with FREE_IT

.

 85

UDF library placement

.

 86

Calling a UDF

. .

87

Calling a UDF with

SELECT

.

 87

Calling a UDF with

INSERT

.

 88

Calling a UDF with

UPDATE

.

 88

Calling a UDF with

DELETE

.

 88

Writing a Blob UDF

. .

88

Creating a Blob control structure

.

 89

Declaring a Blob UDF

. .

 90

A Blob UDF example

. .

 91

The InterBase UDF library

. .

92

Declaring Blob filters

. .

94

CHAPTER 7

Using the Install and Licensing APIs

About the InterBase Install API

.

98

Files in the Install API

. .

 98

What the Install API does

.

 99

The install handle

. .

 100

Error handling

. .

 100

vi

INTERBASE 6

Callback functions

. .

 101

Datatypes defined for the Install API

.

 103

Writing an InterBase install

.

103

Overview of the process

.

 104

A real-world example

.

 105

The Install API functions

. .

105

isc_install_clear_options()

.

 106

isc_install_execute()

. .

 107

isc_install_get_info()

.

 109

isc_install_get_message()

.

 111

isc_install_load_external_text()

.

 111

isc_install_precheck()

.

 112

isc_install_set_option()

.

 114

isc_install_unset_option()

.

 115

isc_uninstall_execute()

.

 116

isc_uninstall_precheck()

.

 118

Using the License API

. .

118

Loading the License API

.

 119

Preparing the ib_license.dat file

.

 119

Adding server functionality

.

 119

isc_license_add()

. .

 120

isc_license_check()

. .

 121

isc_license_remove()

. .

 122

isc_license_display()

. .

 122

isc_license_get_msg()

.

 123

Pseudocode for a typical install

.

123

CHAPTER 8

Introduction to IBX

The InterBase tab

. .

128

TIBTable

. .

 128

TIBQuery

. .

 128

TIBStoredProc

. .

 129

TIBDatabase

. .

 129

TIBTransaction

. .

 129

vii

TIBUpdateSQL

. .

 129

TIBDataSet

. .

 130

TIBSQL

. .

 130

TIBDatabaseInfo

. .

 130

TIBSQLMonitor

. .

 130

TIBEvents

. .

 130

The InterBase Admin tab

. .

131

TIBConfigService

. .

 131

TIBBackupService

. .

 132

TIBRestoreService

. .

 132

TIBValidationService

. .

 132

TIBStatisticalService

. .

 132

TIBLogService

. .

 132

TIBSecurityService

. .

 133

TIBLicensingService

. .

 133

TIBServerProperties

. .

 133

TIBInstall

. .

 133

TIBUnInstall

. .

 133

CHAPTER 9

Designing Database Applications

Using InterBase databases

.

136

Local databases

. .

 136

Remote database servers

.

 136

Database security

. .

 137

Transactions

. .

 137

The Data Dictionary

. .

 138

Referential integrity, stored procedures, and triggers

. .

 139

Database architecture

. .

140

Planning for scalability

.

 141

Single-tiered database applications

.

 142

Two-tiered database applications

.

 142

Multi-tiered database applications

.

 143

Designing the user interface

.

145

Displaying a single record

.

 146

viii

INTERBASE 6

Displaying multiple records

.

 146

Analyzing data

. .

 147

Selecting what data to show

.

 147

CHAPTER 10

Building One- and Two-Tiered Applications

Understanding databases and datasets

.

150

Using transactions

. .

 150

Caching updates

. .

 152

Creating and restructuring database tables

.

 153

Using the briefcase model

.

 153

Scaling up to a three-tiered application

.

154

Creating multi-tiered applications

.

155

CHAPTER 11

Connecting to Databases

Understanding persistent and temporary database components

.

157

Using temporary database components

.

 158

Creating database components at design time

.

 158

Controlling connections

. .

159

Controlling server login

.

 159

Connecting to a database server

.

 159

Working with network protocols

.

 160

Using ODBC

. .

 161

Disconnecting from a database server

.

 161

Iterating through a database component’s datasets

. . .

 161

Requesting information about an attachment

.

162

Database characteristics

.

 162

Environmental characteristics

.

 163

Performance statistics

.

 164

Database operation counts

.

 164

Requesting database information

.

 165

CHAPTER 12

Understanding Datasets

What is TDataSet?

. .

168

Opening and closing datasets

.

168

ix

Determining and setting dataset states

.

169

Deactivating a dataset

.

 171

Browsing a dataset

. .

 172

Enabling dataset editing

.

 173

Enabling insertion of new records

.

 174

Calculating fields

. .

 175

Updating records

. .

 175

Navigating datasets

. .

175

Searching datasets

. .

175

Modifying data

. .

175

Using dataset events

. .

176

Aborting a method

. .

 176

Using OnCalcFields

. .

 177

Using cached updates

. .

177

CHAPTER 13

Working with Tables

Using table components

. .

179

Setting up a table component

.

180

Specifying a table name

.

 181

Opening and closing a table

.

 182

Controlling read/write access to a table

.

182

Searching for records

. .

182

Sorting records

. .

183

Retrieving a list of available indexes with GetIndexNames

.

183

Specifying an alternative index with IndexName

.

 184

Specifying sort order for SQL tables

.

 184

Specifying fields with IndexFieldNames

.

184

Examining the field list for an index

.

 184

Working with a subset of data

.

185

Deleting all records in a table

.

185

Deleting a table

. .

185

Renaming a table

. .

186

Creating a table

. .

186

x

INTERBASE 6

Synchronizing tables linked to the same database table

. . .

188

Creating master/detail forms

.

189

Building an example master/detail form

.

 189

CHAPTER 14

Working with Queries

Queries for desktop developers

.

193

Queries for server developers

.

194

When to use TIBDataSet, TIBQuery, and TIBSQL

.

195

Using a query component: an overview

.

195

Specifying the SQL statement to execute

.

197

Specifying the SQL property at design time

.

 198

Specifying an SQL statement at runtime

.

 199

Setting parameters

. .

200

Supplying parameters at design time

.

 201

Supplying parameters at runtime

.

 202

Using a data source to bind parameters

.

 203

Executing a query

. .

205

Executing a query at design time

.

 205

Executing a query at runtime

.

 205

Preparing a query

. .

207

Unpreparing a query to release resources

.

207

Improving query performance

.

207

Disabling bi-directional cursors

.

 208

Working with result sets

. .

208

Updating a read-only result set

.

 209

CHAPTER 15

Working with Stored Procedures

When should you use stored procedures?

.

212

Using a stored procedure

. .

213

Creating a stored procedure component

.

 214

Creating a stored procedure

.

 215

Preparing and executing a stored procedure

.

 215

Using stored procedures that return result sets

.

 216

xi

Using stored procedures that return data using parameters

217

Using stored procedures that perform actions on data

.

 219

Understanding stored procedure parameters

.

221

Using input parameters

.

 222

Using output parameters

.

 222

Using input/output parameters

.

 223

Using the result parameter

.

 224

Accessing parameters at design time

.

 224

Setting parameter information at design time

.

 225

Creating parameters at runtime

.

 226

Viewing parameter information at design time

.

227

CHAPTER 16

Working with Cached Updates

Deciding when to use cached updates

.

229

Using cached updates

. .

230

Enabling and disabling cached updates

.

 231

Fetching records

. .

 232

Applying cached updates

.

 233

Canceling pending cached updates

.

 236

Undeleting cached records

.

 238

Specifying visible records in the cache

.

 238

Checking update status

.

 240

Using update objects to update a dataset

.

241

Specifying the UpdateObject property for a dataset

. . .

 242

Creating SQL statements for update components

. . . .

 243

Executing update statements

.

 249

Using dataset components to update a dataset

.

 253

Updating a read-only result set

.

254

Controlling the update process

.

254

Determining if you need to control the updating process

 254

Creating an OnUpdateRecord event handler

.

 255

Handling cached update errors

.

256

Referencing the dataset to which to apply updates

. . .

 257

xii

INTERBASE 6

Indicating the type of update that generated an error

. .

 257

Specifying the action to take

.

 258

CHAPTER 17

Debugging with SQL Monitor

Building a simple monitoring application

.

261

CHAPTER 18

Importing and Exporting Data

Exporting and importing raw data

.

263

Exporting raw data

. .

 264

Importing raw data

. .

 264

Exporting and importing delimited data

.

265

Exporting delimited data

.

 266

Importing delimited data

.

 266

CHAPTER 19

Working with InterBase Services

Overview of the InterBase service components

.

270

About the services manager

.

 270

Service component hierarchy

.

 270

Attaching to a service manager

.

 271

Detaching from a service manager

.

 272

Setting database properties

.

272

Bringing a database online

.

 273

Shutting down a database

.

 273

Setting the sweep interval

.

 274

Setting the async mode

.

 274

Setting the page buffers

.

 275

Setting the access mode

.

 275

Setting the database reserve space

.

 276

Activating the database shadow

.

 276

Backing up and restoring databases

.

276

Setting common backup and restore properties

.

 277

Backing up databases

.

 277

Restoring databases

. .

 280

Performing database maintenance

.

285

Validating a database

.

 285

xiii

Displaying limbo transaction information

.

 286

Resolving limbo transactions

.

 287

Requesting database and server status reports

.

288

Requesting database statistics

.

 288

Using the log service

. .

289

Configuring users

. .

290

Adding a user to the security database

.

 290

Listing users in the security database

.

 291

Removing a user from the security database

.

 292

Modifying a user in the security database

.

 293

Administering software activation certificates

.

293

Listing software activation certificates

.

 293

Adding a software activation certificate

.

 293

Removing a software activation certificate

.

 294

Displaying server properties

.

295

Displaying the database information

.

 295

Displaying license information

.

 296

Displaying license mask information

.

 296

Displaying InterBase configuration parameters

.

 297

Displaying the server version

.

 298

CHAPTER 20

Programming with Database Events

Setting up event alerts

. .

300

Writing an event handler

.

 300

CHAPTER 21

Writing Installation Wizards

Installing

. .

301

Defining the installation component

.

 301

Defining the uninstall component

.

304

APPENDIX A

InterBase Document Conventions

The InterBase documentation set

.

308

Printing conventions

. .

308

Syntax conventions

. .

309

xiv

INTERBASE 6

xv

List of Tables

Table 1.1

Chapters in the

Developer’s Guide

.

.

 20

Table 4.1

Pros and cons of applet development

.

64

Table 4.2

InterClient extensions to JDBC

.

66

Table 4.3

Unsupported JDBC features

. .

67

Table 4.4

InterClient implementation of JDBC features

.

68

Table 4.5

 InterBase features not supported by InterClient

.

69

Table 4.6

Java SQL datatype support

. .

70

Table 4.7

SQL to Java type conversions

. .

70

Table 4.8

Java-to-SQL type conversions

. .

71

Table 6.1

Microsoft C compiler options

. .

82

Table 6.2

Arguments to

DECLARE EXTERNAL FUNCTION

.

84

Table 6.3

Fields in the Blob struct

. .

89

Table 7.1

Install API files required for writing an InterBase install

.

99

Table 7.2

Datatypes defined for the InterBase Install API

.

103

Table 7.3

Entry points in

ibinstall.dll

. .

106

Table 7.4

. .

 110

Table 7.5

Error codes from

isc_license_add

()

.

121

Table 7.6

Error codes from

isc_license_check

()

.

121

Table 7.7

Returns codes from

isc_license_remove

()

.

122

Table 9.1

Data Dictionary interface

. .

138

Table 11.1

TIBDatabaseInfo database characteristic properties

.

162

Table 11.2

TIBDatabaseInfo environmental characteristic properties

.

163

Table 11.3

TIBDataBaseInfo performance properties

.

164

Table 11.4

TIBDatabaseInfo database operation count properties

.

165

Table 12.1

Values for the dataset

State

 property

.

169

Table 12.2

Dataset events

. .

176

Table 12.3

Properties, events, and methods for cached updates

.

178

Table 16.1

TIBUpdateRecordType values

.

239

Table 16.2

Return values for UpdateStatus

.

240

Table 16.3

UpdateKind values

. .

257

Table 16.4

UpdateAction values

. .

259

Table 19.1

Database shutdown modes

. .

273

Table 19.2

Common backup and restore properties

.

277

xvi

INTERBASE 6

LIST OF TABLES

Table 19.3

TIBBackupService

 options

. .

278

Table 19.4

TIBRestoreService

options

. .

281

Table 19.5

TIBValidationService

options

.

285

Table 19.6

TIBValidationService

 actions

.

287

Table 19.7

TIBStatisticalService options

.

288

Table 19.8

TIBSecurityService

 properties

.

291

Table 21.1

TIBInstall

 properties

. .

302

Table 21.2

TIBInstall

 options

. .

302

Table A.1

Books in the InterBase 6 documentation set

.

308

Table A.2

Text conventions

. .

309

Table A.3

Syntax conventions

. .

309

xvii

List of Figures

Figure 2.1

Basic client/server relationship

.

24

Figure 2.2

Role of the InterBase client library

.

25

Figure 4.1

Connection dialog

. .

38

Figure 4.2

InterClient architecture

. .

43

Figure 4.3

JDBC interfaces

. .

45

Figure 4.4

Using applets to access InterBase

.

62

Figure 4.5

Using standalone Java applications to access InterBase

.

64

Figure 8.1

The InterBase tab

. .

128

Figure 8.2

InterBase Admin tab

. .

131

Figure 9.1

User-interface to dataset connections in all database applications

.

141

Figure 9.2

Single-tiered database application architecture

.

142

Figure 9.3

Two-tiered database application architecture

.

143

Figure 9.4

Multi-tiered database architectures

.

144

Figure 12.1

InterBase database component dataset hierarchy

.

167

Figure 12.2

Relationship of Inactive and Browse states

.

171

Figure 12.3

Relationship of Browse to other dataset states

.

173

Figure 14.1

Sample master/detail query form and data module at design time

204

Figure 19.1

InterBase service component hierarchy

.

271

xviii

INTERBASE 6

LIST OF FIGURES

19

CHAPTER

1

Chapter 1

Using the InterBase

Developer’s Guide

The InterBase

Developer’s Guide

 focuses on the needs of developers who use the Borland

development tools: Delphi, C++ Builder, and JBuilder.

This i

ncludes

:

�

d

iscussions of writing UDFs,

�

w

riting install programs using InterBase’s Install API

�

p

rogramming with the ODBC driver

�

u

sing InterBase Express (IBX) data access components

Who should use this book

The

Developer’s Guide

is a resource for programmers writing applications with Borland’s

Delphi, C++ Builder, or JBuilder. It

assumes a general familiarity with SQL, data

definition, data manipulation, and programming practice.

CHAPTER 1

USING THE INTERBASE DEVELOPER’S GUIDE

20

INTERBASE 6

T

opics covered in this book

The following table lists the chapters in the

Developer’s Guide

 and provides a brief

description of each one:

Chapter

Description

Chapter 1, “

Using the InterBase Developer’s Guide

”

I

n

tended audience

 and coverage

Chapter 2, “

Client/Server Concepts

”

Ar

chitecture of client/server systems using InterBase,

including the definition of client and server, and

options for application development

Chapter 3, “

Programming Applications with Delphi or C++

Builder

”

Pr

ogramming InterBase applications using the Borland

Database Engine (BDE) with Delphi and C++ Builder

Chapter 4, “

Programming Applications with JBuilder

”

Bu

ilding InterBase applications using InterClient,

InterServer, and JBuilder

Chapter 5: “

Programming Applications with ODBC

”

Pr

ogramming InterBase applications with ODBC and

OLE DB

; p

rogramming with the ODBC driver and

configuring and using ODBC datasources

Chapter 6, “

Working with UDFs and Blob Filters

”

Ho

w to write UDFs, create UDF libraries, declare the

functions to the database, and call the functions;

includes a discussion of Blob filters

Chapter 7, “

Using the Install and Licensing APIs

”

Ho

w to use the functions in the Licensing and Install

APIs to write install applications

Chapter 8: “

Introduction to IBX

”

I

n

terBase Express (IBX) data access components

Chapter 9: “

Designing Database Applications

”

D

e

signing a database application

, including t

he

decisions involved in designing a user interface,

h

ow to

use databases

,

 and database architecture

Chapter 10: “

Building One- and Two-

Ti

ered Applications

”

On

e- and two tiered applications, datasets, and

transactions

Chapter 11: “

Connecting to Databases

”

D

a

tabase components and how to manipulate

database connections

Chapter 12: “

Understanding Datasets

”

Fu

nctionality of

TDataSet

i

nherited by the dataset

objects used in database applications

TABLE 1.1

Chapters in the

Developer’s Guide

.

T

OPICS COVERED IN THIS BOOK

21

Chapter 13: “

Working with Tables

”

Ho

w to use the

 TIBTable

 dataset component in your

database applications

Chapter 14: “

Working with Queries

”

Ho

w to use the

 TIBQuery

 dataset component in your

database applications

Chapter 15: “

Working with Stored Procedures

”

Ho

w to use InterBase stored procedures in your

database applications

Chapter 16: “

Working with Cached Updates

”

Wh

en and how to use cached updates, a

nd t

he

TIBUpdateSQL

 component, which can be used in

conjunction with cached updates to update virtually

any dataset

Chapter 17: “

Debugging with SQL Monitor

”

Ho

w to use the

TIBSQLMonitor

 component to monitor

the dynamic SQL that passes through the InterBase

server

Chapter 19: “

Working with InterBase Services

”

Ho

w to build

I

nterBase services into your applications

Chapter 20: “

Programming with Database Events

”

Ho

w to use a

TIBEvents

 component in your IBX-based

application to register interest in and handle InterBase

server events

Chapter 21: “

Writing Installation Wizards

”

Ho

w to use the

TIBSetup

,

TIBInstall

, and

TIBUninstall

components to build an InterBase installation program

Appendix A: “InterBase Document Conventions”

Describes the

InterBase documentation set and

documentation conventions

Chapter

Description

TABLE 1.1

Chapters in the

Developer’s Guide

.

22

INTERBASE 6

23

CHAPTER

2

Chapter 2

Client/Server Concepts

This chapter describes

t

he architecture of client/server systems using InterBase. The

chapter covers topics including the definition of

and InterBase

client and server, and

options for application development.

Definition of a client

An InterBase client is an application, typically written in C, C++, Delphi or Java, that

accesses data in an InterBase database.

In the more general case, an InterBase client is any application process that uses the

InterBase client library, directly or via a middleware interface, to establish a

communication channel to an InterBase server. The connection can be

local

 if the

application executes on the same node as the InterBase server, or

remote

 if the

application must use a network to connect to the InterBase server.

CHAPTER 2

CLIENT/SERVER CONCEPTS

24

INTERBASE 6

FIGURE 2.1

Basic client/server relationship

InterBase is designed to allow clients

t

o access an InterBase server on a

p

latform and

operating system

different

from the client

’s platform and operating system

.

A c

ommon

arrangement is to have

W

indows 98 PCs acting as client workstations t

hat c

oncurrently

access a departmental server running Windows

2000 or Linux

.

The InterBase client library

The InterBase client library

provides functions that d

evelopers of client applications use

to initiate connections to a server and to programmatically perform database operations.

The library uses the operating system

’s

 client network interface to communicate with one

or more InterBase servers, and implements a special InterBase client/server application

protocol on top of a network protocol (see “Network protocols” in

the

Operations Guide

).

The client library provides a set of high-level functions

in the form of a

n Application

Programmer’s Interface (API) for communication with an InterBase server. A

ll c

lient

application

s

 or middleware must use th

is A

PI to access

I

nterBase database

s

. The

API

Guide

 provides reference documentation and guidelines for using the API to develop

high-performance applications.

ibserverApplication

Client node Server node

.gdb

Network

DEFINITION OF A SERVER

25

FIGURE 2.2

Role of the InterBase client library

Definition of a server

The InterBase server is a software process that executes on the node that hosts the storage

space for databases. The server process is the only process on any node that can perform

direct I/O to the database files.

Clients send to the server process requests to perform

a

ctions on the database, including:

�

Search the database based on criteria

�

Collate, sort and tabulate data

�

Return sets of data

�

Modify data values

�

Insert new data into the database

�

Remove data from the database

�

Create new databases or data structures

�

Execute procedural code on the server

�

Send messages to other clients currently connected

The server process is fully network-enabled; it services connection requests that originate

on another node. The server process implements the same InterBase application protocol

that the client uses.

ibserver

Application

Client node Server node

.gdb

Network

BDE

SQL Links

GDS32.DLL

CHAPTER 2

CLIENT/SERVER CONCEPTS

26

INTERBASE 6

Many clients can remain connected to the multithreaded server process simultaneously.

The server regulates access to individual data records within the database, and enforces

exclusive access to records when clients request to modify the data in the records.

Application development

Once you create and populate a database, you can access the information through an

application. If you use one of Borland’s client tools, you can access information through

your existing application. You can also design and implement a new application by

embedding SQL statements or API calls in an application written in a programming

language such as C or C++.

Borland client tools applications

Client/server versions of Borland client tools such as Delphi, Borland C++, Paradox, and

Visual dBASE can access InterBase databases using Borland SQL Links. Server query

reporting is built into the client tool providing Windows application support. This enables

you to build sophisticated, user-friendly database applications with minimal

programming effort.

�

InterBase Express (IBX) for Delphi

 and C++ Builder

IBX is a library of

c

omponents that allows Delphi

and C++ Builder p

rogrammers to

access InterBase features without having to go through the Borland Database Engine

(BDE). The version of IBX that ships with Delphi 5 accesses only InterBase 5.

x

 databases.

An enhanced version of IBX ships with InterBase 6. This version includes components for

accessing the InterBase 6 Install API and Licensing API when installed in Delphi

 and C++

Builder

.

�

The Borland Database Engine

Most Borland application development tools use middleware technology based on the

Borland Database Engine

 (BDE). The BDE is a library that provides a unified API for

applications to interface programmatically with the database client library of any

database vendor for which there is an

SQL Links

 driver available. For instance, a C++

application programmer uses the BDE functions to access data from a BDE

alias

. The

programmer configures the BDE alias to use the InterBase driver for SQL Links, and this

configuration

causes

 BDE to dynamically load the appropriate library that implements

BDE functions with equivalent functions in the InterBase API.

APPLICATION DEVELOPMENT

27

The most important advantage is that application engineers can write code that is

independent from a given proprietary database product API, and thereby reduce porting

expense if project requirements call for the engineer to change database server

technology. For instance, porting an application from using Paradox tables to an

InterBase database can be accomplished in large part simply by reconfiguring the BDE

alias to use the

InterBase SQL L

inks driver, and specifying the path of the InterBase server

and database

.

�

T

he interaction between BDE’s caching and InterBase’s own caching

can be c

onfusing.

Client-side caching gives a lot of benefit with little associated cost when the database

resides on the same machine as the client, and the volume of data is low. Applying

client-side caching in a client/server system with datasets that are greater in size by orders

of magnitude can result in poor network performance as the client refreshes its cache

over a network. See “Configuring the Superserver cache” in the

Operations Guide

 for

more information

.

�

The differences between the BDE’s Local SQL interpreter and InterBase’s server-side SQL

interpreter are

s

ubtle. For consistency’s sake, you should configure applications to pass

SQL statements through the BDE and on to the server’s SQL interpreter.

Embedded applications

You can write your own application using C or C++, or another programming language,

and embed SQL statements in the code. You then preprocess the application using

gpre

,

the InterBase application development preprocessor.

gpre

 takes SQL embedded in a host

language such as C or C++, and generates a file that a host-language compiler can

compile.

The preprocessor matches high-level SQL statements to the equivalent code that calls

functions in InterBase’s client API library. Therefore, using embedded SQL affords the

advantages of using a high-level language, and the runtime performance and features of

the InterBase client API.

For more information about compiling embedded SQL applications, see the

Embedded

SQL Guide

.

�

Predefined database queries

Some applications are designed with a specific set of requests or tasks in mind. These

applications can specify exact SQL statements in the code for preprocessing. The

gpre

preprocessor translates statements at compile time into an internal representation. These

statements have a slight speed advantage over dynamic SQL,

because

 they do not need

to incur the overhead of parsing and interpreting the SQL syntax at runtime.

CHAPTER 2

CLIENT/SERVER CONCEPTS

28

INTERBASE 6

�

Dynamic applications

Some applications

must h

andle ad hoc SQL statements entered by users at run time; for

example, allowing a user to select a record by specifying criteria to a query. This requires

that the program construct the query based on user input.

InterBase uses Dynamic SQL (DSQL) for generating dynamic queries. At run time, your

application passes DSQL statements to the InterBase server in the form of a character

string. The server parses the statement and executes it.

BDE provides methods for applications to send DSQL statements to the server and

retrieve results. ODBC applications rely on DSQL statements almost exclusively, even if

the application interface provides a way to visually build these statements. For example,

Query By Example (QBE) or Microsoft Query provide convenient dialogs for selecting,

restricting and sorting data drawn from a BDE or ODBC data source, respectively.

You can also build templates in advance for queries, omitting certain elements such as

values for searching criteria. At run time, supply the missing entries in the form of

parameters

and a buffer for passing data back and forth.

For more information about DSQL, see the

Embedded SQL Guide

.

API applications

The InterBase API is a set of functions that enables applications to construct and send

SQL statements to the InterBase engine and receive results back. All database work can

be performed through calls to the API.

�

Advantages of using the InterBase API

While programming with the API requires an application developer to allocate and

populate underlying structures commonly hidden at the SQL level, the API is ultimately

more powerful and flexible. Applications built using API calls offer the following

advantages over applications written with embedded SQL:

�

Control over memory allocation

�

Simplification of compiling procedure—no precompiler

�

Access to error messages

�

Access to transaction handles and options

�

API function categories

API functions can be divided into seven categories, according to the object on which they

operate:

APPLICATION DEVELOPMENT

29

�

Database attach and detach

�

Transaction start, prepare, commit, and rollback

�

Blob calls

�

Array calls

�

Database security

�

Informational calls

�

Date and integer conversions

The

API Guide

 has complete documentation for developing high-performance

applications using the InterBase API.

�

The Install API and the Licensing API

The Install API provides a library of functions that enable you to install InterBase

programmatically. You have the option of creating a silent install that is transparent to

the end user. The functions in the Licensing API permit you to install license certificates

and keys as well.

Multi-database applications

Unlike many relational databases, InterBase applications can use multiple databases at

the same time. Most applications

access o

nly one database

 at a time

, but others need to

use several databases that could have the same or different structures.

For example, each project in a department might have a database to keep track of its

progress, and the department could need to produce a report of all the active projects.

Another example where more than one database would be used is where sensitive data

is combined with generally available data. One database could be created for the sensitive

data with access to it limited to a few users, while the other database could be open to a

larger group of users.

With InterBase you can open and access any number of databases at the same time. You

cannot join tables from separate databases, but you can use cursors to combine

information. See the

Embedded SQL Guide

 for information about multi-database

applications programming.

30

INTERBASE 6

31

CHAPTER

3

Chapter 3

Programming

Applications with

Delphi or C++ Builder

This chapter covers programming InterBase applications using the Borland Database

Engine (BDE) with Delphi or C++ Builder. Both Dephi and C++ Builder ship with

extensive online documentation on programming database applications

; y

ou should use

that documentation as your main source of information

.

 This chapter describes how to

best use these programs with InterBase, including:

�

Optimizing the InterBase SQL Links driver

�

Working with

T

Query

�

Using generators

Note

With the introduction of InterBase Express (IBX)

,

 it is now possible to create

InterBase applications without the overhead of the BDE. Part II of this book describes

how to use the IBX components. For more information, see

“

Introduction to IBX

” on

page 127

.

CHAPTER 3

PROGRAMMING APPLICATIONS WITH DELPHI OR C++ BUILDER

32

INTERBASE 6

Optimizing the InterBase SQL Links driver

Use the BDE Administrator to configure the InterBase SQL Links driver. To start the BDE

Administrator, select it from the Borland Delphi or C++ in the Programs menu. To view

the InterBase driver definition, click on the Configuration tab, and then expand Drivers

and Native from the Configuration tree. Click on INTRBASE to display the InterBase

driver settings.

T

o

 optimize the InterBase driver

, you can change the following options

:

�

DRIVER FLAGS

�

SQLPASSTHRU MODE

�

SQLQUERY MODE

These are discussed in the following sections.

Setting the driver flags

Depending on your database needs, you should set the DRIVER FLAGS option to either

512 or 4608 to optimize InterBase. The recommended value for DRIVER FLAGS is 4608.

�

If you set DRIVER FLAGS to 512, you specify that the default transaction mode should be

repeatable read transactions using hard commits. This reduces the overhead that

automatic transaction control incurs.

�

If you set DRIVER FLAGS to 4608, you specify that the default transaction mode should

be repeatable read transactions using soft commits. Soft commits are an InterBase feature

that lets the driver retain the cursor while committing changes. Soft commits improve

performance on updates to large sets of data.

When using hard commits, the BDE must re-fetch all records in a dataset, even for a

single record change. This is less expensive when using a desktop database, because the

data is transferred in core memory. For a client/server database such as InterBase,

refreshing a dataset consumes the network bandwidth and degrades performance

radically. With soft commit, the cursor is retained and a re-fetch is not performed.

Note

Soft commits are never used in explicit transactions started by BDE client

applications. This means that if you use the

StartTransaction

 and

Commit

 methods to

explicitly start and commit a transaction, then the driver flag for soft commit is ignored.

WORKING WITH

T

QUERY

33

Setting the SQL pass-through mode

The SQLPASSTHRU MODE option specifies whether the BDE and passthrough SQL

statements can share the same database connections. By default SQLPASSTHRU MODE is

set to SHARED AUTOCOMMIT. To reduce the overhead that automatic transaction control

incurs, set this option to SHARED NOAUTOCOMMIT.

If, however, you want to pass transaction control to your server, set this option to NOT

SHARED. Depending on the quantity of data, this can increase InterBase performance by

a factor of ten.

The recommended setting for this option is SHARED NOAUTOCOMMIT.

Setting the SQL query mode

Set the SQLQRYMODE to SERVER to allow InterBase, instead of the BDE, to interpret and

execute SQL statements.

Working with

T

Query

Use

Tquery

 rather than

TTable

; the latter should never be used with InterBase.

Why not to use TTable

A

lthough

TTable

 is very convenient for its RAD methods and its abtract data-aware

model, it

i

s not designed to be used with client/server applications; it is designed for use

on relatively small tables in a local database, accessed in core memory.

TTable

 gathers information about the metadata of a table, and tries to maintain a cache

of the dataset in memory. It refreshes its client-side copy of the data when you issue the

Post

 method or the

TDatabase.Rollback

 method. This incurs a huge network overhead

for most client/server databases, which have much larger datasets and are accessed over

a network. In a client/server architecture, you should use

TQuery

 instead.

Setting TQuery properties and methods

Set the following

TQuery

 properties and methods as indicated to optimize InterBase

performance:

�

CachedUpdates

property: set this property to

False

 to allow the server to handle updates,

deletes, and conflicts.

CHAPTER 3

PROGRAMMING APPLICATIONS WITH DELPHI OR C++ BUILDER

34

INTERBASE 6

�

RequestLive

 property: set this property to

False

 to prevent the VCL from keeping a

client-side copy of rows; this has a benefit to performance because less data must be sent

over the network

In a client/server configuration, a "fetch-all" severely affects database performance,

because it forces a refresh of an entire dataset over the network. Here are some instances

in which cause a

TQuery

 to perform a fetch-all:

�

Locate

 method: you should only use

Locate

 on local datasets

�

RecordCount

 property: although it is nice to get the information on how many records

are in a dataset, calculating the

RecordCount

 itself forces a fetch-all.

�

Constraints

 property: let the server enforce the constraint.

�

Filter

property: let the server do the filtering before sending the dataset over the network.

�

Commit

 method: forces a fetch-all when the BDE DRIVER FLAGS option is not set to 4096

(see

“

Setting the driver flags

” on page 32

), or when you are using explicit transaction

control.

Using generators

Using an InterBase trigger to change the value of a primary key on a table can cause the

BDE to produce a record or key deleted error message. This can be overcome by adding

a generator to your trigger.

For example, when your client sends a record to the server, the primary key is NULL.

Using a trigger, InterBase inserts a value into the primary key and posts the record. When

the BDE tries to verify the existence of the just-inserted record, it searches for a record

with a NULL primary key, which it will be unable to find. The BDE then generates a

record or key deleted error message.

To get around this, do the following:

1.

Create a trigger similar to the following. The “if” clause checks to see whether

the primary key being inserted in NULL. If so, a value is produced by the

generator; if not, nothing is done to it.

Create Trigger COUNTRY_INSERT for COUNTRY

active before Insert position 0

as

begin

if (new.Pkey is NULL) then

new.Pkey = gen_id(COUNTRY_GEN,1);

end^

USING GENERATORS

35

2.

Create a stored procedure that returns the value from the generator:

Create Procedure COUNTRY_Pkey_Gen returns (avalue INTEGER)

as

begin

 avalue = gen_id(COUNTRY_GEN,10);

end^

3.

Add a

TStoredProc

 component to your Delphi or C++ Builder application and

associate it with the COUNTRY_Pkey_Gen

 stored procedure.

4.

Add a

TQuery

 component to your application and add the following code to

the

BeforePost

 event:

If(TQuery.state = dsinsert) then

begin

 StoredProc1.ExecProc;

TQuery.FieldByName('Pkey').AsInteger :=

StoredProc1.ParamByName('avalue').AsInteger;

end;

This solution allows the client to retrieve the generated value from the server using a

TStoredProc

 component and an InterBase stored procedure. This assures that the Delphi

or C++ Builder client will know the primary key value when a record is posted.

36

INTERBASE 6

37

CHAPTER

4

Chapter 4

Programming

Applications with JBuilder

This chapter covers building InterBase database applications with InterClient,

InterServer, and JBuilder, including:

�

Installing InterClient classes into JBuilder

�

Installing and administering InterServer

�

Programming with InterClient

�

Troubleshooting InterClient programs

�

Deploying InterClient programs

�

InterClient/JDBC compliance specifications

Installing InterClient classes into JBuilder

InterClient is an all-Java thin-client JDBC driver specifically designed to access InterBase

databases. It is included in the JBuilder Client/Server product, but can be used with the

Professional version as well, and is available free from the web at www.

borland.

com.

JBuilder rapid application development design makes integrating JDBC drivers easy, and

InterClient is no exception.

CHAPTER 4

PROGRAMMING APPLICATIONS WITH JBUILDER

38

INTERBASE 6

When you install InterClient (version 1.11 or later), you will need modify the

JBUILDER.INI

file

as

outlined in the InterClient

JBuilder Integration Notes

. Without these changes, you

will not be able to run InterClient-based applications from within the JBuilder IDE.

Database application basics

If you want your JBuilder application or applet to connect to a database, use a

Database

component to establish the connection, a

DataSet

 component (such as a

TableDataSet

or

QueryDataSet

 component) to provide the data, and a data-aware control to display the

results (such as a

GridControl

). Follow these steps for any JDBC driver. What

distinguishes InterClient from other JDBC drivers is the values you specify for the

connection parameters of the

Database

 component.

When you edit the connection properties of a Database component, JBuilder displays the

Connection dialog.

FIGURE 4.1

Connection dialog

INSTALLING INTERCLIENT CLASSES INTO JBUILDER

39

To connect to an InterBase database with your Java application/applet, you need to

specify the following connection parameters: the name of a JDBC driver class, a

username, a password, and a connection URL. The name of the InterClient JDBC driver

class is always the same:

interbase.interclient.Driver

Spelling and capitalization are important. If you spell the driver class incorrectly, you

may get a

ClassNotFoundException

, and consequently, a “No suitable driver” error when

the connection is attempted. The username and password parameters are the same that

you would use when connecting to a database with IBConsole or any other tool. For the

sake of simplicity, these examples use

sysdba

(the InterBase

root

user) and

masterkey

 for

username and password, respectively.

There are other useful features of this dialog, as well. Once you fill in your URL, you can

press the

Test connection

 button to ensure that the connection parameters are correct. The

Prompt user password

 check box forces the user to enter a proper username and password

before establishing a connection. The

Use extended properties

 check box and property page

is not used by InterClient.

Using JDBC URLs

The JDBC URL is the parameter used to locate the actual database to which you want to

connect. A JDBC URL can be broken down into three parts, all separated by colons: the

keyword

jdbc

, the subprotocol name, and the datasource name or location. The

jdbc

keyword is needed to distinguish JDBC URLs from other URLs, such as those for HTTP or

FTP. The subprotocol name is used to select the proper JDBC driver for the connection.

Every JDBC driver has its own subprotocol name to which it responds. InterClient URLs

always have a subprotocol of

interbase

. Other JDBC drivers have their own unique

subprotocol names, for example, the JDBC-ODBC Bridge answers JDBC URLs with the

subprotocol of

odbc

.

The third part of a InterClient URL holds the name of the server that is running

InterServer and the location (relative to InterServer) of the database to which you want

to connect. The syntax for an InterClient URL is as follows:

jdbc:interbase://servername/pathToDatabase.gdb

Here are a few possible configuration options and their corresponding JDBC URLs.

For the

atlas

 database on a Unix machine named

sunbox

 you might use something like

this (the path on the Unix machine is

/usr/databases/atlas.gdb

):

jdbc:interbase://sunbox//usr/databases/atlas.gdb

CHAPTER 4

PROGRAMMING APPLICATIONS WITH JBUILDER

40

INTERBASE 6

To access database

test

 in directory

inetpub

 on a Linux machine named

localhost

:

jdbc:interbase://localhost:/inetpub/test.gdb

To access the

employee

 database on an NT machine named

mrbill

, you might use

something like this (notice the drive letter):

jdbc:interbase://mrbill/c:/interbas/examples/employee.gdb

These examples assume that InterServer and InterBase are running on the same machine,

which is the fastest type of connection. If InterServer is running on

sunbox

 and InterBase

is running on

mrbill

, you could use this URL to get to the NT machine through the Unix

machine :

jdbc:interbase://sunbox/mrbill:c:/interbas/examples/employee.gdb

Tip

This last example is one of the best configurations for web applications that require high

load and security. Because InterServer listens on port 3060, and InterBase itself listens

on port 3050, you could use this in a firewall scenario.

If the client and the server are on the same machine and you wanted to make a local

connection, use

loopback

 as the server name. For example,

on Windows N

T:

jdbc:interbase://loopback/c:/interbas/examples/employee.gdb

Other than these connection-specific issues, InterClient can be used like any other JDBC

driver with JBuilder. With Local InterBase, JBuilder Professional and Client/Server

versions, it makes it easy to develop and test powerful database applications in Java.

Note

Currently, there is no true local access for Solaris and

Linux.

Installing and administering InterServer

InterServer is a server-side driver, which serves as a translator between the

InterClient-based clients and the InterBase database server.

This section covers how to start, stop, and view information on InterServer, both as an

application and a service.

Starting InterServer on Windows NT and

Windows 2000

InterServer must be started to enable InterClient connections to a database. If InterServer

is started as an application, an icon is displayed in the task tray, located on the right side

of your task bar (or bottom, if your task bar is positioned vertically). The server can be

configured to automatically start up at system boot.

INSTALLING AND ADMINISTERING INTERSERVER

41

To configure InterServer as an application or a service, select the InterServer

Configuration Utility icon from the InterBase InterClient program group, and then select

the startup mode:

The Advanced section of the Configuration Utility is disabled if InterServer is configured

to run as an application.

If InterServer is configured to run as a service, you can start, stop, or pause it using the

Advanced page of the InterServer Configuration Utility or with the Windows NT

/2000

control panel services utility.

The Advanced page of the InterServer Configuration Utility gives you the following

options:

Shutting down InterServer

To shut down the InterServer when it is running as application, right click the InterServer

icon in the task tray and choose Shutdown. If any connections are open, a warning

message appears. If you have open connections, it is recommended that you close them

before shutting down the server. You also must close all client applications you are

running.

To shut down the InterServer service, press the stop light in the Advanced section of the

Configuration Utility.

Viewing InterServer information and properties

To view current server information and properties, right click the InterServer application

icon and choose Properties from the popup menu, or look at the General page of the

InterServer configuration utility.

•

Manual Startup

You must select the InterServer icon from the InterBase InterClient

program group to start InterServer.

•

Windows Startup

Configures the server to automatically start up at system boot

•

Stop

InterServer is shut down and connections are closed

•

Pause

Connections between InterClient applications and the InterBase server are held

open but all requests for service are halted

•

Started

Connections between InterClient applications and the InterBase server are running.

CHAPTER 4

PROGRAMMING APPLICATIONS WITH JBUILDER

42

INTERBASE 6

The Property page provides:

�

Location of the InterClient installation directory.

�

Version of the InterClient package.

�

InterServer capabilities

�

Operating system

The General page of the InterServer configuration utility provides the same information

as the Startup Configuration page of the InterServer application, which is:

�

InterServer version

�

Server status.

�

Operating system

�

Location of the InterClient installation directory

�

Server startup

�

Startup mode

Programming with InterClient

As an all-Java JDBC driver, InterClient enables platform-independent, client/server

development for the Internet and corporate Intranets. The advantage of an all-Java driver

versus a native-code driver is that you can deploy InterClient-based applets without

having to manually load platform-specific JDBC drivers on each client system. Web

servers automatically download the InterClient classes along with the applets. Therefore,

there is no need to manage local native database libraries, which simplifies

administration and maintenance of customer applications. As part of a Java applet,

InterClient can be dynamically updated, further reducing the cost of application

deployment and maintenance.

InterClient allows Java applets and applications to:

�

Open and maintain a high-performance, direct connection to an InterBase database

server

�

Bypass resource-intensive, stateless Web server access methods

�

Allow higher throughput speeds and reduced Web server traffic

PROGRAMMING WITH INTERCLIENT

43

InterBase developers who are writing new Java-based client programs can use InterClient

to access their existing InterBase databases. Because InterClient is an all-Java driver, it

can also be used on the Sun NC (Network Computer), a desktop machine that runs

applets. The NC has no hard drive or CD ROM; users access all of their applications and

data via applets downloaded from servers.

InterClient architecture

The InterClient product consists of two major pieces:

�

A client-side Java package, called InterClient, containing a library of Java classes that

implement most of the JDBC API and a set of extensions to the JDBC API. This package

interacts with the JDBC Driver Manager to allow client-side Java applications and applets

to interact with InterBase databases.

�

A server-side driver, called InterServer. This server-side middleware serves as a translator

between the InterClient-based clients and the InterBase database server.

FIGURE 4.2

InterClient architecture

Developers can deploy InterClient-based clients in two ways:

CHAPTER 4

PROGRAMMING APPLICATIONS WITH JBUILDER

44

INTERBASE 6

�

As Java applets, which are Java programs that can be included in an HTML page with the

<APPLET>

 tag, served via a web server, and viewed and used on a client system using a

Java-enabled web browser. This deployment method doesn't require manual installation

of the InterClient package on the client system. It does require a Java-enabled browser

and the JDBC Driver Manager to be installed on the client system.

�

As Java applications, which are stand-alone Java programs for execution on a client

system. This deployment method requires the InterClient package, the JDBC Driver

Manager, and the Java Runtime Environment (JRE), which is part of the Java Developer's

Kit (JDK) installed on the client system.

InterClient communication

InterClient is a driver for managing interactions between a Java applet or application and

an InterBase database server. On a client system, InterClient works with the JDBC Driver

Manager to handle client requests through the JDBC API. To access an InterBase

database, InterClient communicates via a TCP/IP connection with an InterServer

translator. InterServer forwards InterClient requests to the InterBase server and passes

back the results to the InterClient process on the client machine.

Developing InterClient programs

This section provides a detailed description of how to use InterClient to develop Java

applications, including:

�

Using the JDBC interfaces

�

Using InterClient drivers

�

Accessing InterClient extensions

�

Opening a database connection

�

Executing SQL statements

DEVELOPING INTERCLIENT PROGRAMS

45

Using the JDBC interfaces

The JDBC API is a set of Java interfaces that allow database applications to open

connections to a database, execute SQL statements, and process the results. These

include:

FIGURE 4.3

JDBC interfaces

java.sql.DriverManager

Lo

ads the specific drivers and supports creating new database

connections

java.sql.Connection

Re

presents a connection to a specific database

java.sql.Statement

Al

lows the application to execute a SQL statement

java.sql.PreparedStatement

Re

presents a pre-compiled SQL statement

java.sql.CallableStatement

Re

presents a call to a stored procedure in the database

java.sql.ResultSet

Co

ntrols access to the rows resulting from a statement execution

CHAPTER 4

PROGRAMMING APPLICATIONS WITH JBUILDER

46

INTERBASE 6

�

Importing the InterClient classes

The InterClient classes provide the code that actually implements the JDBC API. The

java.sql

 package defines the standard JDBC API interfaces. Importing this package allows

you to reference all of the classes in the

java.sql

 interface without first typing the

"java.sql" prefix. For clarity's sake, this document prefixes all class names with "java.sql,"

but it isn't necessary if you import the package. You can import this package with the

following line:

import java.sql.*;

�

The DriverManager class

The

DriverManager

 class is part of the

java.sql

 package. The JDBC framework supports

multiple database drivers. The

DriverManager

 manages all JDBC drivers that are loaded

on a system; it tries to load as many drivers as it can find. For each connection request,

it locates a driver to connect to the target database URL. The

DriverManager

 also enforces

security measures defined by the JDBC specification.

�

The Driver class

Each database driver must provide a

Driver

 class that implements the

java.sql.Driver

interface. The

interbase.interclient.Driver

 class is an all-Java implementation of a JDBC

driver that is specific to InterBase. The

interbase.interclient

 package supports most of the

JDBC classes and methods plus some added extensions that are not part of the JDBC API.

To access an InterBase database, the InterClient driver communicates via a TCP/IP

connection with an InterServer process. InterServer forwards InterClient requests to the

InterBase server. InterBase processes the SQL statements and passes the results back to

the InterServer, which then passes the results to the InterClient driver.

MULTI-THREADING

Any JDBC driver must comply with the JDBC standard for multi-threading, which requires

that all operations on Java objects be able to handle concurrent execution.

For a given connection, several threads must be able to safely call the same object

simultaneously. The InterClient driver is "thread-safe." For example, your application can

execute two or more statements over the same connection concurrently, and process both

result sets concurrently, without generating errors or ambiguous results.

�

The Connection class

After instantiating a

Driver

 object, you can open a connection to the database when

DriverManager

 gives you a

Connection

 object. A database driver can manage many

connection objects.

DEVELOPING INTERCLIENT PROGRAMS

47

The

Connection

 object establishes and manages the connection to your particular

database. Within a given connection, you can execute SQL statements and receive the

result sets.

The

java.sql.Connection

 interface represents a connection to a particular database. The

JDBC specification allows a single application to support multiple connections to one or

more databases, using one or more database drivers. When you establish your connection

using this class, the

DriverManager

 selects an appropriate driver from those loaded

based on the subprotocol specified in the URL, which is passed as a connection

parameter.

About InterClient drivers

This section describes:

�

Loading the InterClient driver

�

Explicitly creating the InterClient driver

�

Loading the InterClient driver

The InterClient driver must be loaded before your application can attempt to connect to

an InterBase database. To explicitly load the InterClient driver with the

DriverManager

,

include the following line in your program before using the driver to establish a database

connection:

Class.forName("interbase.interclient.Driver");

The first time the Java interpreter sees a reference to

interbase.interclient.Driver

, it loads

the InterClient driver. When the driver is loaded it automatically creates an instance of

itself, but there is no handle for it that lets you access that driver directly by name. This

driver is "anonymous"; you do not need to reference it explicitly to make a database

connection. You can make a database connection simply by using the

java.sql.DriverManager

 class.

It's the responsibility of each newly loaded driver to register itself with the

DriverManager

; the programmer is not required to register the driver explicitly. After the

driver is registered, the

DriverManager

 can use it to make database connections.

CHAPTER 4

PROGRAMMING APPLICATIONS WITH JBUILDER

48

INTERBASE 6

�

Explicitly creating the InterClient driver

When writing a client program, you can interact either with the

DriverManager

 class or

with a database driver object directly. To reference an InterClient driver directly, you must

explicitly create another instance (in addition to the anonymous one that's created

automatically during loading) of the driver using the

java.sql.Driver

 class:

java.sql.Driver driver = new interbase.interclient.Driver();

Now you can reference the driver classes and methods with

d

river.XXX

().

 I

f all you need

to do is connect to the database and execute SQL statements, you do not need to create

a driver object explicitly; the

DriverManager

 handles everything for you. However, there

are a few cases when you need to reference the driver by name. These include:

�

Getting information about the driver itself, such as a version number.

�

Tailoring a driver for debugging purposes. For more information, see

“

Debugging your

application

” on page 61

.

The

DriverManager

 sees a driver as only one of many standard JDBC drivers that can be

loaded. If you need to create a connection to another type of database in the future, you

need only to load the new driver with

forName()

 or declare another driver explicitly with

java.sql.Driver driver = new XXX.Driver

USING JAVA.SQL.DRIVER METHODS

The

java.sql.Driver

 class has different methods than

java.sql.DriverManager

. If you want

to use any of the

java.sql.Driver

 methods, you need to create an explicit driver object.

The following are a few of the driver methods:

�

getMajorVersion()

 gets the driver's major version number

�

getMinorVersion()

 gets the driver's minor version number

The example below shows how to interact with the database by referencing the driver

directly:

//create the InterClient driver object as a JDBC driver

java.sql.Driver driver = new interbase.interclient.Driver();

//get the connection object

java.sql.Connection connection = driver.connect(dbURL, properties);

//reference driver to get the driver version number

java.sql.String version = driver.getMajorVersion() +

driver.getMinorVersion();

System.out.print("You're using driver", + version");

I

M

P

O

R

T

A

N

T

Do not define a driver object as a type

 interbase.interclient.Driver

 as follows:

DEVELOPING INTERCLIENT PROGRAMS

49

interbase.interclient.Driver driver = new interbase.interclient.Driver();

This method creates a driver object that is an instance of the

interbase.interclient.Driver

class,

not

 a generic instance of the

java.sql.Driver

 class. This method is inappropriate for

a database-independent client program because it hard-codes the InterClient driver into

your source code, together with all of the classes and methods that are specific to the

InterClient driver. Because this code is not portable, you would not be able to use this

program to provide access to another type of database (besides InterBase) in the future.

Even if InterBase is the only database connection you think you will ever use, do not be

tempted to assign your JDBC objects (drivers, connections, statements, and so on) to

interbase.interclien

t. Again, if you need direct access to the driver, assign it to the

java.sql.Driver

 class because it creates a generic JDBC driver. It's better to design your

system to be as database-independent and portable as possible.

Accessing InterClient extensions to the JDBC

To access InterClient-specific classes and methods (

Driver

,

Connection

,

Statement

, and

so forth), you must first cast your JDBC objects before applying the interbase.interclient

method. However, you do not need to declare the original objects this way. Always create

the object with a generic JDBC class, and cast the object to a class of type

interbase.interclient.Driver

,

i

nterbase.interclient.Connection

,

interbase.interclient.Statement

, and so forth.

The following code fragment shows how to cast the JDBC driver object,

icDriver

 in order

to access a hypothetical InterClient-specific driver method

isBuzzwordCompliant()

:

//create the InterClient driver object as a generic JDBC driver

java.sql.Driver driver = new interbase.interclient.Driver();

//Cast driver as type interbase.interclient.Driver and call the method

if ((interbase.interclient.Driver)driver.isBuzzwordCompliant())

System.out.println("It's Buzzword compliant too!");

Suppose you've used the

DriverManager

 to get the connection, but you want to access

an InterClient-specific

Connection

 method, called "foobar". Here's an example of casting

the connection object (instead of the driver object) to

i

nterbase.interclient.Connection

:

//create the InterClient driver object as a generic JDBC driver

java.sql.Driver driver = new interbase.interclient.Driver();

//Create the connection object as a generic JDBC connection

java.sql.Connection connection =

java.sql.DriverManager.getConnection(url, properties);

CHAPTER 4

PROGRAMMING APPLICATIONS WITH JBUILDER

50

INTERBASE 6

//Call foobar by casting connection to type

interbase.interclient.Connection

(interbase.interclient.Connection)connection.foobar();

Tip

By using explicit casts whenever you need to access InterClient-specific extensions, you

can find these InterClient-specific operations easily if you ever need to port your

program to another driver.

Opening a database connection

After loading the driver, or explicitly creating one, you can open a connection to the

database. There are two ways to do this: with the

DriverManager

's

getConnection()

method or the

driver

 object's

connect()

 method.

�

Using the DriverManager to get a connection

When you want to access a database, you can get a

java.sql.Connection

 object from the

JDBC management layer's

java.sql.DriverManager.getConnection()

 method. The

getConnection()

 method takes a URL string and a

java.util.Properties

 object as

arguments. For each connection request, the

DriverManager

 uses the URL to locate a

driver that can connect to the database represented by the URL. If the connection is

successful, a

java.sql.Connection

 object is returned. The following example shows the

syntax for establishing a database connection:

java.sql.Connection connection = java.sql.DriverManager.getConnection

(url,properties);

The

Connection

 object in turn provides access to all of the InterClient classes and

methods that allow you to execute SQL statements and get back the results.

�

Using InterClient driver object to get a connection

If you are using the driver object to get a connection, use the

connect()

 method. This

method does the same thing and takes the same arguments as

getConnection()

.

For example:

//Create the InterClient driver object explicitly

java.sql.Driver driver = new interbase.interclient.Driver();

//Open a database connection using the driver's connect method of the

java.sql.Connection connection = driver.connect(url, properties);

DEVELOPING INTERCLIENT PROGRAMS

51

�

Choosing between the Driver and DriverManager methods

Suppose that you have created an explicit driver object. Even though you could use the

driver's

 connect()

 method, you should always use the generic JDBC methods and classes

unless there is some specific reason not to, such as the ones discussed previously. For

example, suppose you declared an explicit driver object so you could get driver version

numbers, but now you need to create a connection to the database. You should still use

the

DriverManager.getConnection()

 method to create a connection object instead of the

driver.connect()

 method.

Note

This is not the case when you are using the InterClient Monitor extension to trace

a connection. See

“

Debugging your application

” on page 61

 for a detailed explanation.

�

Defining connection parameters

The database URL and connection properties arguments to

connect()

 or

getConnection()

must be defined before trying to create the connection.

SYNTAX FOR SPECIFYING DATABASE URLS

InterClient follows the JDBC standard for specifying databases using URLs. The JDBC URL

standard provides a framework so that different drivers can use different naming systems

that are appropriate for their own needs. Each driver only needs to understand its own

URL naming syntax; it can reject any other URLs that it encounters. A JDBC URL is

structured as follows:

jdbc:subprotocol:subname

The subprotocol names a particular kind of database connection, which is in turn

supported by one or more database drivers. The

DriverManager

 decides which driver to

use based on which subprotocol is registered for each driver. The contents and syntax of

subname in turn depend upon the subprotocol. If the network address is included in the

subname, the naming convention for the subname is:

//hostname:/subsubname

subsubname

 can have any arbitrary syntax.

DEFINING AN INTERCLIENT URL

InterClient URLs have the following format:

jdbc:interbase://server/full_db_path

CHAPTER 4

PROGRAMMING APPLICATIONS WITH JBUILDER

52

INTERBASE 6

"interbase" is the subprotocol, and server is the hostname of the InterBase server.

full_db_path

 (that is, "subsubname") is the full pathname of a database file, including

the server's root (/) directory. If the InterBase server is a Windows NT system, you must

include the drive name as well. InterClient doesn't support passing any attributes in the

URL. For local connections, use:

server = "localhost"

Note

The "/" between the server and

full_db_path

 is treated as a delimiter only. When

specifying the path for a Unix-based database, you must include the initial "/" for the root

directory in addition to the "/" for the delimiter.

In a Unix-based database, the following URL refers to the database

orders.gdb

 in the

directory

/dbs

 on the Unix server

accounts

.

dbURL = "jdbc:interbase://accounts//dbs/orders.gdb"

In a Windows

 s

erver, the following URL refers to the database

customer.gdb

 in the directory

/dbs

 on drive C of the server

support

.

dbURL = "jdbc:interbase://support/C:/dbs/customer.gdb"

DEFINING THE CONNECTION PROPERTIES

Connection properties must also be defined before trying to open a database connection.

To do this, pass in a

java.util.Properties

object, which maps between tag strings and value

strings. Two typical properties are "user" and "password." First, create the

Properties

object:

java.util.Properties properties = new java.util.Properties();

Now create the connection arguments. user and password are either literal strings or

string variables. They must be the username and password on the InterBase database to

which you are connecting:

properties.put (“user”, "sysdba");

properties.put (“password”, "masterkey");

Now create the connection with the URL and connection properties parameters:

java.sql.Connection connection =

java.sql.DriverManager.getConnection(url, properties);

�

Security

Client applications use standard database user name and password verification to access

an InterBase database. InterClient encrypts the user name and password for transmission

over the network.

DEVELOPING INTERCLIENT PROGRAMS

53

Executing SQL statements

After creating a

Connection

 object, you can use it to obtain a

Statement

 object that

encapsulates and executes SQL statements and returns a result set.

�

Classes for executing SQL statements

There are three java.sql classes for executing SQL statements:

�

Statement

�

PreparedStatement

�

CallableStatement

THE STATEMENT CLASS

The

java.sql.Statement

 interface allows you to execute a static SQL statement and to

retrieve the results produced by the query. You cannot change any values with a static

statement. For example, the following SQL statement displays information once for

specific employees:

SELECT first_name, last_name, dept_name

FROM emp_table

WHERE dept_name = 'pubs';

The

Statement

 class has two subtypes:

PreparedStatement

 and

CallableStatement

.

�

PreparedStatement

The

PreparedStatement

 object allows you to execute a set of SQL statements more than

once. Instead of creating and parsing a new statement each time to do the same function,

you can use the

PreparedStatement

 class to execute pre-compiled SQL statements

multiple times. This class has a series of "setXXX" methods that allow your code to pass

parameters to a predefined SQL statement; it's like a template to which you supply the

parameters. Once you have defined parameter values for a statement, they remain to be

used in subsequent executions until you clear them with a call to the

PreparedStatement.clearParameters

 method.

For example, suppose you want to be able to print a list of all new employees hired on

any given day. The operator types in the date, which is then passed in to the

PreparedStatement

 object. Only those employees or rows in "emp_table" where

"hire_date" matches the input date are returned in the result set.

SELECT first_name, last_name,

emp_no FROM emp_table WHERE hire_date = ?;

See

“

Selecting data with PreparedStatement

” on page 55

 for more on how this

construct works.

CHAPTER 4

PROGRAMMING APPLICATIONS WITH JBUILDER

54

INTERBASE 6

�

CallableStatement

The

CallableStatement

 class is used for executing stored procedures with

OUT

parameters. Since InterBase does not support the use of

OUT

 parameters, there's no need

to use

CallableStatement

 with InterClient.

Note

You can still use a

CallableStatement

 object if you do not use the

OUT

 parameter

methods.

CREATING A STATEMENT OBJECT

Creating a

Statement

 object allows you to execute a SQL query, assuming that you have

already created the connection object. The example below shows how to use the

createStatement

 method to create a

Statement

 object:

java.sql.Statement statement = connection.createStatement();

�

Querying data

After creating a

Connection

 and a

Statement

 or

PreparedStatement

 object, you can use

executeQuery

 method to query the database with

SQL SELECT

 statements.

SELECTING DATA WITH THE STATEMENT CLASS

The

executeQuery

 method returns a single result set. The argument is a string parameter

that is typically a static SQL statement. The

ResultSet

 object provides a set of "get"

methods that let you access the columns of the current row. For example,

ResultSet.next

lets you move to the next row of the

ResultSet

, and the

getString

 method retrieves a string.

This example shows the sequence for executing

SELECT

 statements, assuming that you

have defined the

getConnection

 arguments:

//Create a Connection object:

java.sql.Connection connection =

java.sql.DriverManager.getConnection(url,properties);

//Create a Statement object

java.sql.Statement statement = connection.createStatement();

//Execute a SELECT statement and store results in resultSet:

java.sql.ResultSet resultSet = statement.executeQuery

("SELECT first_name, last_name, emp_no

FROM emp_table WHERE dept_name = 'pubs'");

//Step through the result rows

System.out.println("Got results:");

while (resultSet.next ()){

//get the values for the current row

DEVELOPING INTERCLIENT PROGRAMS

55

String fname = resultSet.getString(1);

String lname = resultSet.getString(2);

String empno = resultSet.getString(3);

//print a list of all employees in the pubs dept

System.out.print(" first name=" + fname);

System.out.print(" last name=" + lname);

System.out.print(" employee number=" + empno);

System.out.print("\n");

}

SELECTING DATA WITH PREPAREDSTATEMENT

The following example shows how to use

PreparedStatement

 to execute a query:

//Define a PreparedStatement object type

java.sql.PreparedStatement preparedStatement;

//Create the PreparedStatement object

preparedStatement = connection.prepareStatement("SELECT first_name,

last_name, emp_no FROM emp_table WHERE hire_date = ?");

//Input yr, month, day

java.sql.String yr;

java.sql.String month;

java.sql.String day;

System.in.readln("Enter the year: " + yr);

System.in.readln("Enter the month: " + month);

System.in.readln("Enter the day: " + day);

//Create a date object

java.sql.Date date = new java.sql.Date(yr,month,day);

//Pass in the date to preparedStatement's ? parameter

preparedStatement.setDate(1,date);

//execute the query. Returns records for all employees hired on date

resultSet = preparedStatement.executeQuery();

CHAPTER 4

PROGRAMMING APPLICATIONS WITH JBUILDER

56

INTERBASE 6

�

Finalizing objects

Applications and applets should explicitly close the various JDBC objects (

Connection

,

Statement

, and

ResultSet

) when they are done with them. The Java "garbage collector"

may periodically close connections, but there's no guarantee when, where, or even if this

will happen. It's better to immediately release a connection's database and JDBC

resources rather than waiting for the garbage collector to release them automatically. The

following

close

 statements should appear at the end of the previous

executeQuery()

example.

resultSet.close();

statement.close();

connection.close();

�

Modifying data

The

executeUpdate()

 method of the

Statement

 or

PreparedStatement

 class can be used

for any type of database modification. This method takes a string parameter (an

SQL

INSERT

,

UPDATE

, or

DELETE

 statement), and returns a count of the number of rows that

were updated.

INSERTING DATA

An

executeUpdate

 statement with an

INSERT

 statement string parameter adds one or more

rows to a table. It returns either the row count or 0 for SQL statements that return nothing:

int rowCount= statement.executeUpdate

("INSERT INTO table_name VALUES (val1, val2,…)";

If you do not know the default order of the columns, the syntax is:

int rowCount= statement.executeUpdate

("INSERT INTO table_name (col1, col2,…) VALUES (val1, val2,…)";

The following example adds a single employee to "emp_table":

//Create a connection object

java.sql.Connection connection =

java.sql.DriverManager.getConnection(url, properties);

//Create a statement object

java.sql.Statement statement = connection.createStatement();

//input the employee data

Java.lang.String fname;

Java.lang.String lname;

Java.lang.String empno;

System.in.readln("Enter first name: ", + fname);

DEVELOPING INTERCLIENT PROGRAMS

57

System.in.readln("Enter last name: ", + lname);

System.in.readln("Enter employee number: ", + empno);

//insert the new employee into the table

int rowCount = statement.executeUpdate

("INSERT INTO emp_table (first_name, last_name, emp_no)

VALUES (fname, lname, empno)");

UPDATING DATA WITH THE STATEMENT CLASS

The

executeUpdate

 statement with a

SQL UPDATE

 string parameter enables you to modify

existing rows based on a condition using the following syntax:

int rowCount= statement.executeUpdate(

"UPDATE table_name SET col1 = val1, col2 = val2,

WHERE condition");

For example, suppose an employee, Sara Jones, gets married wants you to change her

last name in the "last_name" column of the

EMPLOYEE

 table:

//Create a connection object

java.sql.Connection connection =

java.sql.DriverManager.getConnection(dbURL,properties);

//Create a statement object

java.sql.Statement statement = connection.createStatement();

//insert the new last name into the table

int rowCount = statement.executeUpdate

("UPDATE emp_table SET last_name = 'Zabrinski'

WHERE emp_no = 13314");

UPDATING DATA WITH PREPAREDSTATEMENT

The following code fragment shows an example of how to use

PreparedStatement

 if you

want to execute the update more than once:

//Define a PreparedStatement object type

java.sql.PreparedStatement preparedStatement;

//Create the Prepared_Statement object

preparedStatement = connection.prepareStatement(

"UPDATE emp_table SET last_name = ? WHERE emp_no = ?");

//input the last name and employee number

String lname;

String empno;

System.in.readln("Enter last name: ", + lname);

CHAPTER 4

PROGRAMMING APPLICATIONS WITH JBUILDER

58

INTERBASE 6

System.in.readln("Enter employee number: ", + empno);

int empNumber = Integer.parseInt(empno);

//pass in the last name and employee id to preparedStatement's ?

//parameters

//where '1' is the 1st parameter, '2' is the 2nd, etc.

preparedStatement.setString(1,lname);

preparedStatement.setInt(2,empNumber);

//now update the table

int rowCount = preparedStatement.executeUpdate();

DELETING DATA

The

executeUpdate()

 statement with a

SQL DELETE

 string parameter deletes an existing

row using the following syntax:

DELETE FROM table_name WHERE condition;

The following example deletes the entire "Sara Zabrinski" row from the

EMPLOYEE

 table:

int rowCount = statement.executeUpdate

("DELETE FROM emp_table WHERE emp_no = 13314");

Executing stored procedures

A stored procedure is a self-contained set of extended SQL statements that are stored in

a database as part of its metadata. Stored procedures can pass parameters to and receive

return values from applications. From the application, you can invoke a stored procedure

directly to perform a task, or you can substitute the stored procedure for a table or view

in a

SELECT

 statement. There are two types of stored procedures:

�

Select procedures are used in place of a table or view in a

SELECT

 statement. A selectable

procedure generally has no

IN

 parameters. See note below.

�

Executable procedures can be called directly from an application with the

EXECUTE

PROCEDURE

 statement; they may or may not return values to the calling program.

Use the

Statement

 class to call select or executable procedures that have no

SQL

 input (

IN

)

parameters. Use the

PreparedStatement

 class to call select or executable stored

procedures that have

IN

 parameters.

Note

Although it is not commonly done, it is possible to use

IN

 parameters in a

SELECT

statement. For example:

create procedure with_in_params(in_var integer)

returns (out_data varchar(10))

DEVELOPING INTERCLIENT PROGRAMS

59

as

begin

for select a_field1 from a_table

where a_field2 = :in_var

into :out_data

do suspend;

end

To return one row:

execute procedure with_in_params(1)

To return more than one row:

select * from with_in_params(1)

�

Statement example

An InterClient application can call a select procedure in place of a table or view inside a

SELECT

 statement. For example, the stored procedure

multiplyby10

 multiplies all the rows

in the

NUMBERS

 table (visible only to the stored procedure) by 10, and returns the values

in the result set. The following example uses the

Statement.executeQuery()

 method to

call the

multiplyby10

 stored procedure, assuming that you have already created the

Connection

 and

Statement

 objects:

//multiplyby10 multiplies the values in the resultOne, resultTwo,

//resultThree columns of each row of the NUMBERS table by 10

//create a string object

String sql= new String ("SELECT resultone, resulttwo, resultthree FROM

multiplyby10");

//Execute a SELECT statement and store results in resultSet:

java.sql.ResultSet resultSet = statement.executeQuery(sql);

//Step through the result rows

System.out.println("Got results:");

while (resultSet.next ()){

//get the values for the current row

int result1 = resultSet.getInt(1);

int result2 = resultSet.getInt(2);

int result3 = resultSet.getInt(3);

//print the values

System.out.print(" result one =" + result1);

System.out.print(" result two =" + result2);

System.out.print(" result three =" + result3);

CHAPTER 4

PROGRAMMING APPLICATIONS WITH JBUILDER

60

INTERBASE 6

System.out.print("\n");

}

�

PreparedStatement example

In the example below, the

multiply

 stored procedure is not selectable. Therefore, you

have to call the procedure with the

PreparedStatement

 class. The procedure arguments

are the scale factor and the value of

KEYCOL

 that uniquely identifies the row to be

multiplied in the

NUMBERS

 table.

//Define a PreparedStatement object type

java.sql.PreparedStatement preparedStatement;

//Create a new string object

java.sql.String sql = new String ("EXECUTE PROCEDURE multiply 10, 1");

//Create the PreparedStatement object

preparedStatement = connection.prepareStatement(sql);

//execute the stored procedure with preparedStatement

java.sql.ResultSet resultSet = preparedStatement.executeQuery(sql);

//step through the result set and print out as in Statement example

Troubleshooting InterClient programs

This section covers troubleshooting InterClient installation and debugging applications.

Handling installation problems

Call

interbase.interclient.InstallTest

 to test an InterClient installation.

InstallTest

 provides

two static methods for testing the installation. A static

main

 is provided as a command

line test that prints to

System.out. main()

 uses the other public static methods that test

specific features of the installation. These methods can be used by a GUI application as

they return strings, rather than writing the diagnostics to

System.out

 as

main()

 does.

InstallTest

 allows you to:

�

determine InterClient driver version information

�

determine installed packages

�

check basic network configuration

�

test making a connection directly without the

DriverManager

 with

driver.connect()

�

test making a connection with

DriverManager.getConnection()

TROUBLESHOOTING INTERCLIENT PROGRAMS

61

�

get

SQL

 Exception error messages

Debugging your application

You can tailor your own driver instances by using a class called

interbase.interclient.Monito

r. This is a public InterClient extension to JDBC. The

Monitor

class contains user-configurable switches that enable you to call a method and trace what

happens on a per-driver basis. Types of switches that you can enable include:

enableDriverTrace

,

enableConnectionTrace

,

enableStatementTrace

, and so forth.

Every driver instance has one and only one monitor instance associated with it. The initial

monitor for the default driver instance that is implicitly registered with the

DriverManager

 has no logging/tracing enabled. Enabling tracing for the default driver is

not recommended. However, if you create your own driver instance, you can tailor the

tracing and logging for your driver without affecting the default driver registered with the

DriverManager

.

Note

If you want to use the

Monitor

 to trace connections and statements, you must create

the original objects using the

connect()

method of the tailored driver. You cannot create

a connection with

DriverManager.getConnection()

method and then try to trace that

connection. Since tracing is disabled for the default driver, there will be no data.

The following example shows calls to

getMonitor()

 trace methods:

//Open the driver manager's log stream

DriverManager.setLogStream(System.out);

//Create the driver object

java.sql.Driver icDriver = new interbase.interclient.Driver();

//Trace method invocations by printing messages to this monitor's

//trace stream

((interbase.interclient.Driver)icDriver).getMonitor().setTraceStream

(System.out);

((interbase.interclient.Driver)icDriver).getMonitor().enableAllTraces (true);

After running the program and executing some SQL statements, you can print out the

trace messages associated with the driver, connection, and statement methods. The

tracing output distinguishes between implicit calls, such as the garbage collector or

InterClient driver calling

close()

 versus user-explicit calls. This can be used to test

application code, since it would show if result sets or statements aren't being cleaned up

when they should.

CHAPTER 4

PROGRAMMING APPLICATIONS WITH JBUILDER

62

INTERBASE 6

Deploying InterClient programs

Once you have developed your InterClient programs, there are two ways to deploy them:

as Java applets embedded on an HTML page, or as stand-alone all-Java applications

running on a client system.

Deploying InterClient programs as applets

InterClient programs can be implemented as Java applets that are downloaded over the

Internet as part of an HTML web page.

FIGURE 4.4

Using applets to access InterBase

An InterClient applet uses JDBC to provide access to a remote InterBase server in the

following manner:

1.

A user accesses the HTML page on which the InterClient applet resides.

2.

The applet bytecode is downloaded to the client machine from the Web

server.

3.

The applet code executes on the client machine, downloading the InterClient

package (that is, the InterClient classes and the InterClient driver) from the

Web server.

DEPLOYING INTERCLIENT PROGRAMS

63

4.

The InterClient driver communicates with the InterServer process, which in

turn establishes a connection to the InterBase server.

5.

The InterBase server executes

SQL

 statements and returns the results to the

InterServer, which then passes on the results to the user running the

InterClient applet.

6.

When the applet is finished executing, the applet itself and the InterClient

driver and classes disappear from the client machine.

Note

In order to use the applet deployment method, the InterServer process and the

InterBase server process must be running on the same system as the Web server. Because

an applet can communicate only with the server that it was downloaded from, you cannot

use an applet to access data from more than one machine/server.

�

Required software for applets

In order to run InterClient applets, the client and server machines must have the

following software loaded:

�

Pros and cons of applet deployment

The following table displays some of the pros and cons of applet deployment.

Client side

Server side

•

Java-enabled browser

•

InterServer process

•

JDBC Driver Manager , which is part of the Java

Developer’s Kit (JDK)

•

InterBase server process

•

Web server process

•

program applets

•

InterClient classes

CHAPTER 4

PROGRAMMING APPLICATIONS WITH JBUILDER

64

INTERBASE 6

Deploying InterClient programs as applications

InterClient programs can also be deployed as stand-alone Java applications. These

applications both reside on and execute from the client machine; they're not downloaded

from a server. The most common use for these types of Java applications is within a

company or corporate Intranet, where the application can access corporate database

servers on a local or wide area network. However, you can also use Java applications to

access databases via the Internet.

FIGURE 4.5

Using standalone Java applications to access InterBase

Note

If your program needs to access data from more than one server/machine, you

must develop a stand-alone InterClient application, since you cannot use an applet to do

this.

Pros

Cons

•

The applet is platform-independent; the

program is available to everyone

•

An applet cannot open network connections to

arbitrary hosts; it can only communicate with the

server from which it was deployed (the Web server).

Therefore, you could not use an applet if your program

needs to access data from more than one server

•

All code resides on the server, so if code

changes, it needs to be updated only in one

place

•

Applets cannot access local files, so you could not, for

example, use applet code to read or write from your

local file system

•

Response time for database applets on the Internet will

be slower than for database applications on a LAN

TABLE 4.1

Pros and cons of applet development

INTERCLIENT/JDBC COMPLIANCE SPECIFICATIONS

65

�

Required software for applications

In order to run InterClient applications, the client and server machines must have the

following software loaded:

InterClient/JDBC compliance specifications

The following section includes information on:

�

InterClient extensions to the JDBC API

�

JDBC features not implemented in InterClient

�

InterClient implementation of JDBC features

�

InterBase features not available through InterClient or JDBC

�

Java SQL datatype support

�

SQL-to-Java type conversions

�

Java-to-SQL type conversion

�

InterClient class references

InterClient extensions to the JDBC API

The following table lists the extensions provided by InterClient that are not part of the

JDBC API:

Client side

Server side

•

Java programs (compiled bytecode)

•

InterServer process

•

InterClient package, including the driver and all

of the classes

•

InterBase server process

•

JDBC Driver Manager , which is part of the Java

Developer’s Kit (JDK)

CHAPTER 4

PROGRAMMING APPLICATIONS WITH JBUILDER

66

INTERBASE 6

JDBC features not implemented in InterClient

Although all JDBC classes and methods must be implemented in order to create a

JDBC-compliant driver, some features are not actually supported.

Note

Unsupported features throw an SQLException error message.

InterClient Subclass

Feature

Description

ErrorCodes

A class defining all error codes returned by

InterClient in SQLWarnings and SQLExceptions

PreparedStatement

getParameterMetaData()

Returns a ParameterMetaData object, which

provides information about the parameters to a

PreparedStatement.

ParameterMetaData

A ParameterMetaData object provides information

about the parameters to a PreparedStatement

ResultSet

isNull()

Returns a Boolean value indicating whether the

column contains a NULL value. Unlike wasNull(),

isNull() does not require the application to read the

value first.

SQL Escape processing:

Outer join syntax

InterClient allows you to associate a label with a

table name.

TABLE 4.2

InterClient extensions to JDBC

INTERCLIENT/JDBC COMPLIANCE SPECIFICATIONS

67

The following table

lists the JDBC classes, methods, and features not supported by this

version of InterClient.

java.sql Subclass

Feature

Description

CallableStatement

OUT parameters

InterBase does not support OUT

parameters in stored procedures.

Escape processing for stored procedures:

{? = call procedure_name[]}

InterClient does not support escape

syntax with a result parameter.

Statement,

PreparedStatement,

CallableStatement

Escape processing:

Scalar functions

InterClient does not support.

Keywords fn

user

(), fn

now

(), fn

curdate

()

are s

upported. All other

scalar functions are

not

 s

upported

unless they are user-defined

.

Statement,

PreparedStatement,

CallableStatement

Escape processing:

time literals:

{t 'hh:mm:ss

}

time escape clause not supporte

d

Connection

getCatalog()

InterBase does not support

catalogs.

TRANSACTION_READ_UNCOMMITTED

Not supported. Borland

recommends using the

TRANSACTION_SERIALIZABLE

transaction isolation level.

getLoginTimeout()

setLoginTimeout()

Login timeouts are not supported in

this release.

TABLE 4.3

Unsupported JDBC features

CHAPTER 4

PROGRAMMING APPLICATIONS WITH JBUILDER

68

INTERBASE 6

InterClient implementation of JDBC features

The following lists unique aspects of InterClient's implementation of the JDBC API.

setQueryTimeout()

setQueryTimeout()

cancel()

Asynchronous cancels are not

supported in this release.

Types

BIT

TINYINT

BIGINT

InterBase does not support these

datatypes.

DatabaseMetaData

getCatalogs()

getCatalogSeparator()

getCatalogTerm()

getMaxCatalogNameLength()

getMaxSchemaNameLength()

getSchemas()

getSchemaTerm()

isCatalogAtStart()

InterBase does not support catalogs

or schemas.

PreparedStatement

setUnicodeStream()

InterClient does not support

UNICODE.

ResultSetMetaData

getCatalogName()

getSchemaName()

InterBase does not support catalogs

or schemas.

java.sql Subclass

Feature

Description

Driver

connect()

Requires two Properties values: "user" and

"password", specifying the database user login and

password.

DriverManager

getConnection()

Requires two Properties values: "user" and

"password", specifying the database user login and

password.

TABLE 4.4

InterClient implementation of JDBC features

java.sql Subclass

Feature

Description

TABLE 4.3

Unsupported JDBC features

INTERCLIENT/JDBC COMPLIANCE SPECIFICATIONS

69

InterBase features not available through InterClient or JDBC

The following table lists InterBase features that are currently unavailable to InterClient

developers.

Java SQL datatype support

The following table lists the supported and unsupported Java SQL datatypes.

Unsupported InterBase Feature

Description

Arrays

InterClient does

not s

upport arrays

.

Events and Triggers

InterClient does not support InterBase events and triggers. A

trigger or stored procedure posts an event to signal a database

change (i.e., inserts, updates, deletes)

Generators

Used to produce unique values to insert into a column as a primary

key. InterClient doesn't allow setting of generator values.

Multiple transactions

InterClient does not allow more than one transaction on a single

connection.

BLOB filters

A BLOB (binary large object) is used to store large amounts of data

of various types. A BLOB filter is a routine that translates BLOB data

from one user-defined subtype to another.

Query plan

InterBase uses a query optimizer to determine the most efficient

plan for retrieving data. InterClient doesn't allow you to view a

query plan.

International character sets

InterClient doesn't support multiple international character sets.

*JDBC does support some.

Transaction locking

InterClient doesn't support transaction options such as: two-lock

resolution modes, explicit table-level locks,etc.

TABLE 4.5

 InterBase features not supported by InterClient

CHAPTER 4

PROGRAMMING APPLICATIONS WITH JBUILDER

70

INTERBASE 6

SQL-to-Java type conversions

The following table shows the SQL-to-Java type conversion mapping.

Supported Java SQL datatypes

Unsupported Java SQL datatypes

VARCHAR, LONGVARCHAR

BIT

VARBINARY, LONGVARBINARY

TINYINT

NUMERIC

BIGINT

SMALLINT

INTEGER

FLOAT

DOUBLE

DATE

TIME

TIMESTAMP

TABLE 4.6

Java SQL datatype support

DBC SQL Type

…maps to Java Type

…or maps to Java objects returned/used by

get/setObject methods

CHAR

java.lang.String

VARCHAR

java.lang.String

LONGVARCHAR

java.lang.String

NUMERIC

java.lang.Bignum

DECIMAL

java.lang.Bignum

SMALLINT

short

java.lang.Integer

INTEGER

int

java.lang.Integer

REAL

float

java.lang.Float

TABLE 4.7

SQL to Java type conversions

INTERCLIENT/JDBC COMPLIANCE SPECIFICATIONS

71

Java-to-SQL type conversion

The following table shows the Java-to-SQL type conversion mapping.

FLOAT

double

java.lang.Double

DOUBLE

double

java.lang.Double

BINARY

byte[]

VARBINARY

byte[]

LONGVARBINARY

byte[]

DATE

java.sql.Date

TIME

java.sql.Time

TIMESTAMP

java.sql.Timestamp

Java Type maps to>

getObject/setObject

JDBC SQL Type

java.lang.String

VARCHAR, LONGVARCHAR

java.lang.Bignum

NUMERIC

short

java.lang.Integer

SMALLINT

int

java.lang.Integer

INTEGER

float

java.lang.Float

REAL

double

java.lang.Double

DOUBLE

byte[]

VARBINARY, LONGVARBINARY

java.sql.Date

DATE

java.sql.Time

TIME

java.sql.Timestamp

TIMESTAMP

TABLE 4.8

Java-to-SQL type conversions

DBC SQL Type

…maps to Java Type

…or maps to Java objects returned/used by

get/setObject methods

TABLE 4.7

SQL to Java type conversions

CHAPTER 4

PROGRAMMING APPLICATIONS WITH JBUILDER

72

INTERBASE 6

InterClient class references

The reference information for the InterClient classes

is i

ncluded in the documentation set

provided to each client.

73

CHAPTER

5

Chapter 5

Programming

Applications with ODBC

This chapter discusses how to program InterBase applications with ODBC, including:

�

ODBC and OLE DB

�

Programming with the ODBC driver

�

Configuring and using ODBC data

sources

Overview of ODBC

Microsoft’s standard, similar in intent to the BDE, is called Open Database Connectivity

(ODBC). One standard API provides a unified interface for applications to access data

from any data source for which an ODBC driver is available. The InterBase client for

Windows

platforms i

ncludes a 32-bit client library for developing and executing

applications that access data via ODBC. The driver is in the file

iscdrv32.dll

.

 The ODBC

driver follows the ODBC 3.5 specification, which includes the 2.0 and 3.0 specifications.

CHAPTER 5

PROGRAMMING APPLICATIONS WITH ODBC

74

INTERBASE 6

Similarly to BDE, you configure a data source using the ODBC Administrator tool. If you

need to access InterBase databases from third party products that do not have InterBase

drivers, you need to install this ODBC driver. The install program then asks you if you

want to configure any ODBC data sources. “Configuring” means providing the complete

path to any databases that you know you will need to access from non-InterBase-aware

products, along with the name of the ODBC driver for InterBase.

ODBC is the common language of data-driven client software. Some software products

make use of databases, but do not yet have specific support for InterBase. In such cases,

they issue data queries that conform to a current SQL standard. This guarantees that these

requests can be understood by any compliant database. The ODBC driver then translates

these generic requests into InterBase-specific code. Other ODBC drivers access other

vendors’ databases.

Microsoft Office, for example, does not have the technology to access InterBase databases

directly, but it can use the ODBC driver that is on the InterBase CDROM.

You do not need to install an ODBC driver if you plan to access your InterBase databases

only from InterBase itself or from products such as Delphi, C++Builder, and JBuilder that

use either native InterBase programming components or Borland SQL-Links components

to query InterBase data.

JDBC, InterClient, and InterServer are covered in

Chapter 4, “

Programming

Applications with JBuilder

.”

Configuring an ODBC driver

To access the ODBC Administrator on Windows machines, display the Control Panel and

choose ODBC (in some cases, it appears as “32-Bit ODBC Administrator”).

Programming with the ODBC driver

If you wish to use an

older

 release of InterClient (1.5x) or the InterSolv (3.x) driver with

InterBase 6, you can use only the features available to a dialect 1 database. Although you

can connect to dialect 3 databases, you cannot use features specific to dialect 3, such as

64-bit integers, SQL TIME, DATE, and TIMESTAMP, and delimited identifiers. The current

releases are compantible with all InterBase 6 features.

Arrays are not supported via the ODBC driver; arrays are not in the ODBC standard

concept.

CONFIGURING AND USING ODBC DATA SOURCES

75

Configuring and using ODBC data sources

Use the ODBC Administrator to configure data sources. To access the ODBC

Administrator on Windows platforms, display the Control Panel and choose ODBC (in

some cases, it appears as “32-bit ODBC Administrator” or “ODBC Data Source

Administrator” or “ODBC Data Sources”).

Note

A

user data source

 is a data source visible to the user, whereas a system data source

is visible to the system.

Configuring data sources

Below are the steps for configuring a data source:

1.

Select

Start | Settings | Control Panel

 and double-click the ODBC entry. (If you have

the ODBC SDK installed, you can run the “32bit ODBC Administrator” utility

instead). The “ODBC Data Source Administrator” window opens.

2.

On the

User DSN

 tab, click

Add

. The “Create New Data Source” window opens.

3.

Select the InterBase ODBC driver and click

Finish

. The “InterBase ODBC

Configuration” window opens.

4.

Enter the following information:

5.

Optionally, click

Advanced

 and fill in

CharacterSet

 and

Roles

 information.

6.

Click

OK

 to return to the “ODBC Data Source Administrator” window. You

should see the data source you just added, listed under User Data Sources.

Data Source Name

Make up a name for your data source

Description

A description of the data course (not required)

Network Protocol

Choose the protocol from the drop-down list

Database

Full physical path to the database, including the database

name

Server

Server name; if you choose the protocol “local,” this will

default to the local server

Username

Your database user name, or SYSDBA

Password

The database password corresponding to the Username

CHAPTER 5

PROGRAMMING APPLICATIONS WITH ODBC

76

INTERBASE 6

Connecting from Delphi using the ODBC data source

ODBC connection from Delphi is very similar to connecting using BDE from Delphi.

The following example shows connecting using the

TQuery

 component, and also

displaying the results of an SQL statement.

1.

Drop a

TQuery

, a

TDatasource

, and a

TDBGrid

 component on a Delphi form.

2.

Set the following properties for the

TQuery

 component:

3.

Set the following property for the

TDatasource

 component:

4.

Set the following property for the

TDBGrid

 component:

5.

Inspect the returned results from the SELECT statement, in the DBGrid area.

DatabaseName

Pick from the list the data source name created using ODBC

Administrator

SQL

enter the SQL statement to be executed; for example, “SELECT

* FROM Table1”

Active

Set to True to connect; supply user name and password on

connection

Data Set

Set to the name of the

TQuery

 component, or “query1” in this

case

Data Set

Set to the name of the

TDatasource

 component, or

“datasource1” in this case

CONFIGURING AND USING ODBC DATA SOURCES

77

CHAPTER

6

Chapter 6

Working with UDFs

and Blob Filters

This chapter describes how to create and use UDFs to perform data manipulation tasks

that are not directly supported by InterBase. Topics include:

�

Writing and compiling a UDF

�

Creating a UDF library

�

Declaring a UDF to a database

�

Calling a UDF

�

Writing a Blob UDF

�

A description of each UDF in the InterBase UDF library

CHAPTER 6

WORKING WITH UDFS AND BLOB FILTERS

78

INTERBASE 6

About UDFs

Just as InterBase has built-in SQL functions such as

MIN()

,

MAX()

, and

CAST()

, it also

supports libraries of user-defined functions (UDFs). User-defined functions (UDFs) are

host-language programs for performing customized, often-used tasks in applications.

UDFs enable the programmer to modularize an application by separating it into more

reusable and manageable units. Possibilities include statistical, string, and date functions.

UDFs are extensions to the InterBase server and execute as part of the server process.

InterBase provides a library of UDFs, documented in the

“

The InterBase UDF library

”

section of this chapter on page 92.

You can access UDFs and BLOB filters through

isql

or a host-language program. You can

also access UDFs in stored procedures and trigger bodies.

UDFs can be used in a database application anywhere that a built-in SQL function can be

used. This chapter describes how to create UDFs and how to use them in an application.

I

M

P

O

R

T

A

N

T

UDFs are not supported on NetWare.

UDF overview

Creating a UDF is a three-step process:

1.

Write the function in any programming language that can create a shared

library. Functions written in Java are not supported.

2.

Compile the function and link it to a dynamically

 l

inked library (DLL).

3.

Use

DECLARE EXTERNAL FUNCTION

 to declare each individual UDF to each

database in which you need to use it.

Writing a function module

To create a user-defined function (UDF), you code the UDF in a host language, then build

a shared function library that contains the UDF. You must then use

DECLARE EXTERNAL

FUNCTION

 to declare each individual UDF to each database where you need to it. Each

UDF needs to be declared to each database only once.

WRITING A FUNCTION MODULE

79

Writing a UDF

In the C language, a UDF is written like any standard function. The UDF can require up

to ten input parameters, and can return only a single C data value. A source code module

can define one or more functions and can use typedefs defined in the InterBase

ibase.h

header file. You must then include

ibase.h

 when you compile.

�

Specifying parameters

A UDF can accept up to ten parameters corresponding to any InterBase datatype. Array

elements cannot be passed as parameters. If a UDF returns a Blob, the number of input

parameters is restricted to nine. All parameters are passed to the UDF by reference.

Programming language datatypes specified as parameters must be capable of handling

corresponding InterBase datatypes. For example, the C function declaration for

FN_ABS()

accepts one parameter of type double. The expectation is that when

FN_ABS()

 is called, it

will be passed a datatype of

DOUBLE PRECISION

 by InterBase.

UDFs that accept Blob parameters require special data structure for processing. A Blob is

passed by reference to a Blob UDF structure. For more information about the Blob UDF

structure, see

“

Writing a Blob UDF

” on page 88

.

�

Specifying a return value

A UDF can return values that can be translated into any InterBase datatype, including a

Blob, but it cannot return arrays of datatypes. For example, the C function declaration for

FN_ABS()

 returns a value of type double, which corresponds to the InterBase

DOUBLE

PRECISION

 datatype.

By default, return values are passed by reference. Numeric values can be returned by

reference or by value. To return a numeric parameter by value, include the optional

BY

VALUE

 keyword after the return value when declaring a UDF to a database.

A UDF that returns a Blob does not actually define a return value. Instead, a pointer to a

structure describing the Blob to return must be passed as the last input parameter to the

UDF.

�

Character datatypes

UDFs are written in a host language and therefore take host-language datatypes for both

their parameters and their return values. However, when a UDF is declared, InterBase

must translate them to SQL datatypes or to a

CSTRING

 type of a specified maximum byte

length.

CSTRING

 is used to translate parameters of

CHAR

 and

VARCHAR

 datatypes into a

null-terminated C string for processing, and to return a variable-length, null-terminated

C string to InterBase for automatic conversion to

CHAR

 or

VARCHAR

.

CHAPTER 6

WORKING WITH UDFS AND BLOB FILTERS

80

INTERBASE 6

When you declare a UDF that returns a C string,

CHAR

 or

VARCHAR

, you must include the

FREE_IT

 keyword in the declaration in order to free the memory used by the return value.

�

Calling conventions

The calling convention determines how a function is called and how the parameters are

passed. The callee function must match the caller function's calling convention.

InterBase uses the

STDCALL

 calling convention so all UDFs written must use the same

calling convention. To make a function use the

STDCALL

 calling convention the

__stdcall

keywords must be added to the function declaration.

Here is an example function that specifies the

STDCALL

 calling convention:

ISC_TIMESTAMP* __stdcall addmonth(ISC_TIMESTAMP *preTime)

{

 // body of function here

}

Thread-safe UDFs

In SuperServer implementations of InterBase, the server runs as a single multi-threaded

process. This means that you must take some care in the way you allocate and release

memory when coding UDFs and in the way you declare UDFs. This section describes how

to write UDFs that handle memory correctly in the new single-process environment.

There are several issues to consider when handling memory in the single-process,

multi-thread architecture:

�

UDFs must avoid static variables in order to be thread safe. You can use static variables

only if you can guarantee that only one user at a time will be accessing UDFs, since users

running UDFs concurrently will conflict in their use of the same static memory space. If

you do return a pointer to static data, you must

not

 use

FREE_IT

.

�

UDFs must allocate memory using

ib_util_malloc

 rather than static arrays in order to be

thread-safe.

�

Memory allocated dynamically is not automatically released, since the process does not

end. You must use the

FREE_IT

 keyword when you declare the UDF to the database

(

DECLARE EXTERNAL FUNCTION

).

In the following example for user-defined function

FN_LOWER()

, the array must be global

to avoid going out of context:

Multi-process version (not thread-safe: do not use for SuperServer)

char buffer[256];

WRITING A FUNCTION MODULE

81

char *fn_lower(char *ups)

{

. . .

 return (buffer);

}

In the following version, the InterBase engine will free the buffer if the UDF is declared

using the

FREE_IT

 keyword:

Thread-safe version

Notice that this example uses InterBase’s

ib_util_malloc

() function to allocate memory.

char *fn_lower(char *ups)

{

char *buffer = (char *) ib_util_malloc(256);

...

return (buffer);

}

The procedure for allocating and freeing memory for return values in a fashion that is

both thread safe and compiler independent is as follows:

1.

In the UDF code, use InterBase’s

ib_util_malloc

() function to allocate

memory for return values. This function is in

interbase_home

/lib/ib_util.dll

 on

Windows,

interbase_home

/lib/ib_util.so

 on Solaris, and

interbase_home

/lib/ib_util.sl

 on HP-UX.

2.

Use the

FREE_IT

 keyword in the

RETURNS

 clause when declaring a function

that returns dynamically allocated objects. For example:

DECLARE EXTERNAL FUNCTION lowers VARCHAR(256)

RETURNS CSTRING(256) FREE_IT

ENTRY POINT 'fn_lower' MODULE_NAME 'ib_udf.dll'

InterBase’s

FREE_IT

 keyword allows InterBase users to write thread-safe UDF functions

without memory leaks.

3.

Memory must be released by the same runtime library that allocated it.

CHAPTER 6

WORKING WITH UDFS AND BLOB FILTERS

82

INTERBASE 6

Compiling and linking a function module

After a UDF module is complete, you can compile it in a normal fashion into object or

library format. You then declare the UDFs in the resulting object or library module to the

database using the

DECLARE EXTERNAL FUNCTION

 statement. Once declared to the

database, the library containing all the UDFs is automatically loaded at run time from a

shared library or dynamic link library.

�

Include

ibase.h

 in the source code if you use typedefs defined in the InterBase

ibase.h

header file. All “include” (

*.h

) libraries are in the

interbase_home

/SDK/include

 directory.

�

Link to

gds32.dll

 if you use

calls to InterBase library functions.

�

Linking and compiling:

Microsoft Visual C/C++

 Link with

interbase_home

/SDK/lib/ib_util_ms.lib

 and include

interbase_home

/SDK/include/ib_util.h

Use the following options when compiling applications with Microsoft C++:

Borland C++

 Link with

interbase_home

/SDK/lib/ib_util.lib

 and include

interbase_home

/SDK/include/ib_util.h

Delphi

 Use

interbase_home

/SDK/include/ib_util.pas

.

Examples

The following commands use the Microsoft compiler to build a DLL that uses InterBase:

cl -c -Zi -DWIN32 -D_MT -LD udf.c

lib -out:udf.dll -def:funclib.def -machine:i586 -subsystem:console

link -DLL -out:funclib.dll -DEBUG:full,mapped -DEBUGTYPE:CV

-machine:i586 -entry:_DllMainCRTStartup@12 -subsystem:console

-verbose udf.obj udf.exp gds32_ms.lib ib_util_ms.lib crtdll.lib

This command builds an InterBase executable using the Microsoft compiler:

cl -Zi -DWIN32 -D_MT -MD udftest.c udf.lib gds32_ms.lib

ib_util_ms.lib crtdll.lib

Option

Action

c

Compile without linking (DLLs only)

Zi

Generate complete debugging information

DWIN32

Defines “WIN32”

D_MT

Use a multi-thread, statically-linked library

TABLE 6.1

Microsoft C compiler options

DECLARING A UDF TO A DATABASE

83

See the makefiles (

makefile.bc

 and

makefile.msc

 on Win

dows platforms,

makefile

 on UNIX) in

the InterBase

examples

 subdirectory for details on how to compile a UDF library.

Examples

For examples of how to write thread-safe UDFs, see

interbase_home/examples/UDFib_udf.c

.

This file contains the source code for the InterBase UDF library.

Creating a UDF library

UDF libraries are standard shared libraries that are dynamically loaded by the database

at runtime. You can create UDF libraries on any platform—except NetWare—that is

supported by InterBase. To use the same set of UDFs with databases running on different

platforms, create separate libraries on each platform where the databases reside. UDFs

run on the server where the database resides.

Note

A

library

, in this context, is a shared object that typically has a

.dll

 extension on

Win

dows p

latforms, a .

so

 extension on Solaris, and a

.sl

 extension on HP-UX.

The InterBase

examples

 directory contains sample makefiles (

makefile.bc

 and

makefile.msc

 on

Win

dows platforms,

makefile

 on UNIX) that build a UDF function library from

 ib_udf.c

.

Modifying a UDF library

To add a UDF to an existing UDF library on a platform:

�

Compile the UDF according to the instructions for the platform.

�

Include all object files previously included in the library and the newly-created object file

in the command line when creating the function library.

Note

On some platforms, object files can be added directly to existing libraries. For more

information, consult the platform-specific compiler and linker documentation.

To delete a UDF from a library, follow the linker’s instructions for removing an object

from a library. Deleting a UDF from a library does not eliminate references to it in the

database.

Declaring a UDF to a database

Once a UDF has been written and compiled into a library, you must use the

DECLARE

EXTERNAL FUNCTION

 statement to declare each function to each database where you want

to use it. Each function in a library must be declared separately, but needs to be declared

only once to each database.

CHAPTER 6

WORKING WITH UDFS AND BLOB FILTERS

84

INTERBASE 6

Declaring a UDF to a database informs the database about its location and properties:

�

The UDF name as it will be used in embedded SQL statements

�

The number and datatypes of its arguments

�

The return datatype

�

The name of the function as it exists in the UDF module or library

�

The name of the library that contains the UDF

You can use

isql

, IBConsole, or a script to declare your UDFs.

DECLARE EXTERNAL FUNCTION name [datatype | CSTRING (int)

[, datatype | CSTRING (int) ...]]

RETURNS {datatype [BY VALUE] | CSTRING (int)} [FREE_IT]

[RETURNS PARAMETER n]

ENTRY_POINT 'entryname'

MODULE_NAME 'modulename';

Table 6.2 lists the arguments to

DECLARE EXTERNAL FUNCTION

:

Argument

Description

name

Name of the UDF to use in SQL statements; can be different from the name of the

function specified after the

ENTRY_POINT

 keyword

datatype

Datatype of an input or return parameter

•

All input parameters are passed to a UDF by reference

•

Return parameters can be passed by value

•

Cannot be an array element

RETURNS

Specifies the return value of a function

BY VALUE

Specifies that a return value should be passed by value rather than by reference

TABLE 6.2

Arguments to

DECLARE EXTERNAL FUNCTION

DECLARING A UDF TO A DATABASE

85

Declaring UDFs with FREE_IT

InterBase’s

FREE_IT

 keyword allows InterBase users to write thread-safe UDF functions

without memory leaks.

Whenever a UDF returns a value by reference to dynamically allocated memory, you must

declare it using the

FREE_IT

 keyword in order to free the allocated memory.

Note

You

must not

 use

FREE_IT

 with UDFs that return a pointer to static data, as in the

“multi-process version” example on page 80.

The following code shows how to use this keyword:

DECLARE EXTERNAL FUNCTION lowers VARCHAR(256)

RETURNS CSTRING(256) FREE_IT

ENTRY POINT 'fn_lower' MODULE_NAME 'ib_udf.dll'

CSTRING

 (

int

)

Specifies a UDF that returns a null-terminated string

int

 bytes in length

FREE_IT

Frees memory of the return value after the UDF finishes running

•

Use only if the memory is allocated dynamically in the UDF

•

See also the UDF chapter in the

Developer’s Guide

RETURNS

PARAMETER

n

Specifies that the function returns the

n

th input parameter; required for returning

Blobs

'

entryname

'

Quoted string specifying the name of the UDF in the source code and as stored in

the UDF library

'

modulename

'

Quoted file specification identifying the library that contains the UDF

•

The library must reside on the server

•

On any platform, the module can be referenced with no path name if it is in

interbase_home

/UDF

 or

interbase_home

/intl

•

If you do not place the library in

interbase_home

/UDF

 or

interbase_home

/intl

, you

must

 specify its location in InterBase’s configuration file using the

EXTERNAL_FUNCTION_DIRECTORY

 parameter

•

It is not necessary to supply the extension to the module name

•

See

“

UDF library placement

”

 for more about how the operating system finds the

UDF library

Argument

Description

TABLE 6.2

Arguments to

DECLARE EXTERNAL FUNCTION

CHAPTER 6

WORKING WITH UDFS AND BLOB FILTERS

86

INTERBASE 6

UDF library placement

The rules for placing UDF libraries have changed since InterBase version 5. In InterBase 6

and later, InterBase finds a UDF library

only

 if one of the following conditions is met:

�

The library is in

interbase_home

/UDF

�

The library in a directory other than

interbase_home

/UDF

 and the complete pathname to

the directory, including a drive letter in the case of a Windows server, is listed in the

InterBase configuration file.

InterBase finds the functions once you have declared them with

DECLARE EXTERNAL

FUNCTION

. You do not need to specify a path in the declaration.

The InterBase configuration file is called

ibconfig

 on Windows machines and

isc_config

 on

UNIX machines.

To specify a location for UDF libraries in a configuration file, enter a line of the following

form for Windows platforms:

EXTERNAL_FUNCTION_DIRECTORY "D:\Mylibraries\InterBase"

For UNIX, the line does not include a drive letter:

EXTERNAL_FUNCTION_DIRECTORY "/usr/local/lib/Mylibraries/InterBase"

Note that it is no longer sufficient to include a complete path name for the module in the

DECLARE EXTERNAL FUNCTION

 statement. You

must

 list the path in the InterBase

configuration file if it is other than

interbase_home

/UDF

.

I

M

P

O

R

T

A

N

T

For security reasons, InterBase strongly recommends that you place your compiled

libraries in directories that are dedicated to InterBase libraries. Placing InterBase

libraries in directories such as

C:\winnt40\system32

 or

/usr/lib

 permits access to all libraries

in those directories and is a serious security hole.

Example

The following statement declares the

TOPS()

 UDF to a database:

DECLARE EXTERNAL FUNCTION TOPS

CHAR(256), INTEGER, BLOB

RETURNS INTEGER BY VALUE

ENTRY_POINT 'TE1' MODULE_NAME 'TM1.DLL';

This example does not need the

FREE_IT

 keyword because only cstrings,

CHAR

, and

VARCHAR

 return types require memory allocation. The module must be in InterBase’s

UDF

directory or in a directory that is named in the configuration file.

Example

The following

isql

 script declares three UDFs,

ABS

(),

DATEDIFF

(), and

TRIM

(), to the

employee.gdb

 database:

CALLING A UDF

87

CONNECT 'employee.gdb';

DECLARE EXTERNAL FUNCTION ABS

DOUBLE PRECISION

RETURNS DOUBLE PRECISION BY VALUE

ENTRY_POINT 'fn_abs' MODULE_NAME 'ib_udf';

DECLARE EXTERNAL FUNCTION DATEDIFF

DATE, DATE

RETURNS INTEGER

ENTRY_POINT 'fn_datediff' MODULE_NAME 'ib_udf';

DECLARE EXTERNAL FUNCTION TRIM

SMALLINT, CSTRING(256), SMALLINT

RETURNS CSTRING(256) FREE_IT

ENTRY_POINT 'fn_trim' MODULE_NAME 'ib_udf';

COMMIT;

Note that no extension is supplied for the module name. This creates a portable module.

Windows machines add a

.dll

 extension automatically.

Calling a UDF

After a UDF is created and declared to a database, it can be used in SQL statements

wherever a built-in function is permitted. To use a UDF, insert its name in an SQL

statement at an appropriate location, and enclose its input arguments in parentheses.

For example, the following

DELETE

 statement calls the

ABS()

 UDF as part of a search

condition that restricts which rows are deleted:

DELETE FROM CITIES

WHERE ABS (POPULATION - 100000) > 50000;

UDFs can also be called in stored procedures and triggers. For more information, see

“Working with Stored Procedures” and “Working with Triggers” in the

Data Definition

Guide

.

Calling a UDF with

SELECT

In

SELECT

 statements, a UDF can be used in a select list to specify data retrieval, or in the

WHERE

 clause search condition.

The following statement uses

ABS()

 to guarantee that a returned column value is positive:

SELECT ABS (JOB_GRADE) FROM PROJECTS;

CHAPTER 6

WORKING WITH UDFS AND BLOB FILTERS

88

INTERBASE 6

The next statement uses

DATEDIFF()

 in a search condition to restrict rows retrieved:

SELECT START_DATE FROM PROJECTS

WHERE DATEDIFF (:today, START_DATE) > 10;

Calling a UDF with

INSERT

In

INSERT

 statements, a UDF can be used in the comma-delimited list in the

VALUES

 clause.

The following statement uses

TRIM()

to remove leading blanks from

firstname

 and trailing

blanks from

lastname

 before inserting the values of these host variables into the

EMPLOYEE

 table:

INSERT INTO EMPLOYEE(FIRST_NAME, LAST_NAME, EMP_NO, DEPT_NO, SALARY)

VALUES (TRIM (0, ' ',:firstname), TRIM (1, ' ', :lastname),

:empno, :deptno, greater(30000, :est_salary));

Calling a UDF with

UPDATE

In

UPDATE

 statements, a UDF can be used in the

SET

 clause as part of the expression

assigning column values. For example, the following statement uses

TRIM()

 to ensure that

update values do not contain leading or trailing blanks:

UPDATE COUNTRIES

SET COUNTRY = TRIM (2, ' ', COUNTRY);

Calling a UDF with

DELETE

In

DELETE

 statements, a UDF can be used in a

WHERE

 clause search condition:

DELETE FROM COUNTRIES

WHERE ABS (POPULATION - 100000) < 50000;

Writing a Blob UDF

A Blob UDF differs from other UDFs, because pointers to Blob control structures are

passed to the UDF instead of references to actual data. A Blob UDF cannot open or close

a Blob, but instead invokes functions to perform Blob access.

WRITING A BLOB UDF

89

Creating a Blob control structure

A Blob control structure is a C struct, declared within a UDF module as a

typedef. Programmers must provide the control structure definition, which should be

defined as follows:

typedef struct blob {

void (*blob_get_segment) ();

isc_blob_handle blob_handle;

long number_segments;

long max_seglen;

long total_size;

void (*blob_put_segment) ();

} *Blob;

Field

Description

blob_get_segment

The first field in the Blob struct,

blob_get_segment

, is a pointer to a

function that is called to read a segment from a Blob if one is passed

to the UDF. The function takes four arguments: a Blob handle, the

address of a buffer into which to place Blob a segment of data that

is read, the size of that buffer, and the address of variable into to

store the size of the segment that is read. If Blob data is not read by

the UDF, set

blob_get_segment

 to

NULL

.

TABLE 6.3

Fields in the Blob struct

CHAPTER 6

WORKING WITH UDFS AND BLOB FILTERS

90

INTERBASE 6

Declaring a Blob UDF

A Blob UDF is declared to the database using

DECLARE EXTERNAL FUNCTION

 like any

non-Blob UDF. Use the

RETURNS PARAMETER

n

 statements to specify which input Blob is

to be returned. For example, the return the third input Blob, specify

RETURNS PARAMETER

3. The following statement declares the Blob UDF, Blob_

PLUS

_Blob, to a database:

DECLARE EXTERNAL FUNCTION Blob_PLUS_Blob

Blob,

Blob,

Blob

RETURNS PARAMETER 3

ENTRY_POINT 'blob_concatenate' MODULE_NAME 'ib_udf.dll';

COMMIT;

blob_handle

•

The second field in the Blob struct is required. It is a Blob handle

that uniquely identifies a Blob passed to a UDF or returned by it.

•

The type

isc_blob_handle

 is new in InterBase 6

number_segments

For Blob data passed to a UDF,

number_segments

 specifies the total

number of segments in the Blob. Set this value to

NULL

 if Blob data

is not passed to a UDF.

max_seglen

For Blob data passed to a UDF,

max_seglen

 specifies the size, in

bytes, of the largest single segment passed. Set this value to

NULL

 if

Blob data is not passed to a UDF.

total_size

For Blob data passed to a UDF,

total_size

 specifies the actual size, in

bytes, of the Blob as a single unit. Set this value to

NULL

 if Blob data

is not passed to a UDF.

blob_put_segment

The last field in the Blob struct,

blob_put_segment

, is a pointer to a

function that is called to write a segment to a Blob if one is being

returned by the UDF. The function takes three arguments: a Blob

handle, the address of a buffer containing the data to write into the

Blob, and the size, in bytes, of the data to write. If Blob data is not

read by the UDF, set

blob_put_segment

 to

NULL

.

Field

Description

TABLE 6.3

Fields in the Blob struct

WRITING A BLOB UDF

91

A Blob UDF example

The following code creates a UDF,

BLOB_CONCATENATE()

, that appends data from one Blob

to the end of another Blob to return a third Blob consisting of concatenated Blob data.

Notice that it is okay to use

malloc

() rather than

ib_util_malloc

() when you free the

memory in the same function where you allocate it.

/* Blob control structure */

typedef struct blob {

void (*blob_get_segment) ();

int *blob_handle;

long number_segments;

long max_seglen;

long total_size;

void (*blob_put_segment) ();

} *Blob;

extern char *isc_$alloc();

#define MAX(a, b) (a > b) ? a : b

#define DELIMITER "-----------------------------"

void blob_concatenate(Blob from1, Blob from2, Blob to)

/* Note Blob to, as final input parameter, is actually for output! */

{

char *buffer;

long length, b_length;

b_length = MAX(from1->max_seglen, from2->max_seglen);

buffer = malloc(b_length);

/* write the from1 Blob into the return Blob, to */

while ((*from1->blob_get_segment) (from1->blob_handle, buffer,

b_length, &length))

(*to->blob_put_segment) (to->blob_handle, buffer, length);

/* now write a delimiter as a dividing line in the blob */

(*to->blob_put_segment) (to->blob_handle, DELIMITER,

sizeof(DELIMITER) - 1);

/* finally write the from2 Blob into the return Blob, to */

while ((*from2->blob_get_segment) (from2->blob_handle, buffer,

b_length, &length))

CHAPTER 6

WORKING WITH UDFS AND BLOB FILTERS

92

INTERBASE 6

(*to->blob_put_segment) (to->blob_handle, buffer, length);

/* free the memory allocated to the buffer */

free(buffer);

}

The InterBase UDF library

InterBase provides a number of frequently needed functions in the form of a UDF library,

named

ib_udf.dll

 on Windows platforms and

ib_udf

 on UNIX platforms. These UDFs are

located in

interbase_home

/lib

 and are all implemented using the standard C library. This

section describes each UDF and provides its declaration.

There is a script,

ib_udf.sql

, in the

interbase_home

/examples/udf

 directory that declares all

of the functions listed below. If you want to declare only a subset of these, copy and edit

the script file.

I

M

P

O

R

T

A

N

T

Several of these UDFs must be called using the new

FREE_IT

 keyword if—and only if—

they are written in thread-safe form, using

malloc

 to allocate dynamic memory.

Note

When trigonometric functions are passed inputs that are out of bounds, they return

zero rather than NaN.

Below is a list of the functions supplied in the InterBase UDF library. See the UDF chapter

of the

Language Reference

 for more details about these functions.

Function name

Description

Inputs

Outputs

ABS()

Absolute value

Double precision

Double precision

ACOS()

Arc cosine

Double precision

Double precision

ASCII_CHAR()

Return character based on ASCII code

Integer

Char(1)

ASCII_VAL()

Return ASCII code for given character

Char(1)

Integer

ASIN()

Arc sine

Double precision

Double precision

ATAN()

Arc tangent

Double precision

Double precision

ATAN2()

Arc tangent divided by second argument

Double precision,

Double precision

Double precision

BIN_AND()

Bitwise AND operation

Integer

Integer

THE INTERBASE UDF LIBRARY

93

BIN_OR()

Bitwise OR operation

Integer

Integer

BIN_XOR()

Bitwise XOR operation

Integer

Integer

CEILING()

Round up to nearest whole value

Double precision

Double precision

COS()

Cosine

Double precision

Double precision

COSH()

Hyperbolic cosine

Double precision

Double precision

COT()

Cotangent

Double precision

Double precision

DIV()

Integer division

Integer

Integer

FLOOR()

Round down to nearest whole value

Double precision

Double precision

LN()

Natural logarithm

Double precision

Double precision

LOG()

Logarithm of the first argument, by the

base of the second argument

Double precision,

Double precision

Double precision

LOG10()

Logarithm base 10

Double precision

Double precision

LOWER()

Reduce all upper-case characters to

lower-case

Cstring(80)

Cstring(80)

LTRIM()

Strip preceding blanks

Cstring(80)

Cstring(80)

MOD()

Modulus operation between the two

arguments

Integer, Integer

Integer

PI()

Return the value of π

—

Double precision

RAND()

Return a random value

—

Double precision

RTRIM()

Strip trailing blanks

Cstring(80)

Cstring(80)

SIGN()

Return -1, 0, or 1

Double precision

Integer

SIN()

Sine

Double precision

Double precision

SINH()

Hyperbolic sine

Double precision

Double precision

SQRT()

Square root

Double precision

Double precision

STRLEN()

Length of string

Cstring(32767)

Integer

Function name

Description

Inputs

Outputs

CHAPTER 6

WORKING WITH UDFS AND BLOB FILTERS

94

INTERBASE 6

Declaring Blob filters

You can use

BLOB

 filters to convert data from one

BLOB

 subtype to another. You can access

BLOB

 filters from any program that contains SQL statements.

BLOB

 filters are user-written utility programs that convert data in columns of

BLOB

datatype from one InterBase or user-defined subtype to another. Declare the filter to the

database with the

DECLARE FILTER

 statement. For example:

DECLARE FILTER BLOB_FORMAT

INPUT_TYPE 1 OUTPUT_TYPE -99

ENTRY_POINT 'Text_filter' MODULE_NAME 'Filter_99.dll';

InterBase invokes

BLOB

 filters in either of the following ways:

�

SQL statements in an application

�

interactively through

isql

.

isql

automatically uses a built-in ASCII

BLOB

 filter for a

BLOB

 defined without a subtype,

when asked to display the

BLOB

. It also automatically filters

BLOB

 data defined with

subtypes to text, if the appropriate filters have been defined.

To use

BLOB

 filters, follow these steps:

1.

Write the filters and compile them into object code.

2.

Create a shared filter library.

3.

Make the filter library available to InterBase at run time.

4.

Define the filters to the database using

DECLARE FILTER

.

5.

Write an application that requests filtering.

You can use

BLOB

 subtypes and

BLOB

 filters to do a large variety of processing. For

example, you can define one

BLOB

 subtype to hold:

SUBSTR()

Substring, starting at position equal to

second argument, with length equal to

third argument

Cstring(80), Smallint,

Smallint

Cstring(80)

TAN()

Tangent

Double precision

Double precision

TANH()

Hyperbolic tangent

Double precision

Double precision

Function name

Description

Inputs

Outputs

DECLARING BLOB FILTERS

95

�

Compressed data and another to hold decompressed data. Then you can write

BLOB

 filters

for expanding and compressing

BLOB

 data.

�

Generic code and other

BLOB

 subtypes to hold system-specific code. Then you can write

BLOB

 filters that add the necessary system-specific variations to the generic code.

�

Word processor input and another to hold word processor output. Then you can write a

BLOB

 filter that invokes the word processor.

For more information about creating and using

BLOB

 filters, see the

Embedded SQL

Guide

.

For the complete syntax of

DECLARE FILTER

, see the

Language Reference

.

96

INTERBASE 6

97

CHAPTER

7

Chapter 7

Using the Install and

Licensing APIs

This chapter describes how to use the functions in the InterBase Install API as part of an

application install. It includes the following topics:

�

A description of the Install API and its parts, including a list of the ten functions

�

An overview of how to use the API to write an install

�

Pseudocode for a typical install

�

A reference section with details of each function

�

A list of error and warning numbers and their text

CHAPTER 7

USING THE INSTALL AND LICENSING APIS

98

INTERBASE 6

About the InterBase Install API

InterBase provides developers with resources that greatly facilitate the process of

installing InterBase as part of an application install on the Win32 platform. It provides

mechanisms for an install that is completely silent. In addition, it allows you to interact

with users if desired, to gather information from them and to report progress and

messages back to them.

Using the API functions contained in

ibinstall.dll

, you can integrate the installation of your

own product with the deployment of an embedded copy of InterBase. The InterBase

portion of the install is

silent

: it does not display billboards and need not require

intervention from the end user.

Files in the Install API

The API consists of following files:

ABOUT THE INTERBASE INSTALL API

99

These files are all available on the InterBase CDROM. They are also copied as part of the

InterBase install when the

DEV

 option is chosen at install time.

What the Install API does

The functions in the InterBase Install API perform many of the steps that were previously

the responsibility of the developer:

�

Performs preinstall checks: check for valid operating system, correct user permissions,

existing copies of InterBase, disk space, source and destination directories

�

Logs all actions to a file called

ib_install.log

�

Creates the destination directory if necessary (and possible)

File

Description

ibinstall.dll

A library of functions—the “install engine”

•

An API that contains ten functions plus the full text of all InterBase error

messages and warnings

•

Installed when any InterBase option is installed

ibinstall.h

For C programmers:

•

A header file that contains function declarations and related values, and a list

of error and warning messages and their numbers

•

Installed with the

IBDEV

 option

ibinstall.lib

For Borland C++ Builder programmers:

•

A library file that contains the list of functions in

ibinstall.dll

•

Installed with the

IBDEV

 option

ibinstall_ms.lib

For Microsoft Visual C programmers:

•

A header file that contains function declarations and related values, and a list

of error and warning messages and their numbers

•

Installed with the

IBDEV

 option

ibinstall.pas

For Delphi programmers:

•

An Object Pascal sourcefile that contains function declarations and related

values

•

Installed with the

IBDEV

 option

TABLE 7.1

Install API files required for writing an InterBase install

CHAPTER 7

USING THE INSTALL AND LICENSING APIS

100

INTERBASE 6

�

Checks for option dependencies

�

Copies all files, performing necessary version checks to avoid copying over newer

versions

�

Creates needed registry entries and increases reference count of shared files

�

On

Windows

NT

 and 2000

, installs the InterBase Server and InterBase Guardian as

services that start automatically; on Windows

9

8, adds the Guardian to the Run section

of the Registry

�

Modifies the TCP/IP

Services

 file if necessary

�

Writes the selected options into the uninstall file

�

What the Install API does not do

The InterBase Install API does not provide functions for starting the server after it is

installed or for creating shortcuts. Licensing functions are handled by the Licensing API

.

The install handle

Each install instance has a unique handle that identifies it. This handle is a variable of

type

OPTION_HANDLE

 (see

“

Datatypes defined for the Install API

” on page 103

) that

you initialize to zero at the beginning of the InterBase install. Throughout this chapter,

this variable is referred to as

handle

, and its address is

phandle

.

O

nce you have passed

it to

isc_install_set_option

(), it references a data area where all the options for the current

install are stored. You need not and should not dereference

handle

 directly. The install

data is all maintained by the install engine. You need only pass

handle

 or a pointer to it

,

d

epending on the syntax of the function you are callin

g.

You must pass

handle

 to

isc_install_set_option

() before passing it to any of the other

functions, since

isc_install_set_option

() is the only function that accepts

handle

 when its

value is zero. The others return an error.

Error handling

Each of the functions in the InterBase Install API returns a message number as follows:

�

If the function executes successfully, it returns zero (

isc_install_success

).

�

If it completes with warnings, it returns a negative number that corresponds to a specific

warning message.

�

If an error occurs, it returns a positive number that corresponds to a specific error

message.

ABOUT THE INTERBASE INSTALL API

101

You should check the return each time you call a function. If the return is nonzero, call

isc_install_get_message

() to get the text of the error or warning. For example:

error = isc_install_precheck(handle, source_path, dest_path)

if(error)

isc_install_get_message(error, message, length(message))

The steps in

“

Overview of the process

”

 do not explicitly remind you to do this. It is

assumed that you will do so as necessary.

Callback functions

The

isc_install_execute

() and

isc_uninstall_execute

() functions permit you to pass in

pointers to an error-handling function and to a status function, both of which are

supplied by you.

�

You can use the error-handing function to specify a response to an error or warning and

to display message text to the end user.

�

The status function can pass status information to the end user and pass back a “cancel”

request from the user.

The prototype of these functions must be as follows:

�

fp_status

()
int (*fp_status)(int status, void *status_arg, const TEXT* act_desc)

fp_status

() is a callback function supplied by you, the developer. It accepts an integer,

status

, indicating percent of install/uninstall completed. If you pass a pointer to

fp_status

() to either

isc_install_execute

() or

isc_uninstall_execute

(), they call

fp_status

()

at intervals and pass it a number indicating percent completion so that you can display

a status bar or other indicator to the end user.

fp_status

() also passes back text containing the action being performed, such as “Copy

Server Files.”

CHAPTER 7

USING THE INSTALL AND LICENSING APIS

102

INTERBASE 6

Return Value

The

fp_status

() function must return either

isc_install_ fp_continue

 or

isc_install_ fp_abort

.

�

fp_error

()
int (*fp_error)(MSG_NO msg_no, void *error_arg, const TEXT* context)

fp_error

() is a callback function supplied by you, the developer. It accepts an error

number,

msg_no

, when a pointer to it is passed to either

isc_install_execute

() or

isc_uninstall_execute

() as a parameter.

Return Value

fp_error

() processes the error message and returns one of three values:

isc_install_ fp_retry

,

isc_install_ fp_continue

, or

isc_install_ fp_abort

.

Parameter

Type

Description

status

INT

Accepts an interger from zero to 100 from either

isc_install_execute

() or

isc_uninstall_execute

(). The integer passed in indicates the percent of the

install/uninstall completed.

status_arg

VOID

*

A pointer to optional user-defined data passed to

isc_install_execute

() or

isc_uninstall_execute

()

act_desc

TEXT

*

Provides text that can be displayed as part of the progress indicator

Parameter

Type

Description

msg_no

MSG_NO

Accepts an error number from either

isc_install_execute

() or

isc_uninstall_execute

().

error_arg

VOID

*

A pointer to optional user-defined data passed to

isc_install_execute

() or

isc_uninstall_execute

()

context

TEXT

*

Provides additional information about the nature of the error that can be

passed on to the end user

fp_error() returns

Effect on calling function

isc_install_ fp_abort

Action fails and calling function returns with the same error

isc_install_ fp_retry

Action is retried but will probably fail again unless user has intervened

isc_install_ fp_continu

e

Function ignores the error and continues from the point where the error

occurred

WRITING AN INTERBASE INSTALL

103

I

M

P

O

R

T

A

N

T

These callback functions can make calls only to

isc_install_get_message

(). The result is

undetermined if they attempt to call any other Install API function.

Datatypes defined for the Install API

The following datatypes are defined for the Install API functions:

Writing an InterBase install

T

he steps you use depend on whether you are writing a silent install or an interactive

install. Some steps are merely recommended rather than required, such as Calling

isc_clear_options

() before proceeding with the rest of the install. Others vary depending

on whether you are also performing tasks such as writing an uninstall program, creating

icons, adding authorization codes, and starting the server

.

I

M

P

O

R

T

A

N

T

T

here must be only one InterBase server per machine. It is particularly important to

avoid putting a SuperServer version of InterBase (V 4.2 and later on Win

dows p

latforms)

on a machine where a Classic server is still installed.

Datatype

Definition

OPTIONS_HANDLE

void*

TEXT

char

MSG_NO

long

OPT

unsigned long

FP_STATUS

function pointer of type int (*fp_status)(int status, void *status_arg,

const

TEXT

* description)

FP_ERROR

function pointer of type int (*fp_error)(

MSG_NO

 msg_no, void *status_arg,

const

TEXT

* description)

TABLE 7.2

Datatypes defined for the InterBase Install API

CHAPTER 7

USING THE INSTALL AND LICENSING APIS

104

INTERBASE 6

Overview of the process

1.

The files that you need to develop and compile your application are in the

ib_install_dir

\SDK\

directory if you installed InterBase on your development

system with the

IB_DEV

 option. They are also on the InterBase CDROM in the

\

SDK

 directory. Collect the following files:

-

For C/C++ programmers:

ibinstall.dll

,

ibinstall.lib

,

ibinstall.h

-

For Delphi programmers:

ibinstall.dll

,

ibinstall.pas

Place

ibinstall.dll

 in the directory that will contain your executable after it is compiled.

Place the other files where your compiler can find them.

2.

Declare a variable of type

OPTIONS_HANDLE

 for

handle

 and initialize it to 0

(a long

INT

). If you are writing a companion uninstall program, allocate a

text buffer for the uninstall file name.

3.

If you need messages in a language other than English, call

isc_load_external_text

() to load the error and warning messages.

4.

For interactive installs only

The next steps temporarily select a group of

options in order to check that there is a valid operating system, that no

Classic server is present, and that there is no InterBase server running. This

prevents the case where the end user answers several questions and then

finds that the install cannot be performed because of an invalid OS or the

presence of the Classic server:

-

Call

isc_install_set_option

() with the following parameters:

isc_install_set_option(handle, INTERBASE)

If you are installing a client but no server, substitute

IB_CLIENT

 for

INTERBASE

.

-

Call

isc_install_precheck

(

handle

,

NULL

,

NULL

)

-

Call

isc_install_clear_options

().

5.

In an interactive install, query users for a destination and desired options.

6.

Call

isc_install_set_option

() once for each option to install. This is the

mechanism you use to process user input.

7.

Call

isc_install_precheck

() a second time. This time, provide the source and

destination path and selected options.

isc_install_precheck

() checks that the

destination directory exists and is writable. If the directory does not exist and

cannot be created, the function exits with an error. It also checks the

dependencies of the selected options and issues a warning if the selections

are incompatible or require options not selected. See page 112

for a further

description of this function.

THE INSTALL API FUNCTIONS

105

8.

Call

isc_install_execute

(), passing in

handle

, the source path, and the

destination path. If you have written functions to handle errors and display

status, you pass in pointers to these functions and optionally pointers to

context data as well. The last parameter is an optional pointer to a buffer

where the uninstall file name can be stored. If you are providing a

companion uninstall program, you must declare a text buffer for the name of

the uninstall file and pass in a pointer to it as the final argument for this

function.

isc_install_execute

() then performs the actual install.

The next steps are all optional.

9.

When the install is complete, you can enable licensed functionality for the

product by calling functions in the Licensing API (

iblicense.dll

) and providing

certificate IDs and keys. If you do not do this, the end user must enter

certificate ID and key pairs (authorization codes) before starting the server.

10.

Create shortcuts on the Start menu.

11.

Start the InterBase Guardian. You can do this only after providing valid

certificate IDs and keys.

A real-world example

The source code for the InterBase

setup.exe

 is in

ib_install_dir

\examples\install

. Since it uses

the InterBase Install API, it serves as an example of how to make use of the functions to

write an install program.

The Install API functions

The InterBase Install API,

ibinstall.dll

, is a library of functions that facilitate the process of

installing and deploying InterBase as part of the developer’s own application. The table

below lists each entry point in

ibinstall.dll

 with a brief description.

Following the table is a list of datatypes that are defined for these functions and a detailed

description of each function.

CHAPTER 7

USING THE INSTALL AND LICENSING APIS

106

INTERBASE 6

isc_install_clear_options

()

Syntax MSG_NO isc_install_clear_options(OPTIONS_HANDLE *phandle)

Function

Description

isc_install_clear_options

()

Clears all options set by

isc_install_set_option

()

isc_install_execute

()

Performs the actual install, including file copying, registry entries,

saving uninstall options, and modifying the Services file if

necessary

isc_install_get_info

()

Returns the requested information in human-readable form: a

suggested install directory, required disk space, an option name,

or option description

isc_install_get_message

()

Returns the text of the requested error or warning message

number

isc_install_load_external_text

()

Loads the messages from the specified message file

isc_install_precheck

()

Performs a number of necessary checks on the install

environment, such as checking for existing servers, disk space and

access, user permissions, and option dependencies

isc_install_set_option

()

Creates a handle to a list of selected install options; must be called

once for each option

isc_install_unset_option

()

Removes an option from the list of selected options obtained from

isc_install_set_option

()

isc_uninstall_execute

()

Removes installed InterBase files (but see exceptions on page

117), updates the registry, removes shares files that have a

reference count less than 1, uninstalls the InterBase Guardian and

Server services

isc_uninstall_precheck

()

Checks for running server, correct user permission, and validity of

the uninstall file

TABLE 7.3

Entry points in

ibinstall.dll

THE INSTALL API FUNCTIONS

107

Description

isc_install_clear_options

() clears all the options and other install data stored in

handle

and sets

handle

 to zero. It returns a warning if

handle

 is zero.

It is good practice to call this function both at the beginning and at the end of an install

to free all resources. After calling

isc_install_clear_options

(), you must pass

handle

 to

isc_install_set_option

() at least once before passing it to any of the other install

functions.

Return Value

R

eturns

isc_install_success

 if the function executes successfully, a number larger than

isc_install_success

if an error occurs, and a number smaller than

isc_install_success

if

the function completes with warnings.

Call

isc_install_get_message

() to obtain the error message when the result is not equal

to

isc_install_success

.

isc_install_execute

()

Syntax MSG_NO isc_install_execute(OPTIONS_HANDLE handle, TEXT *source_path,

TEXT *dest_path, FP_STATUS *fp_status, void *status_arg,

FP_ERROR *fp_error, void *error_arg, TEXT *uninst_file_name)

Parameter

Type

Description

phandle

OPTIONS_HANDLE*

•

Pointer to the handle of the list of options for the current install

•

You must initialize this to zero before first use

•

Handle is maintained by the install engine; you do not need to and

should not dereference it

CHAPTER 7

USING THE INSTALL AND LICENSING APIS

108

INTERBASE 6

Description

isc_install_execute

() performs the actual install, including the following operations:

�

Calls

isc_install_precheck

() to ensure that the install can be performed; if

isc_install_precheck

() returns an error the install aborts

�

Logs all actions to a temporary file called

ib_install.log

�

Creates the destination directory if it does not already exist

�

Copies the files using all the correct version checks and delayed copying methods if

necessary

�

Creates the required registry entries

Parameter

Type

Description

handle

OPTIONS_HANDLE

•

The handle to the list of options created by

isc_install_set_option

()

•

isc_install_execute

() returns an error if the value of

handle

 is

NULL

or zero

source_path

TEXT

*

•

The path where the files to be installed are located, typically

located on a CDROM

•

isc_install_execute

() returns an error if

source_path

 is

NULL

 or an

empty string

dest_path

TEXT

*

•

The path to the desired install location

•

isc_install_execute

() returns an error if

dest_path

 is

NULL

 or an

empty string

fp_status

FP_STATUS

*

•

A pointer to a callback function that accepts an integer from 0 to

100; see page 101 for more information

•

May be

NULL

 if no status information is required by the end user

status_arg

void*

•

User-defined data to be passed to

fp_status

()

•

Value is often

NULL

fp_error

FP_ERROR

*

•

A pointer to a callback function that accepts an error number and

returns a mnemonic specifying whether

isc_install_execute

()

should abort, continue, or retry

error_arg

void*

•

User-defined data to be passed to

fp_error

()

•

Value is often

NULL

uninst_file_nam

e

TEXT

*

•

A pointer to a buffer containing the name of the uninstall file

•

Can be set to

NULL

THE INSTALL API FUNCTIONS

109

�

Increments UseCount entries in the Registry for shared files

�

Installs the Guardian and Server as services on Windows NT

 or Windows 2000

, or adds

the Guardian to the Run section of the registry on Windows

9

8.

�

If necessary, adds

gds_db

 to the Services file

�

Streams the selected options into

ib_uninst.

nnn

 (where

nnn

 is a sequence number) for

use at uninstall time

�

Frees the options list from memory

�

Upon completion, moves

ib_install.log

 to the install directory

�

Calls

fp_status

() at regular intervals to pass information on the install progress (percent

complete)

�

Attempts to clean up if at any point the install is canceled by the user or by an error

If you choose to write functions for displaying status and handling errors, you pass in

pointers to these functions as the

fp_status

 and

fp_error

 parameters. In addition, you can

pass context information or data to these functions by passing in values for

status_arg

and

error_arg

, although these last two parameters are more commonly

NULL

. See page

101 for more about these callback functions.

Example

[To come]

Return Value

Returns zero if the function executes successfully, a positive number if an error occurs,

and a negative number if the function completes with warnings.

Call

isc_install_get_message

() to obtain the error message when the result is nonzero.

isc_install_get_info

()

Syntax MSG_NO isc_install_get_info(OPT option, int info_type, void *info_buf,

unsigned int buf_len)

CHAPTER 7

USING THE INSTALL AND LICENSING APIS

110

INTERBASE 6

Description

isc_install_get_info

() returns the information requested by

info_type

 into

info_buf

location. The

info_buf

 and

buf_len

 parameters cannot be

NULL

.

Parameter

Type

Description

option

OPT

•

The option for which information is requested if

info_type

 is 2 through 4

•

Returns an error if

option

 is not one of thefollowing tokens:

See

isc_install_set_option

() on page 114 for a description of each option.

info_type

int

Specifies the type of information requested; can be any one of the

following values

isc_install_info_destination

•

Returns a suggested destination

•

Ignores any value passed for

option

isc_install_info_opspace

•

Returns the disk space required to install

a particular option

•

Requires a valid value for

option

isc_install_info_opname

•

Returns a human-readable option name

for the specified option

•

Requires a valid value for

option

isc_install_info_opdescription

•

Returns a human-readable description

for the specified option

•

Requires a valid value for

option

info_buf

void*

•

isc_install_get_info

() writes the requested information to this buffer

•

Returns an error if

info_buf

 is

NULL

•

If disk space information is requested, the result is an unsigned long

buf_len

unsigned int

•

The length in bytes of

info_buf

•

Returns an error if

buf_len

 is

NULL

•

Value should be al least

ISC_INSTALL_MAX_MESSAGE_LEN

 bytes

•

If a destination suggestion is requested, the recommended buffer size is

ISC_INSTALL_MAX_PATH

INTERBASE

IB_SERVER

IB_CLIENT

IB CMD TOOLS

IB_DOC

IB_EXAMPLES

IB_EXAMPLE_API

IB EXAMPLE DB

IB_CONNECTIVITY_SERVER

IB_ODBC_CLIENT

IB_OLEDB_CLIENT

IB JDBC CLIENT

THE INSTALL API FUNCTIONS

111

Return Value

R

eturns zero if the function executes successfully, a positive number if an error occurs,

and a negative number if the function completes with warnings.

Call

isc_install_get_message

() to obtain the error message when the result is nonzero.

The contents of

info_buf

 are undetermined if

isc_install_get_message

() returns anything

other than zero, so the caller should always check the return from this function.

isc_install_get_message

()

Syntax MSG_NO isc_install_get message(MSG_NO msg_no, TEXT *msg, int msg_len)

Description

isc_install_get_message

() converts the error or warning value stored in

msg_no

 and

returns the corresponding message text to the programmer

.

Return Value

R

eturns zero if the function executes successfully, a positive number if an error occurs,

and a negative number if the function completes with warnings.

Call

isc_install_get_message

() to obtain the error message when the result is nonzero.

isc_install_load_external_text

()

Syntax MSG_NO isc_install_load_external_text(TEXT *external_path)

Parameter

Type

Description

msg_no

MSG_NO

•

Message number for which text is requested

•

This is the return from all the Install API functions

msg

TEXT

*

•

A pointer to the buffer in which the message will be

returned

•

The message is always

NULL

-terminated

msg_len

int

•

The length of

msg

 in bytes

•

Value should be al least

ISC_INSTALL_MAX_MESSAGE_LEN

 bytes

Parameter

Type

Description

external_path

TEXT

*

A pointer to a buffer that contains the full path and filename of

a file containing error and warning messages in a language

other than English

CHAPTER 7

USING THE INSTALL AND LICENSING APIS

112

INTERBASE 6

Description

isc_install_load_external_text

() loads the message file from the named path. This file

contains the text of the install error and warning messages as well as option names and

descriptions, and action text, description, and status messages.

If you are using English-language messages, there is no need to call this function. For

messages in other languages, you can purchase translations from some InterBase VARs

and use this function to load them. You must initialize this buffer with the path and

filename to use.

Return Value

R

eturns zero if the function executes successfully, a positive number if an error occurs,

and a negative number if the function completes with warnings.

isc_install_precheck

()

Syntax MSG_NO isc_install_precheck(OPTIONS_HANDLE handle, TEXT *source_path,

TEXT *dest_path)

Description

isc_install_precheck

() performs the following checks to ensure that installation is

possible:

�

Checks for a valid operating system. These are currently Windows 9

8/ME,

 Windows

2000,

and Windows NT

.

�

Checks that an InterBase Classic server (version 4.1 or earlier) is not present. The

InterBase server (SuperServer) is a multithreaded architecture and cannot coexist with

the Classic server.

�

Checks that

source_path

 exists and is a directory readable by the user. No check is

performed if

source_path

 is

NULL

 or an empty string.

Parameter

Type

Description

handle

OPTIONS_HANDLE

•

The handle to the list of options created by

isc_install_set_option

()

•

isc_install_precheck

() returns an error if the value of

handle

 is

NULL

or zero

source_path

TEXT

*

•

The path where the files to be installed are located, typically

located on a CDROM

•

This check is skipped if

source_path

 is

NULL

dest_path

TEXT

*

•

The path to the desired install location

•

Disk space check is skipped if

dest_path

 is

NULL

THE INSTALL API FUNCTIONS

113

�

Checks that

dest_path

 is a directory writable by the user and that the drive contains

enough space to install the selected components. No check is performed if

dest_path

 is

NULL

 or an empty string.

�

If the

IB_SERVER

 option is specified, checks whether any existing newer or older version

of the SuperServer is already running.

�

On NT, if the

IB_SERVER

 option is specified, checks that the user performing the install has

administrative privileges.

�

Checks the dependencies of the options required. The dependencies between the options

are as follows:

isc_install_precheck

() returns an error if any of the checks besides option dependencies

fails. It returns a warning if necessary options have not been specified

.

Return Value

R

eturns

isc_install_success

 if the function executes successfully, a number larger than

isc_install_success

if an error occurs, and a number smaller than

isc_install_success

if

the function completes with warnings.

Call

isc_install_get_message

() to obtain the error message when the result is not equal

to

isc_install_success

.

If any of these are specified

These must also be installed

IB_CMD_TOOLS

,

IB_GUI_TOOLS

,

IB_DEV

, and

IB_ODBC_CLIENT, IB_OLEDB_CLIENT, IB_JDBC_CLIENT,

IB_CONNECTIVITY

IB_CLIENT

IB_EXAMPLES

IB_SERVER

,

IB_CLIENT

, and

IB_DEV

IB_EXAMPLE_API3

IB_CLIENT

 and

IB_DEV

IB_EXAMPLE_DB

IB_SERVER

CHAPTER 7

USING THE INSTALL AND LICENSING APIS

114

INTERBASE 6

isc_install_set_option

()

Syntax MSG_NO isc_install_set_option(OPTIONS_HANDLE *phandle,

OPT option)

Parameter

Type

Description

phandle

OPTIONS_HANDLE*

•

Pointer to the handle of the list of options for the current install

•

You must initialize this to zero before first use

•

Handle is maintained by the install engine; you do not need to and

should not dereference it

option

OPT

option

 can be any one of the following values:

INTERBASE

•

Installs all interbase components and their

related files; same as specifying

IB_SERVER

,

IB_CLIENT

,

IB_CMD_TOOLS

,

IB_GUI_TOOLS

,

IB_DOC

,

IB_EXAMPLES

, and

IB_DEV

IB_SERVER

•

Installs the Server component of InterBase:

the server, the license file if present, the

message file, the Guardian, the server

configuration tool,

gstat

,

gds_lock_print

/

iblockpr

, the UDF library, the

international character set library, and the

help files

•

Makes all necessary additions to the registry

•

Creates the InterBase service on NT

•

On NT, modifies the Services file, if necessary,

to add the gds_db service

IB_CLIENT

•

Installs the InterBase Client: the client library,

the license file, and the message file

•

Makes all necessary additions to the registry

(Windows only)

•

On NT, modifies the Services file, if necessary,

to add the gds_db service

IB_CMD_TOOLS

•

Installs all the command line tools for

InterBase on Windows platforms:

gbak

,

gfix

,

gsec

,

gstat

,

iblockpr

, and

isql

•

Issues a warning if the

IB_CLIENT

 option has

not been specified

THE INSTALL API FUNCTIONS

115

Description

isc_install_set_option

() creates and maintains a handle to a list of requested option

values. You must call

ib_install_set_option

() once for each option to be installed. In an

interactive install, the function would typically be invoked by a mouse click in a check

box.

You must initialize

handle

 to zero before calling

isc_install_set_option

() for the first time

.

Return Value

R

eturns

isc_install_success

 if the function executes successfully, a number larger than

isc_install_success

if an error occurs, and a number smaller than

isc_install_success

if

the function completes with warnings.

Call

isc_install_get_message

() to obtain the error message when the result is not equal

to

isc_install_success

.

isc_install_unset_option

()

Syntax MSG_NO isc_install_unset_option(OPTIONS_HANDLE *phandle, OPT option)

IB_GUI_TOOLS

•

Installs IBConsole and its related help files

•

Issues a warning if the

IB_CLIENT

 option has

not been specified

IB_DOC

•

Installs the InterBase documentation

IB_EXAMPLES

•

Installs all the InterBase examples; has the

same effect as specifying

IB_EXAMPLE_API

and

IB_EXAMPLE_DB

•

Issues a warning if the

IB_SERVER

,

IB_CLIENT

,

and

IB_DEV

 options have not been specified

IB_EXAMPLE_API

•

Installs all API, SQL, DSQL, and ESQL example

files

•

Issues a warning if the

IB_CLIENT

 and the

IB_DEV

 options have not been specified

IB_EXAMPLE_DB

•

Installs all example databases

•

Issues a warning if the

IB_SERVER

 option has

not been specified

IB_DEV

•

Installs

gpre

, the import libraries, and the

header files

Parameter

Type

Description

CHAPTER 7

USING THE INSTALL AND LICENSING APIS

116

INTERBASE 6

Description

isc_install_unset_option

() removes the option specified by

option

 from the list

maintained by

handle

. You must call this function once for each option to be removed.

If

handle

 is zero when this function is called, the function generates a warning

.

Return Value

R

eturns

isc_install_success

 if the function executes successfully, a number larger than

isc_install_success

if an error occurs, and a number smaller than

isc_install_success

if

the function completes with warnings.

Call

isc_install_get_message

() to obtain the error message when the result is not equal

to

isc_install_success

.

isc_uninstall_execute

()

Syntax MSG_NO isc_uninstall_execute(TEXT *uninstall_file_name,

FP_STATUS *fpstatus, void *status_arg, FP_ERROR *fp_error,

void *error_arg)

Parameter

Type

Description

phandle

OPTIONS_HANDLE

•

Pointer to the handle of the list of options for the current install

•

You must initialize this to zero before first use

•

Handle is maintained by the install engine; you do not need to and

should not dereference it

option

OPT

•

option

 can be any of the values listed for

isc_install_set_option

()

•

If

option

 is the only member of the list, sets

handle

 to zero

THE INSTALL API FUNCTIONS

117

Description

isc_uninstall_execute

() performs the actual uninstall, including the following steps:

�

Calls

isc_uninstall_precheck

() to ensure that the uninstall can be performed.

�

Decrements UseCount entries in the Registry for shared files and remove any files that

have a reference count less than one, except for files that have a value of zero preassigned

by Microsoft, such as

msvcrt.dll

.

�

Removes all InterBase files named in

ib_uninst.

nnn

 except for

isc4.gdb

,

isc4.gbk

, and

ib_license.dat

.

�

Removes all registry entries in

ib_uninst.

nnn

.

�

On Windows NT

 or Windows 2000

, uninstalls the Guardian and Server services. On

Windows

9

8/ME, removes the Run registry entries for them.

�

Calls

fp_status

() at regular intervals to keep caller informed of uninstall status.

�

Cleans up if uninstall is cancelled by the user if by an error

.

Return Value

R

eturns zero if the function executes successfully, a positive number if an error occurs,

and a negative number if the function completes with warnings.

Call

isc_install_get_message

() to obtain the error message when the result is nonzero.

Parameter

Type

Description

uninstall_file_name

TEXT*

•

The name of the file containing the options that were installed

•

Cannot be

NULL

fp_status

FP_STATUS*

•

A pointer to a callback function that accepts an integer from 0

to 100; see page 101 for more information

•

Can be

NULL

 if no status information is required by the end user

status_arg

void*

•

User-defined data to be passed to

fp_status

()

•

Value is often

NULL

fp_error

FP_ERROR

*

•

A pointer to a callback function that accepts an error number

and returns a mnemonic specifying whether

isc_install_execute

() should abort, continue, or retry

error_arg

void*

•

User-defined data to be passed to

fp_error

()

•

Value is often

NULL

CHAPTER 7

USING THE INSTALL AND LICENSING APIS

118

INTERBASE 6

isc_uninstall_precheck

()

Syntax MSG_NO isc_uninstall_precheck(TEXT *uninstall_file_name)

Description

isc_uninstall_precheck

() performs several checks to determine that an uninstall is

possible. It checks that:

�

The operating system is valid: Windows NT

, Windows 2000,

or

Windows

9

8

�

The uninstall file (

ib_uninst.

nnn

) is valid and contains the streamed list of options.

�

The server, if installed, is not running.

�

The user performing the uninstall is a member of either the administrator or poweruser

groups when the platform is Windows NT

 or 2000

; no equivalent check is performed on

Windows

9

8/ME

.

Return Value

R

eturns zero if the function executes successfully, a positive number if an error occurs,

and a negative number if the function completes with warnings.

Call

isc_install_get_message

() to obtain the error message when the result is nonzero.

Call

isc_install_get_message

() to obtain the text of an error message or warning when

the result of one of the Install API functions is nonzero.

Using the License API

The InterBase server functionality must be activated by installing

authorization codes

that are provided on software activation certificates obtained from

Borland Software

Corporation.

 Each authorization code consists of a Certificate ID and Certificate key. You

can activate the server as part of your install by using functions provided in the InterBase

License API. If you do not activate the server as part of the install, it will be inactive until

the end user provides authorization codes using IBConsole

 or the

iblicense.exe

 utility

.

The InterBase License API (

iblicense.dll

) provides five functions that allow you to check,

add, remove, and view certificate ID and key pairs (authorization codes). The fifth

function retrieves and displays messages associated with the return values from the other

four functions.

Parameter

Type

Description

uninstall_file_name

TEXT*

•

A pointer to the name of the uninstall file that was created

by

isc_install_execute

()

•

Cannot be

NULL

USING THE LICENSE API

119

Loading the License API

You cannot statically load

iblicense.dll

 during an install process. Use the Windows

LoadLibrary

() API call or other language-specific equivalent to load it dynamically when

you need it and free the library immediately after use.

Typically, you would load the License API at the beginning of an install in order to check

that your desired certificate ID/key pairs can indeed be added. Call

isc_license_check

()

and then free the library. Later, when you have completed the install portion and are

ready to add authorization codes, load

iblicense.dll

 again and add the authentication codes.

This sequence avoids the case in which an install is completed and then must be

uninstalled because the authentication codes cannot be added for some reason.

Preparing the ib_license.dat file

InterBase authorization codes are stored in the

ib_license.dat

 file in the InterBase root

directory. This file contains authorization codes from previous installs. Authorization

codes for previous versions of InterBase do not work with the current version, but you

should retain them in case you need them for older versions. If you delete the file,

InterBase cannot replace the codes.

There is also an

ib_license.dat

 file on the InterBase CD-ROM, which contains the client

activation code for the current client version. Following the steps in this section ensures

that you are using the most recent client authorizations and that no prior authorization

codes are lost:

�

Check for the existence of

ib_license.dat

 in the InterBase install directory.

�

If the file is found, concatenate it with the

ib_license.dat

 that is on the CD-ROM to add the

current client capability.

�

If the file is not found, copy

ib_license.dat

 from the CD-ROM to the InterBase install

directory.

These steps ensure that you have retained any existing licensed server functionality while

providing functionality for the latest client.

The capabilities activated on the server are the union of the capabilities activated by each

line.

Adding server functionality

There are five functions available for manipulating authorization codes in

ib_license.dll

:

CHAPTER 7

USING THE INSTALL AND LICENSING APIS

120

INTERBASE 6

�

isc_license_add

() adds a line to

ib_license.dat

. Use only authorization codes that you have

been given expressly as deployment codes from

Borland Software Corporation.

�

isc_license_check

() checks to see whether an authorization code

could

 be added to

ib_license.dat

. This function performs all the same tasks as

isc_license_add

(), without

actually modifying

ib_license.dat

.

�

isc_license_remove

() removes a line from

ib_license.dat

.

�

isc_license_display

() displays the authorization codes that are currently in

ib_license.dat

.

�

isc_license_get_msg

() returns the text of error messages that correspond to error codes

returned by the other four licensing functions.

isc_license_add

()

Syntax int isc_license_add(char *cert_id, char *cert_key)

Description

Adds a line containing the specified certificate ID and key pair to the

ib_license.dat

 file in

the InterBase install directory. This ID/key pair must be a valid authorization code

obtained from

Borland s

ales. InterBase might require several authorization codes to run

and you must call the function once for

each

ID/key pair you need to add

.

Return Value

i

sc_license_add

() returns

isc_license_msg_restart

 if it successfully adds the

authorization code. If it returns an error, pass the return value to

isc_license_get_msg

()

to obtain the exact error message. The possible return values are:

Parameter

Type

Description

cert_id

char*

Pointer to a

NULL

-terminated character buffer containing the

certificate ID to be added

cert_key

char*

Pointer to a

NULL

-terminated character buffer containing the

certificate key to be added

USING THE LICENSE API

121

isc_license_check

()

Syntax int isc_license_check(char *cert_id, char *cert_key)

Description

Checks whether the specified ID/key pair is valid and could be added to

iblicense.dat

.

Calling this function does not actually add anything to the file

.

Return Value

i

sc_license_check

() returns

isc_license_success

 if it determines that the authorization

code could be added. If it returns an error, pass the return value to

isc_license_get_msg

() to obtain the exact error message. The possible return values are:

Return

Description

isc_license_msg_restart

Authorization code was successfully added

isc_license_msg_writefailed

The authorization code could not be written

isc_license_msg_dupid

The authorization code was not added to the

license file because it is a duplicate of one already

present in the file

isc_license_msg_convertfailed

The ID/key combination is invalid

TABLE 7.5

Error codes from

isc_license_add

()

Parameter

Type

Description

cert_id

char*

Pointer to a

NULL

-terminated character buffer containing the

certificate ID to be checked

cert_key

char*

Pointer to a

NULL

-terminated character buffer containing the

certificate key to be checked

Return

Description

isc_license_success

Authorization code could be successfully added

isc_license_msg_dupid

The authorization code was not added to the

license file because it is a duplicate of one already

present in the file

isc_license_msg_convertfailed

The ID/key combination is invalid

TABLE 7.6

Error codes from

isc_license_check

()

CHAPTER 7

USING THE INSTALL AND LICENSING APIS

122

INTERBASE 6

isc_license_remove

()

Syntax int isc_license_remove(char *cert_key)

Description

Removes the line specified by

cert_key

 from

ib_license.dat

.

Return Value

i

sc_license_remove

() has the following return values:

isc_license_display

()

Syntax unsigned short isc_license_display(char *buf, unsigned short buf_len)

Description

Places all certificate ID/key pairs that are currently in

iblicense.dat

 into

buf

, separated by

commas and

NULL

-terminated

.

Return Value

R

eturns zero if it succeeds. Otherwise, it returns the length that

buf

 must have in order

to contain the message text, and

buf

 itself contains

NULL

.

Parameter

Type

Description

cert_key

char*

Pointer to a

NULL

-terminated character buffer containing the

certificate key to be

remove

d

Return

Description

isc_license_msg_restart

Authorization code was successfully removed

isc_license_msg_notremoved

The authorization code could not be removed; possible reasons

are:

•

The key specified by

cert_key

 does not exist in

ib_license.dat

•

cert_key

identifies an evaluation license

TABLE 7.7

Returns codes from

isc_license_remove

()

Parameter

Type

Description

buf

char*

•

A character buffer for the result

•

Must be allocated by the programmer

•

isc_license_get_message

() returns an error if

buf

 is not long enough

•

Must be

NULL

-terminated

buf_len

short

•

Length of

buf

PSEUDOCODE FOR A TYPICAL INSTALL

123

isc_license_get_msg

()

Syntax unsigned short isc_get_msg(short msg_no, char *msg,

unsigned short msg_len)

Description

When passed an error code from one of the other four functions in the License API,

isc_license_get_msg

() returns the text of the corresponding error message in the

msg

buffer

.

Return Value

i

sc_license_get_msg

() returns zero if it succeeds. Otherwise, it returns the length that

msg

 must have in order to contains the message text.

Pseudocode for a typical install

The following code indicates the steps you would typically take in writing an install. Calls

to functions in the Install API and related specific code are in bold.

begin

OPTIONS_HANDLE handle;

boolean done = false;

LANG_TYPE language;

/* Get user preference if desired. This is if you created translated

* ibinstall.msg files in different directories */

language = get_language_choice();

if (language <> english)

 isc_install_load_external_text(lang_dirs[language]);

/* Query install for all the possible option names */

while(not all options)

begin

Parameter

Type

Description

msg_no

short

A message number returned by one of the other

isc_license_

*()

functions

msg

char*

•

A character buffer for the message that corresponds to

msg_no

•

Must be allocated by the programmer

•

Recommended length is

ISC_LICENSE_MAX_MESSAGE_LEN

msg_len

short

The length of

msg

CHAPTER 7

USING THE INSTALL AND LICENSING APIS

124

INTERBASE 6

 isc_install_get_info(isc_install_info_opname, option, opname buffer,

 ISC_INSTALL_MAX_MESSAGE_LEN);

 isc_install_get_info(isc_install_info_opdescription, option, opdesc buffer,

 ISC_INSTALL_MAX_MESSAGE_LEN);

 isc_install_get_info(isc_install_info_opspace, option, opspace buffer,

 sizeof(unsigned long));

end;

/* Get a suggested destination directory */

isc_install_get_info(isc_install_info_destination, 0, dest_buffer,

 ISC_INSTALL_MAX_PATH);

/* Present the user his choices and interact with them */

interact_with_user();

/* Use isc_install_set_option and isc_install_unset_option either when

* interacting with the user or after the user pushes Install button.

* Zero the handle the very first time. */

handle = 0L;

while (not all options)

begin

if(option is selected)

isc_install_set_option(&handle, option); // Check for errors.

end;

/* You can check for source_dir and dest_dir. In this case no check

* is performed on directories. Also not all of the checks are performed

* on the dest_path if it does not exist. */

error = isc_install_precheck(handle, source_path, dest_path);

if (error > isc_install_success) then

begin

 /* if a classic server is installed, or any server is running

 * then give error and exit */

isc_install_get_message(error, message, length(message));

 user_choice = display(message);

 do_user_choice();/* For example, terminate, return to options

* selection screen */

end

else if (error < isc_install_success) then

begin

/* Some warning has occured, display it and continue */

isc_install_get_message(error, message, length(message))

PSEUDOCODE FOR A TYPICAL INSTALL

125

display(message)

end

display_file(install.txt)

display_file(license.txt)

/* You can supply no callback functions but it is not recommended because install

* will abort on any error. Some of the errors might be ignored. Some problems

* might be fixed by hand after the install. If you do not use callbacks you will

* not be able to appraise the user of the status */

error = isc_install_execute(&handle, source_path, dest_path, NULL, NULL, NULL,

 NULL, NULL)

if (error < 0) then

begin

isc_install_get_message(error, message, length(message))

 display(message)

 exit()

 end

else

if (error > 0) then

begin

isc_install_get_message(error, message, length(message))

display(message)

end

display_file(readme.txt)

/* This is mandatory. Not clearing options results in memory leaks */

isc_install_clear_options(&handle)

display_done()

end

126

INTERBASE 6

127

CHAPTER

8

Chapter 8

Introduction to IBX

InterBase Express (IBX) is a set of data access components that provide a means of

building applications with Borland Delphi 5

and C++ Builder that c

an access, administer,

monitor, and run the InterBase Services on InterBase databases.

 Borland Delphi 5 and

C++ Builder users can use the IBX components to build InterBase database applications

without the overhead of using the Borland Database Engine (BDE). IBX accesses the

InterBase API directly, allowing increased speed and control within InterBase

applications.

Note

The version of IBX bundled with Delphi 5 addresses only InterBase 5 features. The

IBX version included with InterBase 6 addresses all InterBase 6 features, including calls

to the Service API and Install API.

T

hough many IBX components are similar to the Delphi data access components in

name, they do not use the Borland Database Engine (BDE). For each IBX component

with a BDE counterpart, the differences are described below.

There is no simple migration from BDE to IBX applications. Generally, you must replace

the BDE components with the comparable IBX components, and then recompile your

applications. However, the speed you gain, along with the access you get to the powerful

InterBase features make migration well worth your time

.

This chapter assumes you are familiar with the Delphi development environment and

know how to use the Standard, Data Access, and Data Control components.

CHAPTER 8

INTRODUCTION TO IBX

128

INTERBASE 6

The InterBase tab

The InterBase tab in Delphi 5 contains the IBX equivalents of the Delphi components on

the Data Access tab, along with additional monitoring and events components.

FIGURE 8.1

The InterBase tab

The InterBase tab contains the following components, from left to right:

�

TIBTable

�

TIBQuery

�

TIBStoredProc

�

TIBDatabase

�

TIBTransaction

�

TIBUpdateSQL

�

TIBDataSet

�

TIBSQL

�

TIBDatabaseInfo

�

TIBSQLMonitor

�

TIBEvents

These components are discussed in the following sections.

TIBTable

Use a

TIBTable

 component to set up a live dataset on a table or a view without having to

enter any SQL statements.

The

TIBTable

 component is discussed more fully in

Chapter 13, “

Working with Tables

.”

TIBQuery

Use a

TIBQuery

 component to execute any InterBase dynamic SQL statement, restrict the

result set to particular columns and rows, use aggregate functions, and join multiple

tables.

TIBTable
Component

TIBQuery
Component

THE INTERBASE TAB

129

The

TIBQuery

 component is discussed more fully in

Chapter 14, “

Working with

Queries

.”

TIBStoredProc

Use a

TIBStoredProc

 component for InterBase executable procedures; procedures that

return, at most, one row of information. For stored procedures that return more than one

row of data, or for

SELECT

 procedures, use either

TIBQuery

 or

TIBDataset

 components.

The

TIBStoredProc

 component is discussed more fully in

Chapter 15, “

Working with

Stored Procedures

.”

TIBDatabase

Use a

TIBDatabase

 component to establish connections to databases, which can involve

one or more concurrent transactions. Unlike the BDE, IBX has a separate transaction

component, which allows you to separate transactions and database connections.

The

TIBDatabase

 component is discussed more fully in

Chapter 11, “

Connecting to

Databases

.”

TIBTransaction

Use a

TIBTransaction

 component to handle transaction contexts, which might involve

one or more database connections. In most cases, a simple one database/one transaction

model will do. Having a separate transaction component allows you to take advantage of

the InterBase two-phase commit functionality (transactions that span multiple

connections) and multiple concurrent transactions using the same connection

The

TIBTransaction

 component is discussed more fully in

“

Using transactions

” on

page 150

.

TIBUpdateSQL

Use a

TIBUpdateSQL

 component to update read-only datasets or

TIBQuery

 output.

The

TIBUpdateSQL

 component is discussed more fully in

“

Updating a read-only result

set

” on page 209

TIBStoredProc
Component

TIBDatabase
Component

TIBTransaction
Component

TIBUpdateSQL
Component

CHAPTER 8

INTRODUCTION TO IBX

130

INTERBASE 6

TIBDataSet

Use a

TIBDataSet

 component to execute any InterBase dynamic SQL statement, restrict

the result set to particular columns and rows, use aggregate functions, and join multiple

tables.

TIBDataSet

 components are similar to

TIBQuery

 components, except that they

support live datasets without a

TIBUpdateSQL

 component.

The

TIBDataSet

 component is discussed more fully in

Chapter 14, “

Working with

Queries

.”

TIBSQL

Use a

TIBSQL

 component for data operations that need to be fast and lightweight.

Operations such as data definition and pumping data from one database to another are

suitable for

TIBSQL

 components.

The

TIBSQL

 component is discussed more fully in

Chapter 14, “

Working with Queries

.”

TIBDatabaseInfo

Use a

TIBDatabaseInfo

 component to retrieve information about a particular database,

such as the sweep interval, ODS version, and the user names of those currently attached

to the database.

The

TIBDatabaseInfo

 component is discussed more fully in

“

Requesting information

about an attachment

” on page 162

.

TIBSQLMonitor

Use a

TIBSQLMonitor

 component to develop diagnostic tools to monitor the

communication between your application and the InterBase server. With the

TraceFlags

property of a

TIBDatabase

 component turned on, active

TIBSQLMonitor

 components can

keep track of the connection’s activity and send the output to a file or control.

The

TIBSQLMonitor

 component is discussed more fully in

Chapter 17, “

Debugging with

SQL Monitor

.”

TIBEvents

Use a TIBEvents component to register interest in, and asynchronously handle, events

posted by an InterBase server.

TIBDataSet
Component

TIBSQL
Component

TIBDatabaseInfo
Component

TIBSQLMonitor
Component

TIBEvents
Component

THE INTERBASE ADMIN TAB

131

The TIBEvents component is discussed more fully in

Chapter 20, “

Programming with

Database Events

.”

The InterBase Admin tab

The InterBase Admin tab in Delphi 5 contains the IBX services components, along with

the install and uninstall components.

FIGURE 8.2

InterBase Admin tab

The InterBase Admin tab contains the following components, from left to right:

�

TIBConfigService

�

TIBBackupService

�

TIBRestoreService

�

TIBValidationService

�

TIBStatisticalService

�

TIBLogService

�

TIBSecurityService

�

TIBLicensingService

�

TIBServerProperties

�

TIBInstall

�

TIBUnInstall

These components are discussed in the following sections.

TIBConfigService

Use a

TIBConfigService

 component to configure database parameters, including page

buffers, access mode, and sweep interval.

The

TIBConfigService

 component is discussed more fully in

“

Setting database

properties

” on page 272

.

ConfigService
Component

CHAPTER 8

INTRODUCTION TO IBX

132

INTERBASE 6

TIBBackupService

Use the

TIBBackService

 component to back up databases. With a

TIBBackupService

component in your application, you can set such parameters as the blocking factor,

backup file name, and database backup options.

The

TIBBackupService

 component is discussed more fully in

“

Backing up and restoring

databases

” on page 276

.

TIBRestoreService

Use the

TIBRestoreService

 component to restore a database. With a

TIBRestoreService

component in your application, you can set such parameters as page buffers, page size,

and database restore options.

The

TIBRestoreService

 component is discussed more fully in

“

Backing up and restoring

databases

” on page 276

.

TIBValidationService

Use the

TIBValidationService

 component to validate you

r

 database and reconcile your

database transactions. With the

TIBValidationService

, you can set the default transaction

action, return limbo transaction information, and set other database validation options.

The

TIBValidationService

 component is discussed more fully in

“

Performing database

maintenance

” on page 285

.

TIBStatisticalService

Use the

TIBStatisticalService

 component to view database statistics such as data pages,

database log, header pages, index pages, and system relations.

The

TIBStatisticalService

 component is discussed more fully in

“

Requesting database

and server status reports

” on page 288

.

TIBLogService

Use the

TIBLogService

 component to create an InterBase log file for your application.

The

TIBLogService

 component is discussed more fully in

“

Using the log service

” on

page 289

.

BackupService
Component

RestoreService
Component

Validation
Service

Component

StatisticalService
Component

LogService
Component

THE INTERBASE ADMIN TAB

133

TIBSecurityService

Use the

TIBSecurityService

 component to manage user access to the InterBase server.

With a

TIBSecurityService

 component in your application, you can create, delete, and

modify user accounts, display user information, and set up work groups using SQL roles.

The

TIBSecurityService

 component is discussed more fully in

“

Configuring users

” on

page 290

.

TIBLicensingService

Use the

TIBLicensingService

 component to add, view, or remove InterBase software

activation certificates.

The

TIBLicensingService

 component is discussed more fully in

“

Administering software

activation certificates

” on page 293

.

TIBServerProperties

Use the

TIBServerProperties

 component to return database server information, including

configuration parameters, and version and license information.

The

TIBServerProperties

 component is discussed more fully in

“

Displaying server

properties

” on page 295

.

TIBInstall

Use the

TIBInstall

 component to set up an InterBase installation component, including

the installation source and destination directories, and the components to be installed.

The

TIBInstall

 component is discussed more fully in

Chapter 21, “

Writing Installation

Wizards

.”

TIBUnInstall

Use the

TIBUnInstall

 component to set up an InterBase uninstall component.

The

TIBUnInstall

 component is discussed more fully in

Chapter 21, “

Writing

Installation Wizards

.”

SecurityService
Component

LicensingService
Component

ServerProperties
Component

Install
Component

UnInstall
Component

134

INTERBASE 6

135

CHAPTER

9

Chapter 9

Designing Database

Applications

Database applications allow users to interact with information that is stored in databases.

Databases provide structure for the information, and allow it to be shared among

different applications.

The InterBase Express (IBX) components

p

rovide support for relational database

applications. Relational databases organize information into tables, which contain rows

(records) and columns (fields). These tables can be manipulated by simple operations

known as relational calculus.

When designing a database application, you must understand how the data is structured.

Based on that structure, you can then design a user interface to display data to the user

and allow the user to enter new information or modify existing data.

This chapter introduces some common considerations for designing a database

application and the decisions involved in designing a user interface.

The following topics introduce common considerations when designing a database

application:

�

Using

InterBase

databases

�

Database architecture

�

Designing the user interface

CHAPTER 9

DESIGNING DATABASE APPLICATIONS

136

INTERBASE 6

Using

InterBase

databases

The components on the InterBase page of the Component palette allow your application

to read from and write to databases. These components access database information

which they make available to the data-aware controls in your user interface.

Local

d

atabases

Local databases reside on your local drive or on a local area network. They use the

InterBase proprietary APIs for accessing the data. Often, they are dedicated to a single

system. When they are shared by several users, they use file-based locking mechanisms.

Because of this, they are sometimes called file-based databases.

Local databases can be faster than remote database servers because they often reside on

the same system as the database application.

Because they are file-based, local databases are more limited than remote database

servers in the amount of data they can store. Therefore, in deciding whether to use a local

database, you must consider how much data the tables are expected to hold.

Applications that use local databases are called single-tiered applications because the

application and the database share a single file system.

Remote

d

atabase servers

Remote database servers usually reside on a remote machine. They use Structured Query

Language (SQL) to enable clients to access the data. Because of this, they are sometimes

called SQL servers. (Another name is Remote Database Management system, or RDBMS.)

Remote database servers are designed for access by several users at the same time.

Instead of a file-based locking system such as those employed by local databases, they

provide more sophisticated multi-user support, based on transactions.

Remote database servers hold more data than local databases. Sometimes, the data from

a remote database server does not even reside on a single machine, but is distributed over

several servers.

Applications that use remote database servers are called two-tiered applications or

multi-tiered applications because the application and the database operate on

independent systems (or tiers).

USING

INTERBASE

DATABASES

137

Database security

Databases often contain sensitive information. When users try to access protected tables,

they are required to provide a password. Once users have been authenticated, they can

see only those fields (columns) for which they have permission.

For access to InterBase databases on a server, a valid user name and password is required.

Once the user has logged in to the database, that username and password (and

sometimes, role) determine which tables can be used. For information on providing

passwords to InterBase servers, see

Controlling server login

 on page 159

, or “Database

security” in the

O

perations Guide

.

If you are requiring your user to supply a password, you must consider when the

password is required. If you are using a local database but intend to scale up to a larger

SQL server later, you may want to prompt for the password before you access the table,

even though it is not required until then.

If your application requires multiple passwords because you must log in to several

protected systems or databases, you can have your users provide a single master

password which is used to access a table of passwords required by the protected systems.

The application then supplies passwords programmatically, without requiring the user to

provide multiple passwords.

In multi-tiered applications, you may want to use a different security model altogether.

You can use CORBA or MTS to control access to middle tiers, and let the middle tiers

handle all details of logging into database servers.

Transactions

A transaction is a group of actions that must all be carried out successfully on one or more

tables in a database before they are committed (made permanent). If any of the actions

in the group fails, then all actions are rolled back (undone).

Client applications can start multiple simultaneous transactions. InterBase provides full

and explicit transaction control for starting, committing, and rolling back transactions.

The statements and functions that control starting a transaction also control transaction

behavior.

InterBase transactions can be isolated from changes made by other concurrent

transactions. For the life of these transactions, the database appears to be unchanged

except for the changes made by the transaction. Records deleted by another transaction

exist, newly stored records do not appear to exist, and updated records remain in the

original state.

CHAPTER 9

DESIGNING DATABASE APPLICATIONS

138

INTERBASE 6

For details on using transactions in database applications, see

Using transactions

 on

page 150

. For details on using transactions in multi-tiered applications, see “Creating

multi-tiered applications”

in the

Delphi 5 Developer’s Guide

.

The Data Dictionary

No matter what type of database you use, your application has access to the Data

Dictionary. The Data Dictionary provides a customizable storage area, independent of

your applications, where you can create extended field attribute sets that describe the

content and appearance of data.

For example, if you frequently develop financial applications, you may create a number

of specialized field attribute sets describing different display formats for currency. When

you create datasets for your application at design time, rather than using the Object

Inspector to set the currency fields in each dataset by hand, you can associate those fields

with an extended field attribute set in the data dictionary. Using the data dictionary

ensures a consistent data appearance within and across the applications you create.

In a Client/Server environment, the Data Dictionary can reside on a remote server for

additional sharing of information.

To learn how to create extended field attribute sets from the Fields editor at design time,

and how to associate them with fields throughout the datasets in your application, see

“Creating attribute sets for field components” in the

Delphi 5 Developer’s Guide

. To learn

more about creating a data dictionary and extended field attributes with the SQL and

Database Explorers, see their respective online help files.

A programming interface to the Data Dictionary is available in the

drintf

 unit (located in

the

lib

 directory). This interface supplies the following methods:

Routine

Use

DictionaryActive

Indicates if the data dictionary is active

DictionaryDeactivate

Deactivates the data dictionary

IsNullID

Indicates whether a given ID is a null ID

FindDatabaseID

Returns the ID for a database given its alias

 FindTableID

Returns the ID for a table in a specified database

FindFieldID

Returns the ID for a field in a specified table

TABLE 9.1

Data Dictionary interface

USING

INTERBASE

DATABASES

139

Referential integrity, stored procedures, and triggers

All relational databases have certain features in common that allow applications to store

and manipulate data. InterBase also provides other database-specific, features that can

prove useful for ensuring consistent relationships between the tables in a database. These

include:

�

Referential integrity.

 Referential integrity provides a mechanism to prevent master/detail

relationships between tables from being broken. When the user attempts to delete a field

in a master table which would result in orphaned detail records, referential integrity rules

prevent the deletion or automatically delete the orphaned detail records.

FindAttrID

Returns the ID for a named attribute set

GetAttrName

Returns the name an attribute set given its ID

GetAttrNames

Executes a callback for each attribute set in the dictionary

GetAttrID

Returns the ID of the attribute set for a specified field

NewAttr

Creates a new attribute set from a field component

UpdateAttr

Updates an attribute set to match the properties of a field

CreateField

Creates a field component based on stored attributes

UpdateField

Changes the properties of a field to match a specified attribute set

AssociateAttr

Associates an attribute set with a given field ID

UnassociateAttr

Removes an attribute set association for a field ID

 GetControlClass

Returns the control classs for a specified attribute ID

QualifyTableName

Returns a fully qualified table name (qualified by user name)

QualifyTableNameByName

Returns a fully qualified table name (qualified by user name)

HasConstraints

Indicates whether the dataset has constraints in the dictionary

UpdateConstraints

Updates the imported constraints of a dataset

UpdateDataset

Updates a dataset to the current settings and constraints in the dictionary

Routine

Use

TABLE 9.1

Data Dictionary interface

CHAPTER 9

DESIGNING DATABASE APPLICATIONS

140

INTERBASE 6

�

Stored procedures.

Stored procedures are sets of SQL statements that are named and

stored on an SQL server. Stored procedures usually perform common database-related

tasks on the server, and return sets of records (datasets).

�

Triggers.

Triggers are sets of SQL statements that are automatically executed in response

to a particular command.

Database architecture

Database applications are built from user interface elements, components that manage

the database or databases, and components that represent the data contained by the

tables in those databases (datasets). How you organize these pieces is the architecture of

your database application.

By isolating database access components in data modules, you can develop forms in your

database applications that provide a consistent user interface. By storing links to

well-designed forms and data modules in the Object Repository, you and other

developers can build on existing foundations rather than starting over from scratch for

each new project. Sharing forms and modules also makes it possible for you to develop

corporate standards for database access and application interfaces.

Many aspects of the architecture of your database application depend on the number of

users who will be sharing the database information and the type of information you are

working with.

When writing applications that use information that is not shared among several users,

you may want to use a local database in a

single-tiered application

. This approach can

have the advantage of speed (because data is stored locally), and does not require the

purchase of a separate database server and expensive site licences. However, it is limited

in how much data the tables can hold and the number of users your application can

support.

Writing a

two-tiered application

 provides more multi-user support and lets you use large

remote databases that can store far more information.

Note

Support for two-tiered applications requires SQL Links.

When the database information includes complicated relationships between several

tables, or when the number of clients grows, you may want to use a

multi-tiered

application

. Multi-tiered applications include middle tiers that centralize the logic

that

g

overns

d

atabase interactions so that there is centralized control over data relationships.

This allows different client applications to use the same data while ensuring that the data

DATABASE ARCHITECTURE

141

logic is consistent. They also allow for smaller client applications because much of the

processing is off-loaded onto middle tiers. These smaller client applications are easier to

install, configure, and maintain because they do not include the database connectivity

software. Multi-tiered applications can also improve performance by spreading the

data-processing tasks over several systems.

Planning for scalability

The development process can get more involved and expensive as the number of tiers

increases. Because of this, you may wish to start developing your application as a

single-tiered application. As the amount of data, the number of users, and the number of

different applications accessing the data grows, you may later need to scale up to a

multi-tiered architecture. By planning for scalability, you can protect your development

investment when writing a single- or two-tiered application so that the code can be

reused as your application grows.

The VCL data-aware components make it easy to write scalable applications by

abstracting the behavior of the database and the data stored by the database. Whether

you are writing a single-tiered, two-tiered, or multi-tiered application, you can isolate

your user interface from the data access layer as illustrated in

FIGURE 9.1

.

FIGURE 9.1

User-interface to dataset connections in all database applications

A form represents the user interface, and contains data controls and other user interface

elements. The data controls in the user interface connect to datasets which represent

information from the tables in the database. A data source links the data controls to these

datasets. By isolating the data source and datasets in a data module, the form can remain

unchanged as you scale your application up. Only the datasets must change.

A flat-file database application is easily scaled to the client in a multi-tiered application

because both architectures use the same client dataset component. In fact, you can write

an application that acts as both a flat-file application and a multi-tiered client (see

Using

the briefcase model

 on page 153

).

user
interface
elements

data source

Form Data Module

dataset
component database

Client Application

CHAPTER 9

DESIGNING DATABASE APPLICATIONS

142

INTERBASE 6

If you plan to scale your application up to a three-tiered architecture eventually, you can

write your one- or two-tiered application with that goal in mind. In addition to isolating

the user interface, isolate all logic that will eventually reside on the middle tier so that it

is easy to replace at a later time. You can even connect your user interface elements to

client datasets (used in multi-tiered applications), and connect them to local versions of

the datasets in a separate data module that will eventually move to the middle tier. If you

do not want to introduce this artifice of an extra dataset layer in your one- and two-tiered

applications, it is still easy to scale up to a three-tiered application at a later date. See

Scaling up to a three-tiered application

 on page 154

 for more information.

Single-tiered database applications

In single-tiered database applications, the application and the database share a single file

system. They use local databases or files that store database information in a flat-file

format.

A single application comprises the user interface and incorporates the data access

mechanism. The type of dataset component used to represent database tables is in a flat

file.

FIGURE 9.2

 illustrates this:

FIGURE 9.2

Single-tiered database application architecture

For more information on building single-tiered database applications, see

Chapter 10,

“

Building One- and Two-

Ti

ered Applications

.”

Two-tiered database applications

In two-tiered database applications, a client application provides a user interface to data,

and interacts directly with a remote database server.

FIGURE 9.3

 illustrates this

relationship.

user
interface
elements

data source

Form Data Module

dataset
component local

database

DATABASE ARCHITECTURE

143

FIGURE 9.3

Two-tiered database application architecture

In this model, all applications are database clients. A

client

 requests information from and

sends information to a database server. A server can process requests from many clients

simultaneously, coordinating access to and updating of data.

Multi-tiered database applications

In multi-tiered database applications, an application is partitioned into pieces that reside

on different machines. A client application provides a user interface to data. It passes all

data requests and updates through an application server (also called a “remote data

broker”). The application server, in turn, communicates directly with a remote database

server or some other custom dataset. Usually, in this model, the client application, the

application server, and the remote database server are on separate machines.

FIGURE 9.4

illustrates these relationships for multi-tiered applications.

user
interface
elements

data source

Form Data Module

dataset
component remote

database

Client Application

CHAPTER 9

DESIGNING DATABASE APPLICATIONS

144

INTERBASE 6

FIGURE 9.4

Multi-tiered database architectures

You can use Delphi to create both client applications and application servers. The client

application uses standard data-aware controls connected through a data source to one or

more client dataset components in order to display data for viewing and editing. Each

client dataset communicates with an application server through an

IProvider

 interface

that is part of the application server’s remote data module. The client application can use

a variety of protocols (TCP/IP, DCOM, MTS, or CORBA) to establish this communication.

The protocol depends on the type of connection component used in the client application

and the type of remote data module used in the server application.

The application server creates the

IProvider

 interfaces in one of two ways. If the

application server includes any provider objects, then these objects are used to create the

IProvider

 interface. This is the method illustrated in the previous figure. Using a provider

component gives an application more control over the interface. All data is passed

between the client application and the application server through the interface. The

interface receives data from and sends updates to conventional datasets, and these

components communicate with a database server.

remote
database

user
interface
elements

user

elements
interface

data source

data source

connection
component

connection
component

client
dataset

client
dataset

dataset
component

provider

provider

custom
dataset

Form Data Module Remote data module

Remote data moduleForm Data Module

Client Application Application Server

Client Application Application Server

DESIGNING THE USER INTERFACE

145

Usually, several client applications communicate with a single application server in the

multi-tiered model. The application server provides a gateway to your databases for all

your client applications, and it lets you provide enterprise-wide database tasks in a central

location, accessible to all your clients. For more information about creating and using a

multi-tiered database application, see “Creating multi-tiered applications”

in the in the

Delphi 5 Developer’s Guide.

Designing the user interface

The Data Controls page of the Component palette provides a set of data-aware controls

that represent data from fields in a database record, and can permit users to edit that data

and post changes back to the database. Using data-aware controls, you can build your

database application’s user interface (UI) so that information is visible and accessible to

users. For more information on data-aware controls see “Using Data Controls” in the

Delphi 5 Developer’s Guide

.

Data-aware controls get data from and send data to a data source component,

TDataSource

. A data source component acts as a conduit between the user interface and

a dataset component which represents a set of information from the tables in a database.

Several data-aware controls on a form can share a single data source, in which case the

display in each control is synchronized so that as the user scrolls through records, the

corresponding value in the fields for the current record is displayed in each control. An

application’s data source components usually reside in a data module, separate from the

data-aware controls on forms.

The data-aware controls you add to your user interface depend on what type of data you

are displaying (plain text, formatted text, graphics, multimedia elements, and so on). In

addition, your choice of controls is determined by how you want to organize the

information and how (or if) you want to let users navigate through the records of datasets

and add or edit data.

The following sections introduce the components you can use for various types of user

interface:

�

Displaying a single record

�

Displaying multiple records

�

Analyzing data

�

Selecting what data to show

CHAPTER 9

DESIGNING DATABASE APPLICATIONS

146

INTERBASE 6

Displaying a single record

In many applications, you may only want to provide information about a single record

of data at a time. For example, an order-entry application may display the information

about a single order without indicating what other orders are currently logged. This

information probably comes from a single record in an orders dataset.

Applications that display a single record are usually easy to read and understand, because

all database information is about the same thing (in the previous case, the same order).

The data-aware controls in these user interfaces represent a single field from a database

record. The Data Controls page of the Component palette provides a wide selection of

controls to represent different kinds of fields. For more information about specific

data-aware controls, see “Controls that represent a single field” in the “Using data

controls” chapter of the

Delphi 5 Developer’s Guide

.

Displaying multiple records

Sometimes you want to display many records in the same form. For example, an invoicing

application might show all the orders made by a single customer on the same form.

To display multiple records, use a grid control. Grid controls provide a multi-field,

multi-record view of data that can make your application’s user interface more

compelling and effective. They are discussed in “Viewing and editing data with TDBGrid”

and “Creating a grid that contains other data-aware controls” in the “Using data controls”

chapter of the

Delphi 5 Developer’s Guide

.

You may want to design a user interface that displays both fields from a single record and

grids that represent multiple records. There are two models that combine these two

approaches:

�

Master-detail forms:

You can represent information from both a master table and a detail

table by including both controls that display a single field and grid controls. For example,

you could display information about a single customer with a detail grid that displays the

orders for that customer. For information about linking the underlying tables in a

master-detail form, see

Creating master/detail forms

 on page 189

.

�

Drill-down forms:

 In a form that displays multiple records, you can include single field

controls that display detailed information from the current record only. This approach is

particularly useful when the records include long memos or graphic information. As the

user scrolls through the records of the grid, the memo or graphic updates to represent

the value of the current record. Setting this up is very easy. The synchronization between

the two displays is automatic if the grid and the memo or image control share a common

data source.

DESIGNING THE USER INTERFACE

147

Note

It is generally not a good idea to combine these two approaches on a single form.

While the result can sometimes be effective, it is usually confusing for users to understand

the data relationships.

Analyzing data

Some database applications do not present database information directly to the user.

Instead, they analyze and summarize information from databases so that users can draw

conclusions from the data.

The

TDBChart

 component on the Data Controls page of the Component palette lets you

present database information in a graphical format that enables users to quickly grasp

the import of database information.

In addition, some versions of Delphi include a Decision Cube page on the Component

palette. It contains six components that let you perform data analysis and

cross-tabulations on data when building decision support applications. For more

information about using the Decision Cube components, see “Using decision support

components” in the

Delphi 5 Developer’s Guide

.

If you want to build your own components that display data summaries based on various

grouping criteria, you can use maintained aggregates with a client dataset. For more

information about using maintained aggregates, see “Using maintained aggregates” in

the “Creating and using a client dataset” chapter of the

Delphi 5 Developer’s Guide

.

Selecting what data to show

Often, the data you want to surface in your database application does not correspond

exactly to the data in a single database table. You may want to use only a subset of the

fields or a subset of the records in a table. You may want to combine the information from

more than one table into a single joined view.

The data available to your database application is controlled by your choice of dataset

component. Datasets abstract the properties and methods of a database table, so that you

do not need to make major alterations depending on whether the data is stored in a

database table or derived from one or more tables in the database. For more information

on the common properties and methods of datasets, see

Chapter 12, “

Understanding

Datasets

.”

CHAPTER 9

DESIGNING DATABASE APPLICATIONS

148

INTERBASE 6

Your application can contain more than one dataset. Each dataset represents a logical

table. By using datasets, your application logic is buffered from restructuring of the

physical tables in your databases. You might need to alter the type of dataset component,

or the way it specifies the data it contains, but the rest of your user interface can continue

to work without alteration.

You can use any of the following types of dataset:

�

Table components:

Tables (

TIBTable

) correspond directly to the underlying tables in the

database. You can adjust which fields appear (including adding lookup fields and

calculated fields) by using persistent field components. You can limit the records that

appear using ranges or filters. Tables are described in more detail in

Chapter 13,

“

Working with Tables

.”

 Persistent fields are described in “Persistent field components”

in the

Delphi 5 Developer’s Guide

. Ranges and filters are described in

Working with a

subset of data

 on page 185

.

�

Query components:

 Queries (

TIBQuery

,

 TIBDataSet

, and

TIBSQL

) provide the most

general mechanism for specifying what appears in a dataset. You can combine the data

from multiple tables using joins, and limit the fields and records that appear based on

any criteria you can express in SQL. For more information on queries, see

Chapter 14,

“

Working with Queries

.”

�

Stored procedures:

Stored procedures (

TIBStoredProc

) are sets of SQL statements that are

named and stored on an SQL server. If your database server defines a remote procedure

that returns the dataset you want, you can use a stored procedure component. For more

information on stored procedures, see

Chapter 15, “

Working with Stored Procedures

.”

�

Client datasets:

Client datasets cache the records of the logical dataset in memory.

Because of that, they can only hold a limited number of records. Client datasets are

populated with data in one of two ways: from an application server or from flat-file data

stored on disk. When using a client dataset to represent flat-file data, you must create the

underlying table programmatically. For more information about client datasets, see

“Creating and using a client dataset” in the

Delphi 5 Developer’s Guide

.

�

Custom datasets:

You can create your own custom descendants of

TDataSet

 to represent

a body of data that you create or access in code you write. Writing custom datasets allows

you the flexibility of managing the data using any method you choose, while still letting

you use the VCL data controls to build your user interface. For more information about

creating custom components, see “Overview of component creation” in the

Delphi 5

Developer’s Guide

.

149

CHAPTER

10

Chapter 10

Building One- and

Two-

Ti

ered Applications

One- and two-tiered applications include the logic that manipulates database information

in the same application that implements the user interface. Because the data

manipulation logic is not isolated in a separate tier, these types of applications are most

appropriate when there are no other applications sharing the same database information.

Even when other applications share the database information, these types of applications

are appropriate if the database is very simple, and there are no data semantics that must

duplicated by all applications that use the data.

You may want to start by writing a one- or two-tiered application, even when you intend

to eventually scale up to a multi-tiered model as your needs increase. This approach lets

you avoid having to develop data manipulation logic up front so that the application

server can be available while you are writing the user interface. It also allows you to

develop a simpler, cheaper prototype before investing in a large, multi-system

development project. If you intend to eventually scale up to a multi-tiered application,

you can isolate the data manipulation logic so that it is easy to move it to a middle tier

at a later date.

CHAPTER 10

BUILDING ONE- AND TWO-

TI

ERED APPLICATIONS

150

INTERBASE 6

Understanding databases and datasets

Databases contain information stored in tables. They may also include tables of

information about what is contained in the database, objects such as indexes that are

used by tables, and SQL objects such as stored procedures. See

Chapter 11, “

Connecting

to Databases

”

 for more information about databases.

The InterBase page of the Component palette contains various dataset components that

represent the tables contained in a database or logical tables constructed out of data

stored in those database tables. See

Selecting what data to show

 on page 147

 for more

information about these dataset components. You must include a dataset component in

your application to work with database information.

Each dataset component on the InterBase page has a published

Database

 property that

specifies the database which contains the table or tables that hold the information in that

dataset. When setting up your application, you must use this property to specify the

database before you can bind the dataset to specific information contained in that

database. What value you specify depends on whether or not you are using explicit

database components. Database components (

TIBDatabase

) represent a database in your

application. If you do not add a database component explicitly, a temporary one is

created for you automatically, based on the value of the

Database

 property. If you are

using explicit database components,

Database

 is the value of the

Database

 property of

the database component. See

Understanding persistent and temporary database

components

 on page 157

 for more information about using database components.

Using transactions

A

transaction

 is a group of actions that must all be carried out successfully on one or

more tables in a database before they are

committed

 (made permanent). If one of the

actions in the group fails, then all actions are

rolled back

 (undone). By using

transactions, you ensure that the database is not left in an inconsistent state when a

problem occurs completing one of the actions that make up the transaction.

For example, in a banking application, transferring funds from one account to another is

an operation you would want to protect with a transaction. If, after decrementing the

balance in one account, an error occurred incrementing the balance in the other, you

want to roll back the transaction so that the database still reflects the correct total

balance.

UNDERSTANDING DATABASES AND DATASETS

151

By default, implicit transaction control is provided for your applications. When an

application is under implicit transaction control, a separate transaction is used for each

record in a dataset that is written to the underlying database. Implicit transactions

guarantee both a minimum of record update conflicts and a consistent view of the

database. On the other hand, because each row of data written to a database takes place

in its own transaction, implicit transaction control can lead to excessive network traffic

and slower application performance. Also, implicit transaction control will not protect

logical operations that span more than one record, such as the transfer of funds described

previously.

If you explicitly control transactions, you can choose the most effective times to start,

commit, and roll back your transactions. When you develop applications in a multi-user

environment, particularly when your applications run against a remote SQL server, you

should control transactions explicitly.

Note

InterBase does not support nested transactions.

Note

You can also minimize the number of transactions you need by caching updates.

For more information about cached updates, see

Chapter 16, “

Working with Cached

Updates

.”

�

Using a transaction component

When you start a transaction, all subsequent statements that read from and write to the

database occur in the context of that transaction. Each statement is considered part of a

group. Changes must be successfully committed to the database, or every change made

in the group must be undone.

Ideally, a transaction should only last as long as necessary. The longer a transaction is

active, the more simultaneous users that access the database, and the more concurrent,

simultaneous transactions that start and end during the lifetime of your transaction, the

greater the likelihood that your transaction will conflict with another when you attempt

to commit your changes.

When using a transaction component, you code a single transaction as follows:

1.

Start the transaction by calling the transaction’s

StartTransaction

 method:

IBTransaction.StartTransaction;

2.

Once the transaction is started, all subsequent database actions are

considered part of the transaction until the transaction is explicitly

terminated. You can determine whether a transaction is in process by

checking the transaction component’s

InTransaction

 property.

CHAPTER 10

BUILDING ONE- AND TWO-

TI

ERED APPLICATIONS

152

INTERBASE 6

3.

When the actions that make up the transaction have all succeeded, you can

make the database changes permanent by using the transaction component’s

Commit

 method:

IBTransaction.Commit;

Alternately, you can commit the transaction while retaining the current transaction

context using the

CommitRetaining

 method:

 IBTransaction.CommitRetaining;

Commit

 is usually attempted in a

try...except

 statement. That way, if a transaction cannot

commit successfully, you can use the

except

block to handle the error and retry the

operation or to roll back the transaction.

If an error occurs when making the changes that are part of the transaction, or when

trying to commit the transaction, you will want to discard all changes that make up the

transaction. To discard these changes, use the database component’s

Rollback

 method:

IBTransaction.Rollback;

You can also rollback the transaction while retaining the current transaction context

using the

RollbackRetaining

 method:

IBTransaction.RollbackRetaining;

Rollback

 usually occurs in

�

Exception handling code when you cannot recover from a database error.

�

Button or menu event code, such as when a user clicks a Cancel button.

Caching updates

InterBase Express (IBX) provides support for caching updates. When you cache updates,

your application retrieves data from a database, makes all changes to a local, cached copy

of the data, and applies the cached changes to the dataset as a unit. Cached updates are

applied to the database in a single transaction.

Caching updates can minimize transaction times and reduce network traffic. However,

cached data is local to your application and is not under transaction control. This means

that while you are working on your local, in-memory, copy of the data, other applications

can be changing the data in the underlying database table. They also cannot see any

changes you make until you apply the cached updates. Because of this, cached updates

may not be appropriate for applications that work with volatile data, as you may create

or encounter too many conflicts when trying to merge your changes into the database.

UNDERSTANDING DATABASES AND DATASETS

153

You can tell datasets to cache updates using the

CachedUpdates

 property. When the

changes are complete, they can be applied by the dataset component, by the database

component, or by a special update object. When changes cannot be applied to the

database without additional processing (for example, when working with a joined

query), you must use the

OnUpdateRecord

 event to write changes to each table that

makes up the joined view.

For more information on caching updates, see

Chapter 16, “

Working with Cached

Updates

.”

Note

If you are caching updates, you may want to consider moving to a multi-tiered

model to have greater control over the application of updates. For more information

about the multi-tiered model, see “Creating multi-tiered applications” in the

Delphi 5

Developer’s Guide

.

Creating and restructuring database tables

You can use the

TIBTable

 component to create new database tables and to add indexes

to existing tables.

You can create tables either at design time, in the Forms Designer, or at runtime. To create

a table, you must specify the fields in the table using the

FieldDefs

 property, add any

indexes using the

IndexDefs

 property, and call the

CreateTable

 method (or select the

Create Table command from the table’s context menu). For more detailed instructions on

creating tables, see

“

Creating a table

” on page 186

.

You can add indexes to an existing table using the

AddIndex

 method of

TIBTable

.

Note

To create and restructure tables on remote servers at design time, use the SQL

Explorer and restructure the table using SQL.

Using the briefcase model

Most of this chapter has described creating and using a client dataset in a one-tiered

application. The one-tiered model can be combined with a multi-tiered model to create

what is called the briefcase model. In this model, a user starts a client application on one

machine and connects over a network to an application server on a remote machine. The

client requests data from the application server, and sends updates to it. The updates are

applied by the application server to a database that is presumably shared with other

clients throughout an organization.

Note

The briefcase model is sometimes called the disconnected model, or mobile

computing.

CHAPTER 10

BUILDING ONE- AND TWO-

TI

ERED APPLICATIONS

154

INTERBASE 6

Suppose, however, that your on-site company database contains valuable customer

contact data that your sales representatives can use and update in the field. In this case,

it would be useful if your sales reps could download some or all of the data from the

company database, work with it on their laptops as they fly across the country, and even

update records at existing or new customer sites. When the sales reps return on-site, they

could upload their data changes to the company database for everyone to use. The ability

to work with data off-line and then apply updates online at a later date is known as the

“briefcase” model.

By using the briefcase model, you can take advantage of the client dataset component’s

ability to read and write data to flat files to create client applications that can be used

both online with an application server, and off-line, as temporary one-tiered applications.

To implement the briefcase model, you must

1.

Create a multi-tiered server application as described in “Creating multi-tiered

applications”

in the

Delphi 5 Developer’s Guide

.

2.

Create a flat-file database application as your client application. Add a

connection component and set the

RemoteServer

 property of your client

datasets to specify this connection component. This allows them to talk to the

application server created in step 1. For more information about connection

components, see “Connecting to the application server”

in the

Delphi 5

Developer’s Guide

.

3.

In the client application, try on start-up to connect to the application server.

If the connection fails, prompt the user for a file and read in the local copy

of the data.

4.

In the client application, add code to apply updates to the application server.

For more information on sending updates from a client application to an

application server, see “Updating records” in the

Delphi 5 Developer’s Guide

.

Scaling up to a three-tiered application

In a two-tiered client/server application, the application is a client that talks directly to a

database server. Even so, the application can be thought of as having two parts: a

database connection and a user interface. To make a two-tiered client/server application

into a multi-tiered application you must:

�

Split your existing application into an application server that handles the database

connection, and into a client application that contains the user interface.

�

Add an interface between the client and the application server.

CREATING MULTI-TIERED APPLICATIONS

155

There are a number of ways to proceed, but the following sequential steps may best keep

your translation work to a minimum:

1.

Create a new project for the application server, duplicate the relevant

database connection portions of your former two-tiered application, and for

each dataset, add a provider component that will act as a data conduit

between the application server and the client. For more information on using

a provider component, see “Creating a data provider for the application

server”

in the

Delphi 5 Developer’s Guide

.

2.

Copy your existing two-tiered project, remove its direct database connections,

add an appropriate connection component to it. For more information about

creating and using connection components, see “Connecting to the

application server” in the

Delphi 5 Developer’s Guide

.

3.

Substitute a client dataset for each dataset component in the original project.

For general information about using a client dataset component, see

“Creating and using a client dataset” in the

Delphi 5 Developer’s Guide

.

4.

In the client application, add code to apply updates to the application server.

For more information on sending updates from a client application to an

application server, see “Updating records”

in the

Delphi 5 Developer’s Guide

.

5.

Move the dataset components to the application server’s data modules. Set

the

DataSet

 property of each provider to specify the corresponding datasets.

For more information about linking a dataset to a provider component, see

“Creating a data provider for the application server” in the

Delphi 5

Developer’s Guide

.

Creating multi-tiered applications

A multi-tiered client/server application is partitioned into logical units which run in

conjunction on separate machines. Multi-tiered applications share data and communicate

with one another over a local-area network or even over the Internet. They provide many

benefits, such as centralized business logic and thin client applications. For information

on how to build multi-tiered applications, refer to “Creating multi-tiered applications” in

the

Delphi 5 Developers Guide

.

156

INTERBASE 6

157

CHAPTER

11

Chapter 11

Connecting to Databases

When an InterBase Express (IBX) application connects to a database, that connection is

encapsulated by a

TIBDatabase

 component. A database component encapsulates the

connection to a single database in an application. This chapter describes database

components and how to manipulate database connections.

Another use for database components is applying cached updates for related tables. For

more information about using a database component to apply cached updates, see

“

Applying cached updates with a database component method

” on page 234

.

Understanding persistent and temporary database components

Each database connection in an application is encapsulated by a database component

whether or not you explicitly provide a database component at design time or create it

dynamically at runtime. When an application attempts to connect to a database, it either

uses an explicitly instantiated, or

persistent

, database component, or it generates a

temporary database component that exists only for the lifetime of the connection.

CHAPTER 11

CONNECTING TO DATABASES

158

INTERBASE 6

Temporary database components are created as necessary for any datasets in a data

module or form for which you do not create yourself. Temporary database components

provide broad support for many typical desktop database applications without requiring

you to handle the details of the database connection. For most client/server applications,

however, you should create your own database components instead of relying on

temporary ones. You gain greater control over your databases, including the ability to

�

Create persistent database connections

�

Customize database server logins

�

Control transactions and specify transaction isolation levels

�

Create event notifiers to track when a connection is made or broken

Using temporary database components

Temporary database components are automatically generated as needed. For example, if

you place a

TIBTable

 component on a form, set its properties, and open the table without

first placing and setting up a

TIBDatabase

 component and associating the table

component with it, Delphi creates a temporary database component for you behind the

scenes.

The default properties created for temporary database components provide reasonable,

general behaviors meant to cover a wide variety of situations. For complex,

mission-critical client/server applications with many users and different requirements for

database connections, however, you should create your own database components to

tune each database connection to your application’s needs.

Creating database components at design time

The InterBase page of the Component palette contains a database component you can

place in a data module or form. The main advantages to creating a database component

at design time are that you can set its initial properties and write

OnLogin

 events for it.

OnLogin

 offers you a chance to customize the handling of security on a database server

when a database component first connects to the server. For more information about

managing connection properties, see

“

Connecting to a database server

” on page 159

.

For more information about server security, see

“

Controlling server login

” on page 159

.

CONTROLLING CONNECTIONS

159

Controlling connections

Whether you create a database component at design time or runtime, you can use the

properties, events, and methods of

TIBDatabase

 to control and change its behavior in

your applications. The following sections describe how to manipulate database

components. For details about all

TIBDatabase

 properties, events, and methods, see

TIBDatabase in the online

InterBase Express Reference

.

Controlling server login

InterBase servers include security features to prohibit unauthorized access. The server

requires a user name and password login before permitting database access.

At design time, a standard Login dialog box prompts for a user name and password when

you first attempt to connect to the database.

At runtime, there are three ways you can handle a server’s request for a login:

�

Set the

LoginPrompt

 property of a database component to

True

 (the default). Your

application displays the standard Login dialog box when the server requests a user name

and password.

�

Set the

LoginPrompt

 to

False

, and include hard-coded

USER_NAME

 and

PASSWORD

parameters in the

Params

 property for the database component. For example:

USER_NAME=SYSDBA

PASSWORD=masterkey

I

M

P

O

R

T

A

N

T

Note that because the

Params

 property is easy to view, this method compromises server

security, so it is not recommended.

�

Write an

OnLogin

 event for the database component, and use it to set login parameters

at runtime.

OnLogin

 gets a copy of the database component’s

Params

 property, which

you can modify. The name of the copy in

OnLogin

 is

LoginParams

. Use the

Values

property to set or change login parameters as follows:

LoginParams.Values['USER_NAME'] := UserName;

LoginParams.Values['PASSWORD'] := PasswordSearch(UserName);

On exit,

OnLogin

 passes its

LoginParams

 values back to

Params

, which is used to

establish a connection.

Connecting to a database server

There are two ways to connect to a database server using a database component:

CHAPTER 11

CONNECTING TO DATABASES

160

INTERBASE 6

�

Call the

Open

 method.

�

Set the

Connected

 property to

True

.

Setting

Connected

 to

True

 executes the

Open

 method.

Open

 verifies that the database

specified by the

Database

 or

Directory

 properties exists, and if an

OnLogin

 event exists

for the database component, it is executed. Otherwise, the default Login dialog box

appears.

Note

When a database component is not connected to a server and an application

attempts to open a dataset associated with the database component, the database

component’s

Open

 method is first called to establish the connection. If the dataset is not

associated with an existing database component, a temporary database component is

created and used to establish the connection.

Once a database connection is established the connection is maintained as long as there

is at least one active dataset. If a dataset is later opened which uses the database, the

connection must be reestablished and initialized.

 An event notifier procedure can be

constructed to indicate whenever a connection to the database is made or broken.

Working with network protocols

As part of configuring the appropriate SQL Links or ODBC driver, you m

ight n

eed to

specify the network protocol used by the server, such as SPX/IPX or TCP/IP, depending

on the driver’s configuration options. In most cases, network protocol configuration is

handled using a server’s client setup software. For ODBC it m

ight a

lso be necessary to

check the driver setup using the

Microsoft

ODBC

Administrator.

See

Chapter 5:

“

Programming Applications with ODBC

”

 for more information.

Establishing an initial connection between client and server can be problematic. The

following troubleshooting checklist should be helpful if you encounter difficulties:

�

Is your server’s client-side connection properly configured?

�

If you are using TCP/IP:

·

Is your TCP/IP communications software installed? Is the proper

WINSOCK.DLL

 installed?

·

Is the server’s IP address registered in the client’s

HOSTS

 file?

·

Is the Domain Name Service (DNS) properly configured?

·

Can you ping the server?

�

Are the DLLs for your connection and database drivers in the search path?

For more troubleshooting information, see the online

 SQL Links User’s Guide

.

CONTROLLING CONNECTIONS

161

Using ODBC

An application can use ODBC data sources (for example, Btrieve). An ODBC driver

connection requires

:

�

A vendor-supplied ODBC driver

�

The Microsoft ODBC Driver Manager

Disconnecting from a database server

There are two ways to disconnect a server from a database component:

�

Set the

Connected

 property to

False

�

Call the

Close

 method

Setting

Connected

 to

False

 calls

Close

.

Close

 closes all open datasets and disconnects from

the server. For example, the following code closes all active datasets for a database

component and drops its connections:

IBDatabase1.Connected := False;

Iterating through a database component’s datasets

A database component provides two properties that enable an application to iterate

through all the datasets associated with the component:

DataSets

 and

DataSetCount

.

DataSets

 is an indexed array of all active datasets (

TIBDataSet

,

TIBSQL

,

TIBTable

,

TIBQuery

, and

TIBStoredProc

) for a database component. An active dataset is one that is

currently open.

DataSetCount

 is a read-only integer value specifying the number of

currently active datasets.

You can use

DataSets

 with

DataSetCount

 to cycle through all currently active datasets in

code. For example, the following code cycles through all active datasets to set the

CachedUpdates

 property for each dataset of type

TIBTable

 to

True

:

var

I: Integer;

begin

for I := 0 to DataSetCount - 1 do

if DataSets[I] is TIBTable then

DataSets[I].CachedUpdates := True;

end;

CHAPTER 11

CONNECTING TO DATABASES

162

INTERBASE 6

Requesting information about an attachment

Use a

TIBDatabaseInfo

 component in your application to query InterBase for attachment

information, such as the version of the on-disk structure (ODS) used by the attachment,

the number of database cache buffers allocated, the number of database pages read from

or written to, or write ahead log information.

After attaching to a database, you can use the

TIBDatabaseInfo

 properties to return

information on:

�

Database characteristics

�

Environmental characteristics

�

Performance statistics

�

Database operation counts

Database characteristics

Several properties are available for determining database characteristics, such as size and

major and minor ODS numbers. The following table lists the properties that can be

passed, and the information returned in the result buffer for each property type:

Property

Returns

Allocation

The number of pages allocated as a long integer

BaseLevel

The database version number as a long integer

DBFileName

The database file name as a string

DBImplementationClass

The database implementation class number as a long integer;

either 1 or 12

DBImplementationNo

The database implementation number as a long integer

DBSiteName

The database site name as a string

DBSQLDialect

The database SQL dialect as a long integer

Handle

The database handle

TABLE 11.1

TIBDatabaseInfo database characteristic properties

REQUESTING INFORMATION ABOUT AN ATTACHMENT

163

Environmental characteristics

Several properties are provided for determining environmental characteristics, such as

the amount of memory currently in use, or the number of database cache buffers

currently allocated. These properties are described in the following table:

NoReserve

0 to indicate that space is reserved on each database page for

holding backup version of modified records (the default) or 1 to

indicate that no space is reserved

ODSMajorVersion

The on disk structure (ODS) major version number as a long

integer

ODSMinorVersion

The ODS minor version number as a long integer

PageSize

The number of bytes per page as a long integer

Version

The database version as a string

Property

Returns

CurrentMemory

The amount of server memory currently in use (in bytes) as along

integer

ForcedWrites

0 for asynchronous (forced) database writes, or 1 for synchronous

writes

MaxMemory

The maximum amount of memory used at one time since the first

process attached to database as a long integer

NumBuffers

The number of memory buffers currently allocated as a long

integer

SweepInterval

The number of transactions that are committed between sweeps

as a long integer

UserNames

The names of all users currently attached to the database as a

TStringList

TABLE 11.2

TIBDatabaseInfo environmental characteristic properties

Property

Returns

TABLE 11.1

TIBDatabaseInfo database characteristic properties

CHAPTER 11

CONNECTING TO DATABASES

164

INTERBASE 6

Performance statistics

There are four properties that request performance statistics for a database. The statistics

accumulate for a database from the moment it is first attached by any process until the

last remaining process detaches from the database. For example, the value returned for

the

Reads

 property is the number of reads since the current database was first attached,

that is, an aggregate of all reads done by all attached processes, rather than the number

of reads done for the calling program since it attached to the database:

Database operation counts

Several information properties are provided for determining the number of various

database operations performed by the currently attached calling program. These values

are calculated on a per-table basis.

The following table describes the properties which return count values for operations on

the database:

Property

Returns

Fetches

The number of reads from the memory buffer cache as a long

integer

Marks

The number of writes to the memory buffer cache as a long

integer

Reads

The number of pages reads from the database since the current

database was first attached; returned as a long integer

Writes

The number of page writes to the current database since it was

first attached by any process; returned as long integer

TABLE 11.3

TIBDataBaseInfo performance properties

REQUESTING INFORMATION ABOUT AN ATTACHMENT

165

Requesting database information

This section gives an example on how to use the

TIBDatabaseInfo

 component.

To set up a simple

TIBDatabaseInfo

 component:

1.

Drop a

TIBDatabase

 component and a

TIBDatabaseInfo

 component on a

Delphi form.

2.

Using either the Object Inspector or the Database Component Editor, set up

the database connection. For more information, see

“

Connecting to a

database server

” on page 159

.

3.

Set the

TIBDatabaseInfo

 component’s

Database

 property to the name of the

TIBDatabase

 component.

4.

Connect the

TIBDatabase

 component to the database by setting the

Connected

 property to

True

.

5.

Drop a

Button

 component and a

Memo

 component on the form.

Property

Returns

BackoutCount

The number of removals of a version of a record as a long integer

DeleteCount

The number of database deletes since the database was last

attached; returned as long integer

ExpungeCount

The number of removals of a record and all of its ancestors as a

long integer

InsertCount

The number of inserts into the database since the database was

last attached; returned as a long integer

PurgeCount

The number of removals of fully mature records from the

database; returned as a long integer

ReadIdxCount

The number of sequential database reads done via an index since

the database was last attached; returned as a long integer

ReadSeqCount

The number of sequential database reads done on each table

since the database was last attached; returned as a long integer

UpdateCount

The number of updates since the database was last attached;

returned as a long integer

TABLE 11.4

TIBDatabaseInfo database operation count properties

CHAPTER 11

CONNECTING TO DATABASES

166

INTERBASE 6

6.

Double-click the

Button

 component to bring up the code editor, and set any

of the

TIBDatabaseInfo

 properties described above. For example:

procedure TForm1.Button1Click(Sender: TObject);

var

 I: Integer;

begin

 with IBDatabaseInfo1 do

 begin

 for I := 0 to UserNames.Count - 1 do

 Memo1.Lines.Add(UserNames[i]);

 Memo1.Lines.Add(DBFileName);

 Memo1.Lines.Add(IntToStr(Fetches));

 Memo1.Lines.Add(IntToStr(CurrentMemory));

 end;

end;

167

CHAPTER

12

Chapter 12

Understanding Datasets

In Delphi, the fundamental unit for accessing data is the dataset family of objects. Your

application uses datasets for all database access. Generally, a dataset object represents a

specific table belonging to a database, or it represents a query or stored procedure that

accesses a database.

All dataset objects that you will use in your database applications descend from the

virtualized dataset object,

TDataSet

, and they inherit data fields, properties, events, and

methods from

TDataSet

. This chapter describes the functionality of

TDataSet

 that is

inherited by the dataset objects you will use in your database applications. You need to

understand this shared functionality to use any dataset object.

FIGURE 12.1

 illustrates the hierarchical relationship of all the dataset components:

FIGURE 12.1

InterBase database component dataset hierarchy

TDataSet

TClientDataSet TIBCustomDataSet
TIBQuery

TIBStoredProc

TIBTable

TIBDataSet

CHAPTER 12

UNDERSTANDING DATASETS

168

INTERBASE 6

What is TDataSet?

TDataSet

 is the ancestor for all dataset objects you use in your applications. It defines a

set of data fields, properties, events, and methods shared by all dataset objects.

TDataSet

is a virtualized dataset, meaning that many of its properties and methods are

 virtual

 or

abstract

. A

virtual method

 is a function or procedure declaration where the

implementation of that method can be (and usually is) overridden in descendant objects.

An

abstract

method

is a function or procedure declaration without an actual

implementation. The declaration is a prototype that describes the method (and its

parameters and return type, if any) that must be implemented in all descendant dataset

objects, but that might be implemented differently by each of them.

Because

TDataSet

 contains

abstract

methods, you cannot use it directly in an application

without generating a runtime error. Instead, you either create instances of

TDataSet

’s

descendants, such as

TIBCustomDataSet

,

TIBDataSet

,

TIBTable

,

TIBQuery

,

TIBStoredProc

, and

TClientDataSet

, and use them in your application, or you derive your

own dataset object from

TDataSet

 or its descendants and write implementations for all

its

abstract

 methods.

Nevertheless,

TDataSet

 defines much that is common to all dataset objects. For example,

TDataSet

 defines the basic structure of all datasets: an array of

TField

 components that

correspond to actual columns in one or more database tables, lookup fields provided by

your application, or calculated fields provided by your application. For more information

about

TField

 components, see “Working with field components” in the

Delphi 5

Developer’s Guide

.

The following topics are discussed in this chapter:

�

Opening and closing datasets

�

Determining and setting dataset states

�

Navigating datasets

�

Searching datasets

�

Modifying data

�

Using dataset events

Opening and closing datasets

To read or write data in a table or through a query, an application must first open a

dataset. You can open a dataset in two ways:

DETERMINING AND SETTING DATASET STATES

169

�

Set the

Active

property of the dataset to

True

, either at design time in the Object Inspector,

or in code at runtime:

IBTable.Active := True;

�

Call the

Open

method for the dataset at runtime:

IBQuery.Open;

You can close a dataset in two ways:

�

Set the

Active

 property of the dataset to

False

, either at design time in the Object

Inspector, or in code at runtime:

IBQuery.Active := False;

�

Call the

Close

method for the dataset at runtime:

IBTable.Close;

You may need to close a dataset when you want to change certain of its properties, such

as

TableName

 on a

TIBTable

 component. At runtime, you may also want to close a dataset

for other reasons specific to your application.

Determining and setting dataset states

The

state

 (o

r

mode

) o

f a dataset determines what can be done to its data. For example,

when a dataset is closed, its state is

dsInactive

, meaning that nothing can be done to its

data. At runtime, you can examine a dataset’s read-only

State

 property to determine its

current state. The following table summarizes possible values for the

State

 property and

what they mean:

Value

State

Meaning

dsInactive

Inactive

DataSet closed; its data is unavailable

dsBrowse

Browse

DataSet open; its data can be viewed, but not changed

dsEdit

Edit

DataSet open; the current row can be modified

dsInsert

Insert

DataSet open; a new row is inserted or appended

TABLE 12.1

Values for the dataset

State

 property

CHAPTER 12

UNDERSTANDING DATASETS

170

INTERBASE 6

When an application opens a dataset, it appears by default in

dsBrowse

 mode. The state

of a dataset changes as an application processes data. An open dataset changes from one

state to another based on either the code in your application, or the built-in behavior of

data-related components.

To put a dataset into

dsBrowse

,

dsEdit

, or

dsInsert

 states, call the method corresponding

to the name of the state. For example, the following code puts

IBTable

 into

dsInsert

 state,

accepts user input for a new record, and writes the new record to the database:

IBTable.Insert; { Your application explicitly sets dataset state to

Insert }

AddressPromptDialog.ShowModal;

if AddressPromptDialog.ModalResult := mrOK then

IBTable.Post; { Delphi sets dataset state to Browse on successful

completion }

else

IBTable.Cancel; {Delphi sets dataset state to Browse on cancel }

This example also illustrates that the state of a dataset automatically changes to

dsBrowse

when

�

The

Post

 method successfully writes a record to the database. (If

Post

 fails, the dataset

state remains unchanged.)

�

The

Cancel

 method is called.

Some states cannot be set directly. For example, to put a dataset into

dsInactive

 state, set

its

Active

 property to

False

, or call the

Close

 method for the dataset. The following

statements are equivalent:

IBTable.Active := False;

IBTable.Close;

dsCalcFields

CalcFields

DataSet open; indicates that an

OnCalcFields

 event is under way and

prevents changes to fields that are not calculated

dsCurValue

CurValue

Internal use only

dsNewValue

NewValue

Internal use only

dsOldValue

OldValue

Internal use only

dsFilter

Filter

DataSet open; indicates that a filter operation is under way: a

restricted set of data can be viewed, and no data can be changed

Value

State

Meaning

TABLE 12.1

Values for the dataset

State

 property

DETERMINING AND SETTING DATASET STATES

171

The remaining states (

dsCalcFields

,

dsCurValue, dsNewValue

,

dsOldValue

, and

dsFilter

)

cannot be set by your application. Instead, the state of the dataset changes automatically

to these values as necessary. For example,

dsCalcFields

 is set when a dataset’s

OnCalcFields

 event is called. When the

OnCalcFields

 event finishes, the dataset is

restored to its previous state.

Whenever a dataset’s state changes, the

OnStateChange

 event is called for any data source

components associated with the dataset. For more information about data source

components and

OnStateChange

, see “Using data sources” in the “Using data controls”

chapter of the

Delphi 5 Developer’s Guide

.

The following sections provide overviews of each state, how and when states are set, how

states relate to one another, and where to go for related information, if applicable.

Deactivating a dataset

A dataset is inactive when it is closed. You cannot access records in a closed dataset. At

design time, a dataset is closed until you set its

Active

property to

True

. At runtime, a

dataset is initially closed until an application opens it by calling the

Open

 method, or by

setting the

Active

 property to

True

.

When you open an inactive dataset, its state automatically changes to the

dsBrowse

 state.

FIGURE 12.2

 illustrates the relationship between these states and the methods that set

them.

FIGURE 12.2

Relationship of Inactive and Browse states

To make a dataset inactive, call its

Close

 method. You can write

BeforeClose

 and

AfterClose

event handlers that respond to the

Close

 method for a dataset. For example, if

a dataset is in

dsEdit

 or

dsInsert

 modes when an application calls

Close

, you should

prompt the user to post pending changes or cancel them before closing the dataset. The

following code illustrates such a handler:

procedure IBTable.VerifyBeforeClose(DataSet: TIBCustomDataSet)

begin

if (IBTable.State = dsEdit) or (IBTable.State = dsInsert) then

begin

Inactive Browse
Open

Close

CHAPTER 12

UNDERSTANDING DATASETS

172

INTERBASE 6

if MessageDlg('Post changes before closing?', mtConfirmation,

mbYesNo, 0) = mrYes then

IBTable.Post;

else

IBTable.Cancel;

end;

end;

To associate a procedure with the

BeforeClose

 event for a dataset at design time:

1.

Select the table in the data module (or form).

2.

Click the Events page in the Object Inspector.

3.

Enter the name of the procedure for the

BeforeClose

 event (or choose it from

the drop-down list).

Browsing a dataset

When an application opens a dataset, the dataset automatically enters

dsBrowse

 state.

Browsing enables you to view records in a dataset, but you cannot edit records or insert

new records. You mainly use

dsBrowse

 to scroll from record to record in a dataset. For

more information about scrolling from record to record, see

“

Navigating datasets

” on

page 175

.

From

dsBrowse

 all other dataset states can be set. For example, calling the

Insert

 or

Append

 methods for a dataset changes its state from

dsBrowse

 to

dsInsert

 (note that other

factors and dataset properties, such as

CanModify

, may prevent this change). For more

information about inserting and appending records in a dataset, see

“

Modifying data

”

on page 175

.

Two methods associated with all datasets can return a dataset to

dsBrowse

 state.

Cancel

ends the current edit, insert, or search task, and always returns a dataset to

dsBrowse

state.

Post

attempts to write changes to the database, and if successful, also returns a

dataset to

dsBrowse

 state. If

Post

 fails, the current state remains unchanged.

FIGURE 12.3

 illustrates the relationship of

dsBrowse

 both to the other dataset modes you

can set in your applications, and the methods that set those modes.

DETERMINING AND SETTING DATASET STATES

173

FIGURE 12.3

Relationship o

f Browse to other dataset states

Enabling dataset editing

A dataset must be in

dsEdit

 mode before an application can modify records. In your code

you can use the

Edit

 method to put a dataset into

dsEdit

 mode if the read-only

CanModify

property for the dataset is

True

.

CanModify

 is

True

 if the database underlying a dataset

permits read and write privileges.

On forms in your application, some data-aware controls can automatically put a dataset

into

dsEdit

 state if:

�

The control’s

ReadOnly

property is

False

 (the default),

�

The

AutoEdit

 property of the data source for the control is

True

, and

�

CanModify

 is

True

 for the dataset.

I

M

P

O

R

T

A

N

T

For

TIBTable

 components, if the

ReadOnly

 property is

True

,

CanModify

 is

False

,

preventing editing of records.

Note

Even if a dataset is in

dsEdit

 state, editing records will not succeed for InterBase

databases if your application user does not have proper SQL access privileges.

You can return a dataset from

dsEdit

 state to

dsBrowse

 state in code by calling the

Cancel

,

Post,

 or

Delete

 methods.

Cancel

 discards edits to the current field or record.

Post

 attempts

to write a modified record to the dataset, and if it succeeds, returns the dataset to

dsBrowse

. If

Post

 cannot write changes, the dataset remains in

dsEdit

 state.

Delete

attempts to remove the current record from the dataset, and if it succeeds, returns the

dataset to

dsBrowse

 state. If

Delete

 fails, the dataset remains in

dsEdit

 state.

dsBrowse

Open Close

dsInactive

dsEditdsInsert

Insert
Append Edit

Post (success)
Cancel
Delete

Post (success)
Cancel
Delete

Post
(unsuccessful)

Post
(unsuccessfu

CHAPTER 12

UNDERSTANDING DATASETS

174

INTERBASE 6

Data-aware controls for which editing is enabled automatically call

Post

 when a user

executes any action that changes the current record (such as moving to a different record

in a grid) or that causes the control to lose focus (such as moving to a different control

on the form).

For a complete discussion of editing fields and records in a dataset, see

“

Modifying data

”

on page 175

.

Enabling insertion of new records

A dataset must be in

dsInsert

mode before an application can add new records. In your

code you can use the

Insert

 or

Append

 methods to put a dataset into

dsInsert

 mode if the

read-only

CanModify

property for the dataset is

True

.

CanModify

 is

True

 if the database

underlying a dataset permits read and write privileges.

On forms in your application, the data-aware grid and navigator controls can put a

dataset into

dsInsert

 state if

�

The control’s

ReadOnly

 property is

False

 (the default),

�

The

AutoEdit

 property of the data source for the control is

True

, and

�

CanModify

 is

True

 for the dataset.

I

M

P

O

R

T

A

N

T

For

TIBTable

 components, if the

ReadOnly

 property is

True

,

CanModify

 is

False

,

preventing editing of records.

Note

Even if a dataset is in

dsInsert

 state, inserting records will not succeed for InterBase

databases if your application user does not have proper SQL access privileges.

You can return a dataset from

dsInsert

 state to

dsBrowse

 state in code by calling the

Cancel

,

Post

, or

Delete

 methods.

Delete

 and

Cancel

 discard the new record.

Post

 attempts

to write the new record to the dataset, and if it succeeds, returns the dataset to

dsBrowse

.

If

Post

 cannot write the record, the dataset remains in

dsInsert

 state.

Data-aware controls for which inserting is enabled automatically call

Post

 when a user

executes any action that changes the current record (such as moving to a different record

in a grid).

For more discussion of inserting and appending records in a dataset, see

“

Modifying

data

” on page 175

.

NAVIGATING DATASETS

175

Calculating fields

Delphi puts a dataset into

dsCalcFields

 mode whenever an application calls the dataset’s

OnCalcFields

 event handler. This state prevents modifications or additions to the records

in a dataset except for the calculated fields the handler is designed to modify. The reason

all other modifications are prevented is because

OnCalcFields

 uses the values in other

fields to derive values for calculated fields. Changes to those other fields might otherwise

invalidate the values assigned to calculated fields.

When the

OnCalcFields

 handler finishes, the dataset is returned to

dsBrowse

 state.

For more information about creating calculated fields and

OnCalcFields

 event handlers,

see

“

Using OnCalcFields

” on page 177

.

Updating records

When performing cached update operations, Delphi may put the dataset into

dsNewValue

,

dsOldValue

, or

dsCurValue

 states temporarily. These states indicate that the

corresponding properties of a field component (

NewValue

,

OldValue

, and

CurValue

,

respectively) are being accessed, usually in an

OnUpdateError

 event handler. Your

applications cannot see or set these states. For more information about using cached

updates, see

Chapter 16, “

Working with Cached Updates

.”

Navigating datasets

For information on navigating datasets, refer to “Navigating datasets” in the

Delphi 5

Developer’s Guide

.

Searching datasets

For information on searching datasets, refer to “Searching datasets” in the

Delphi 5

Developer’s Guide

.

Modifying data

For information on modifying data, refer to “Modifying data” in the

Delphi 5 Developer’s

Guide

.

CHAPTER 12

UNDERSTANDING DATASETS

176

INTERBASE 6

Using dataset events

Datasets have a number of events that enable an application to perform validation,

compute totals, and perform other tasks. The events are listed in the following table:

For more information about events for the

TIBCustomDataSet

 component, see the online

VCL Reference.

Aborting a method

To abort a method such as an

Open

 or

Insert

, call the

Abort

 procedure in any of the

Before

event handlers (

BeforeOpen

,

BeforeInsert

, and so on). For example, the following code

requests a user to confirm a delete operation or else it aborts the call to

Delete

:

procedure TForm1.TableBeforeDelete (Dataset: TDataset)

begin

if MessageDlg('Delete This Record?', mtConfirmation, mbYesNoCancel,

0) <> mrYes then

Abort;

end;

Event

Description

BeforeOpen, AfterOpen

 Called before/after a dataset is opened.

BeforeClose, AfterClose

 Called before/after a dataset is closed.

BeforeInsert, AfterInsert

 Called before/after a dataset enters Insert state.

BeforeEdit, AfterEdit

 Called before/after a dataset enters Edit state.

BeforePost, AfterPost

 Called before/after changes to a table are posted.

BeforeCancel, AfterCancel

 Called

before/after

 the previous state is canceled.

BeforeDelete, AfterDelete

 Called before/after a record is deleted.

OnNewRecord

 Called when a new record is created; used to set default values.

OnCalcFields

 Called when calculated fields are calculated.

TABLE 12.2

Dataset events

USING CACHED UPDATES

177

Using OnCalcFields

The

OnCalcFields

 event is used to set the values of calculated fields. The

AutoCalcFields

property determines when

OnCalcFields

 is called. If

AutoCalcFields

 is

True

, then

OnCalcFields

 is called when

�

A dataset is opened.

�

Focus moves from one visual component to another, or from one column to another in

a data-aware grid control and the current record has been modified.

�

A record is retrieved from the database.

OnCalcFields

 is always called whenever a value in a non-calculated field changes,

regardless of the setting of

AutoCalcFields

.

I

M

P

O

R

T

A

N

T

OnCalcFields

 is called frequently, so the code you write for it should be kept short. Also,

if

AutoCalcFields

 is

True

,

OnCalcFields

 should not perform any actions that modify the

dataset (or the linked dataset if it is part of a master-detail relationship), because this

can lead to recursion. For example, if

OnCalcFields

 performs a

Post

, and

AutoCalcFields

is

True

, then

OnCalcFields

 is called again, leading to another

Post

, and so on.

If

AutoCalcFields

 is

False

, then

OnCalcFields

 is not called when individual fields within

a single record are modified.

When

OnCalcFields

 executes, a dataset is in

dsCalcFields

 mode, so you cannot set the

values of any fields other than calculated fields. After

OnCalcFields

 is completed, the

dataset returns to

dsBrowse

 state.

Using cached updates

Cached updates enable you to retrieve data from a database, cache and edit it locally, and

then apply the cached updates to the database as a unit. When cached updates are

enabled, updates to a dataset (such as posting changes or deleting records) are stored in

an internal cache instead of being written directly to the dataset’s underlying table. When

changes are complete, your application calls a method that writes the cached changes to

the database and clears the cache.

Implementation of cached updating occurs in

TIBCustomDataSet

. The following table

lists the properties, events, and methods for cached updating:

CHAPTER 12

UNDERSTANDING DATASETS

178

INTERBASE 6

Using cached updates and coordinating them with other applications that access data in

a multi-user environment is an advanced topic that is fully covered in

Chapter 16,

“

Working with Cached Updates

.”

Property, event, or method

Purpose

CachedUpdates

 property

Determines whether or not cached updates are in effect for the dataset.

If

True

, cached updating is enabled. If

False

, cached updating is

disabled.

UpdateObject

 property

Indicates the name of the

TUpdateSQL

 component used to update

datasets based on queries.

UpdatesPending

 property

Indicates whether or not the local cache contains updated records that

need to be applied to the database.

True

 indicates there are records to

update.

False

 indicates the cache is empty.

UpdateRecordTypes

 property

Indicates the kind of updated records to make visible to the application

during the application of cached updates.

UpdateStatus

 method

Indicates if a record is unchanged, modified, inserted, or deleted.

OnUpdateError

 event

A developer-created procedure that handles update errors on a

record-by-record basis.

OnUpdateRecord

 event

A developer-created procedure that processes updates on a

record-by-record basis.

ApplyUpdates

 method

Applies records in the local cache to the database.

CancelUpdates

 method

Removes all pending updates from the local cache without applying

them to the database.

FetchAll

 method

Copies all database records to the local cache for editing and updating.

RevertRecord

 method

Undoes updates to the current record if updates are not yet applied on

the server side.

TABLE 12.3

Properties, events, and methods for cached updates

179

CHAPTER

13

Chapter 13

Working with Tables

This chapter describes how to use the

 TIBTable

 dataset component in your database

applications. A table component encapsulates the full structure of and data in an

underlying database table. A table component inherits many of its fundamental

properties and methods from

TDataSet

 and

 TIBCustomDataSet

. Therefore, you should be

familiar with the general discussion of datasets in

Chapter 12, “

Understanding

Datasets

”

 and before reading about the unique properties and methods of table

components discussed here.

Using table components

A table component gives you access to every row and column in an underlying database

table. You can view and edit data in every column and row of a table. You can work with

a range of rows in a table, and you can filter records to retrieve a subset of all records in

a table based on filter criteria you specify. You can search for records, copy, rename, or

delete entire tables, and create master/detail relationships between tables.

Note

A table component always references a single database table. If you need to access

multiple tables with a single component, or if you are only interested in a subset of rows

and columns in one or more tables, you should use a

TIBQuery

 or

TIBDataSet

component instead of a

TIBTable

 component. For more information about

TIBQuery

 and

TIBDataSet

 components, see

Chapter 14, “

Working with Queries

.”

CHAPTER 13

WORKING WITH TABLES

180

INTERBASE 6

Setting up a table component

The following steps are general instructions for setting up a table component at design

time. There may be additional steps you need to tailor a table’s properties to the

requirements of your application.

�

To create a table component:

1.

Place a table component from the InterBase page of the Component palette

in a data module or on a form, and set its

Name

property to a unique value

appropriate to your application.

2.

Set the

Database

 property to the name of the database component to access.

3.

Set the

Transaction

 property to the name of the transaction component.

4.

Set the

DatabaseName

 property in the Database component to the name of

a the database containing the table.

5.

Set the

TableName

 property to the name of the table in the database. You can

select tables from the drop-down list if the

Database

 and

Transaction

properties are already specified, and if the

Database

 and

Transaction

components are connected to the server.

6.

Place a data source component in the data module or on the form, and set

its

DataSet

 property to the name of the table component. The data source

component is used to pass a result set from the table to data-aware

components for display.

�

To access the data encapsulated by a table component:

1.

Place a data source component from the Data Access page of the Component

palette in the data module or form, and set its

DataSet

 property to the name

of the table component.

2.

Place a data-aware control, such as

TDBGrid

, on a form, and set the control’s

DataSource

 property to the name of the data source component placed in the

previous step.

3.

Set the

Active

 property of the table component to

True

.

Tip

For more information about database components, see

Chapter 11, “

Connecting to

Databases

.”

SETTING UP A TABLE COMPONENT

181

Specifying a table name

The

TableName

 property specifies the table in a database to access with the table

component. To specify a table, follow these steps:

1.

Set the table’s

Active

 property to

False

, if necessary.

2.

Set the

DatabaseName

 property of the database component to a directory

path.

Note

You can use the Database Editor to set the database location, login name, password,

SQL role, and switch the login prompt on and off. To access the Database Component

Editor, right click on the database component and choose Database Editor from the

drop-down menu.

3.

Set the

TableName

property to the table to access. You are prompted to log

in to the database. At design time you can choose from valid table names in

the drop-down list for the

TableName

 property in the Object Inspector. At

runtime, you must specify a valid name in code.

Once you specify a valid table name, you can set the table component’s

Active

 property

to

True

 to connect to the database, open the table, and display and edit data.

At runtime, you can set or change the table associated with a table component by:

�

Setting

Active

 to

False

.

�

Assigning a valid table name to the

TableName

 property.

For example, the following code changes the table name for the

OrderOrCustTable

 table

component based on its current table name:

with OrderOrCustTable do

begin

Active := False; {Close the table}

if TableName = 'CUSTOMER.DB' then

TableName := 'ORDERS.DB'

else

TableName := 'CUSTOMER.DB';

Active := True; {Reopen with a new table}

end;

CHAPTER 13

WORKING WITH TABLES

182

INTERBASE 6

Opening and closing a table

To view and edit a table’s data in a data-aware control such as

TDBGrid

, open the table.

There are two ways to open a table. You can set its

Active

property to

True

, or you can

call its

Open

 method. Opening a table puts it into

dsBrowse

 state and displays data in any

active controls associated with the table’s data source.

To end display and editing of data, or to change the values for a table component’s

fundamental properties (for example:

Database

,

TableName

, and

TableType

), first post

or discard any pending changes. If cached updates are enabled, call the

ApplyUpdates

method to write the posted changes to the database. Finally, close the table.

There are two ways to close a table. You can set its

Active

 property to

False

, or you can

call its

Close

 method. Closing a table puts the table into

dsInactive

 state. Active controls

associated with the table’s data source are cleared.

Controlling read/write access to a table

By default when a table is opened, it requests read and write access for the underlying

database table. Depending on the characteristics of the underlying database table, the

requested write privilege may not be granted (for example, when you request write access

to an SQL table on a remote server and the server restricts the table’s access to read only).

The

ReadOnly

property for table components is the only property that can affect an

application’s read and write access to a table.

ReadOnly

 determines whether or not a user can both view and edit data. When

ReadOnly

is

False

 (the default), a user can both view and edit data. To restrict a user to viewing

data, set

ReadOnly

 to

True

 before opening a table.

Searching for records

You can search for specific records in a table in various ways. The most flexible and

preferred way to search for a record is to use the generic search methods

Locate

 and

Lookup

. These methods enable you to search on any type of fields in any table, whether

or not they are indexed or keyed.

�

Locate

 finds the first row matching a specified set of criteria and moves the cursor to that

row.

�

Lookup

returns values from the first row that matches a specified set of criteria, but does

not move the cursor to that row.

SORTING RECORDS

183

You can use

Locate

 and

Lookup

 with any kind of dataset, not just

TIBTable

. For a

complete discussion of

Locate

 and

Lookup

, see

Chapter 12, “

Understanding Datasets

.”

Table components also support the

Goto

 and

Find

 methods. While these methods are

documented here to allow you to work with legacy applications, you should always use

Lookup

 and

Locate

 in your new applications. You may see performance gains in existing

applications if you convert them to use the new methods.

Sorting records

An index determines the display order of records in a table. In general, records appear in

ascending order based on a primary index. This default behavior does not require

application intervention. If you want a different sort order, however, you must specify

either

�

An alternate index.

�

A list of columns on which to sort.

Specifying a different sort order requires the following steps:

1.

Determining available indexes.

2.

Specifying the alternate index or column list to use.

Retrieving a list of available indexes with GetIndexNames

At runtime, your application can call the

GetIndexNames

method to retrieve a list of

available indexes for a table.

GetIndexNames

 returns a string list containing valid index

names. For example, the following code determines the list of indexes available for the

CustomersTable

 dataset:

var

IndexList: TList;

{...}

CustomersTable.GetIndexNames(IndexList);

CHAPTER 13

WORKING WITH TABLES

184

INTERBASE 6

Specifying an alternative index with IndexName

To specify that a table should be sorted using an alternative index, specify the index name

in the table component’s

IndexName

property. At design time you can specify this name

in the Object Inspector, and at runtime you can access the property in your code. For

example, the following code sets the index for

CustomersTable

 to

CustDescending

:

CustomersTable.IndexName := 'CustDescending';

Specifying sort order for SQL tables

In SQL, sort order of rows is determined by the

ORDER BY

 clause. You can specify the

index used by this clause either with the

�

IndexName

property, to specify an existing index, or

�

IndexFieldNames

property, to create a pseudo-index based on a subset of columns in the

table.

IndexName

 and

IndexFieldNames

 are mutually exclusive. Setting one property clears

values set for the other.

Specifying fields with IndexFieldNames

IndexFieldNames

is a string list property. To specify a sort order, list each column name

to use in the order it should be used, and delimit the names with semicolons. Sorting is

by ascending order only.

The following code sets the sort order for

PhoneTable

 based on

LastName

, then

FirstName

:

PhoneTable.IndexFieldNames := 'LastName;FirstName';

Examining the field list for an index

When your application uses an index at runtime, it can examine the

�

 IndexFieldCount

 property, to determine the number of columns in the index.

�

IndexFields

 property, to examine a list of column names that comprise the index.

IndexFields

 is a string list containing the column names for the index. The following code

fragment illustrates how you might use

IndexFieldCount

 and

IndexFields

 to iterate

through a list of column names in an application:

WORKING WITH A SUBSET OF DATA

185

var

I: Integer;

ListOfIndexFields: array[0 to 20} of string;

begin

with CustomersTable do

begin

for I := 0 to IndexFieldCount - 1 do

ListOfIndexFields[I] := IndexFields[I];

end;

end;

Note

IndexFieldCount

 is not valid for a base table opened on an expression index.

Working with a subset of data

Production tables can be huge, so applications often need to limit the number of rows

with which they work. For table components use filters to limit records used by an

application. Filters can be used with any kind of dataset, including

TIBDataSet

,

TIBTable

,

TIBQuery

, and

TIBStoredProc

 components. Because they apply to all datasets, you can

find a full discussion of using filters in

Chapter 12, “

Understanding Datasets

.”

Deleting all records in a table

To delete all rows of data in a table, call a table component’s

EmptyTable

 method at

runtime. For SQL tables, this method only succeeds if you have

DELETE

 privileges for the

table. For example, the following statement deletes all records in a dataset:

PhoneTable.EmptyTable;

I

M

P

O

R

T

A

N

T

Data you delete with

EmptyTable

 is gone forever.

Deleting a table

At design time, to delete a table from a database, right-click the table component and

select Delete Table from the context menu. The Delete Table menu pick will only be

present if the table component represents an existing database table (the

Database

 and

TableName

 properties specify an existing table).

CHAPTER 13

WORKING WITH TABLES

186

INTERBASE 6

To delete a table at runtime, call the table component’s

DeleteTable

 method. For example,

the following statement removes the table underlying a dataset:

CustomersTable.DeleteTable;

I

M

P

O

R

T

A

N

T

When you delete a table with

DeleteTable

, the table and all its data are gone forever.

Renaming a table

You can rename a table by typing over the name of an existing table next to the

TableName

 property in the Object Inspector. When you change the

TableName

 property,

a dialog appears asking you if you want to rename the table. At this point, you can either

choose to rename the table, or you can cancel the operation, changing the

TableName

property (for example, to create a new table) without changing the name of the table

represented by the old value of

TableName

.

Creating a table

You can create new database tables at design time or at runtime. The Create Table

command (at design time) or the

CreateTable

 method (at runtime) provides a way to

create tables without requiring SQL knowledge. They do, however, require you to be

intimately familiar with the properties, events, and methods common to dataset

components,

TIBTable

in particular. This is so that you can first define the table you want

to create by doing the following:

�

Set the

Database

 property to the database that will contain the new table.

�

Set the

TableName

 property to the name of the new table.

�

Add field definitions to describe the fields in the new table. At design time, you can add

the field definitions by double-clicking the

FieldDefs

 property in the Object Inspector to

bring up the collection editor. Use the collection editor to add, remove, or change the

properties of the field definitions. At runtime, clear any existing field definitions and then

use the

AddFieldDef

 method to add each new field definition. For each new field

definition, set the properties of the

TFieldDef

 object to specify the desired attributes of

the field.

CREATING A TABLE

187

�

Optionally, add index definitions that describe the desired indexes of the new table. At

design time, you can add index definitions by double-clicking the

IndexDefs

 property in

the Object Inspector to bring up the collection editor. Use the collection editor to add,

remove, or change the properties of the index definitions. At runtime, clear any existing

index definitions, and then use the

AddIndexDef

 method to add each new index

definition. For each new index definition, set the properties of the

TIndexDef

object to

specify the desired attributes of the index.

Note

At design time, you can preload the field definitions and index definitions of an

existing table into the

FieldDefs

 and

IndexDefs

 properties, respectively. Set the

Database

and

TableName

 properties to specify the existing table. Right click the table component

and choose Update Table Definition. This automatically sets the values of the

FieldDefs

and

IndexDefs

 properties to describe the fields and indexes of the existing table. Next,

reset the

Database

 and

TableName

 to specify the table you want to create, cancelling any

prompts to rename the existing table. If you want to store these definitions with the table

component (for example, if your application will be using them to create tables on user’s

systems), set the

StoreDefs

 property to

True

.

Once the table is fully described, you are ready to create it. At design time, right-click the

table component and choose Create Table. At runtime, call the

CreateTable

method to

generate the specified table.

I

M

P

O

R

T

A

N

T

If you create a table that duplicates the name of an existing table, the existing table and

all its data are overwritten by the newly created table. The old table and its data cannot

be recovered.

The following code creates a new table at runtime and associates it with the

EMPLOYEE.GDB

 database

.

 Before it creates the new table, it verifies that the table name

provided does not match the name of an existing table:

var

NewTable: TIBTable;

NewIndexOptions: TIndexOptions;

TableFound: Boolean;

begin

NewTable := TIBTable.Create;

NewIndexOptions := [ixPrimary, ixUnique];

with NewTable do

begin

Active := False;

Database := 'C:\Interbase\Examples\Database\employee.gdb';

TableName := Edit1.Text;

TableType := ttDefault;

FieldDefs.Clear;

CHAPTER 13

WORKING WITH TABLES

188

INTERBASE 6

FieldDefs.Add(Edit2.Text, ftInteger, 0, False);

FieldDefs.Add(Edit3.Text, ftInteger, 0, False);

IndexDefs.Clear;

IndexDefs.Add('PrimaryIndex’, Edit2.Text, NewIndexOptions);

end;

{Now check for prior existence of this table}

TableFound := FindTable(Edit1.Text); {code for FindTable not shown}

if TableFound = True then

 if MessageDlg('Overwrite existing table ' + Edit1.Text + '?',

mtConfirmation,

mbYesNo, 0) = mrYes then

TableFound := False;

if not TableFound then

CreateTable; { create the table}

end;

end;

Synchronizing tables linked to the same database table

If more than one table component is linked to the same database table through their

Database

 and

TableName

 properties and the tables do not share a data source

component, then each table has its own view on the data and its own current record. As

users access records through each table component, the components’ current records will

differ.

You can force the current record for each of these table components to be the same with

the

GotoCurrent

 method.

GotoCurrent

 sets its own table’s current record to the current

record of another table component. For example, the following code sets the current

record of

CustomerTableOne

 to be the same as the current record of

CustomerTableTwo

:

CustomerTableOne.GotoCurrent(CustomerTableTwo);

Tip

If your application needs to synchronize table components in this manner, put the

components in a data module and include the header for the data module in each unit

that accesses the tables.

If you must synchronize table components on separate forms, you must include one

form’s header file in the source unit of the other form, and you must qualify at least one

of the table names with its form name.

For example:

CustomerTableOne.GotoCurrent(Form2.CustomerTableTwo);

CREATING MASTER/DETAIL FORMS

189

Creating master/detail forms

A table component’s

MasterSource

 and

MasterFields

 properties can be used to establish

one-to-many relationships between two tables.

The

MasterSource

 property is used to specify a data source from which the table will get

data for the master table. For instance, if you link two tables in a master/detail

relationship, then the detail table can track the events occurring in the master table by

specifying the master table’s data source component in this property.

The

MasterFields

 property specifies the column(s) common to both tables used to

establish the link. To link tables based on multiple column names, use a semicolon

delimited list:

Table1.MasterFields := 'OrderNo;ItemNo';

To help create meaningful links between two tables, you can use the Field Link designer.

For more information about the Field Link designer, see the online

Delphi User’s Guide

.

Building an example master/detail form

The following steps create a simple form in which a user can scroll through customer

records and display all orders for the current customer. The master table is the

CustomersTable

 table, and the detail table is

SalesTable

.

1.

Place two

TIBTable

,

TIBDatabase

,

TIBTransaction

, and

TDataSource

components in a data module.

2.

Set the properties of the first

TIBDatabase

 component as follows:

·

Name

:

CustDatabase

·

DefaultTransaction

:

CustTransaction

3.

Using the Database Component Editor, set the Database Name to

C:\Program Files\Interbase Corp\Interbase\examples\Database\employee.gdb

, set the User

Name to

SYSDBA

, set the Password to “masterkey”, and uncheck the Login

Prompt box.

4.

Set the properties of the first

TIBTransaction

 component as follows:

·

DefaultDatabase

:

CustDatabase

·

Name

:

CustTransaction

5.

Set the properties of the first

TIBTable

 component as follows:

·

Database

:

CustDatabase

CHAPTER 13

WORKING WITH TABLES

190

INTERBASE 6

·

Transaction

:

CustTransaction

·

TableName

:

CUSTOMER

·

Name

:

CustomersTable

6.

Set the properties of the second

TIBDatabase

 component as follows:

·

Name

:

SalesDatabase

·

DefaultTransaction

:

SalesTransaction

7.

Using the Database Component Editor, set the Database Name to

C:\Program Files\Interbase Corp\Interbase\examples\Database\employee.gdb

, set the User

Name to

SYSDBA

, set the Password to “masterkey”, and uncheck the Login

Prompt box.

8.

Set the properties of the second

TIBTransaction

 component as follows:

·

DefaultDatabase

:

SalesDatabase

·

Name

:

SalesTransaction

9.

Set the properties of the second

TIBTable

 component as follows:

·

Database

:

SalesDatabase

·

Transaction

:

SalesTransaction

·

TableName

:

SALES

·

Name

:

SalesTable

10.

Set the properties of the first

TDataSource

 component as follows:

·

Name

:

CustSource

·

DataSet

:

CustomersTable

11.

Set the properties of the second

TDataSource

 component as follows:

·

Name

:

SalesSource

·

DataSet

:

SalesTable

12.

Place two

TDBGrid

 components on a form.

13.

Choose

File | Use Unit

to specify that the form should use the data module.

14.

Set the

DataSource

 property of the first grid component to

“DataModule2.CustSource”, and set the

DataSource

 property of the second

grid to “DataModule2.SalesSource”.

15.

Set the

MasterSource

 property of

SalesTable

 to “CustSource”. This links the

CUSTOMER

 table (the master table) to the

ORDERS

 table (the detail table).

CREATING MASTER/DETAIL FORMS

191

16.

Double-click the

MasterFields

 property value box in the Object Inspector to

invoke the Field Link Designer to set the following properties:

·

Choose

CustNo

from the IndexFieldNames property’s drop-down list to link the two

tables by the

CustNo

 field.

·

Select

CustNo

 in both the Detail Fields and Master Fields field lists.

·

Click the Add button to add this join condition. In the Joined Fields list,

“CustNo -> CustNo” appears.

·

Choose OK to commit your selections and exit the Field Link Designer.

·

Set the

Active

 properties of

CustomersTable

 and

SalesTable

 to

True

 to display data in

the grids on the form.

·

Compile and run the application.

If you run the application now, you will see that the tables are linked together, and that

when you move to a new record in the

CUSTOMER

 table, you see only those records in the

SALES

 table that belong to the current customer.

CHAPTER 13

WORKING WITH TABLES

192

INTERBASE 6

193

CHAPTER

14

Chapter 14

Working with Queries

This chapter describes the

TIBDataSet

 and

TIBQuery

 dataset components which enable

you to use SQL statements to access data. It assumes you are familiar with the general

discussion of datasets and data sources in

Chapter 12, “

Understanding Datasets

.”

A query component encapsulates an SQL statement that is used in a client application to

retrieve, insert, update, and delete data from one or more database tables. Query

components can be used with remote database servers (Client/Server Suite and Enterprise

edition only) and with ODBC-compliant databases.

Queries for desktop developers

As a desktop developer you are already familiar with the basic table, record, and field

paradigm used by Delphi and InterBase Express. You feel very comfortable using a

TIBTable

 component to gain access to every field in every data record in a dataset. You

know that when you set a table’s

TableName

 property, you specify the database table to

access.

CHAPTER 14

WORKING WITH QUERIES

194

INTERBASE 6

Chances are you have also used a

TIBTable

’s range methods and filter property to limit

the number of records available at any given time in your applications. Applying a range

temporarily limits data access to a block of contiguously indexed records that fall within

prescribed boundary conditions, such as returning all records for employees whose last

names are greater than or equal to “Jones” and less than or equal to “Smith.” Setting a

filter temporarily restricts data access to a set of records that is usually non-contiguous

and that meets filter criteria, such as returning only those customer records that have a

California mailing address.

A query behaves in many ways very much like a table filter, except that you use the query

component’s

SQL

 property (and sometimes the

Params

 property) to identify the records

in a dataset to retrieve, insert, delete, or update. In some ways a query is even more

powerful than a filter because it lets you access:

�

More than one table at a time (called a “join” in SQL).

�

A specified subset of rows

and

 columns in its underlying table(s), rather than always

returning all rows and columns. This improves both performance and security. Memory

is not wasted on unnecessary data, and you can prevent access to fields a user should not

view or modify.

Queries can be verbatim, or they can contain replaceable parameters. Queries that use

parameters are called

parameterized queries

. When you use parameterized queries, the

actual values assigned to the parameters are inserted into the query before you execute,

or run, the query. Using parameterized queries is very flexible, because you can change

a user’s view of and access to data on the fly at runtime without having to alter the SQL

statement.

Most often you use queries to select the data that a user should see in your application,

just as you do when you use a table component. Queries, however, can also perform

update, insert, and delete operations instead of retrieving records for display. When you

use a query to perform insert, update, and delete operations, the query ordinarily does

not return records for viewing. In this way a query differs from a table.

To learn more about using the SQL property to write an SQL statement, see

“

Specifying

the SQL statement to execute

” on page 197

. To learn more about using parameters in

your SQL statements, see

“

Setting parameters

” on page 200

. To learn about executing

a query, see

“

Executing a query

” on page 205

 and the

InterBase 6 Language Reference

.

Queries for server developers

As a server developer you are already familiar with SQL and with the capabilities of your

database server. To you a query is the SQL statement you use to access data. You know

how to use and manipulate this statement and how to use optional parameters with it.

WHEN TO USE TIBDATASET, TIBQUERY, AND TIBSQL

195

The SQL statement and its parameters are the most important parts of a query

component. The query component’s

SQL

 property is used to provide the SQL statement

to use for data access, and the component’s

Params

 property is an optional array of

parameters to bind into the query. However, a query component is much more than an

SQL statement and its parameters. A query component is also the interface between your

client application and the server.

A client application uses the properties and methods of a query component to manipulate

an SQL statement and its parameters, to specify the database to query, to prepare and

unprepare queries with parameters, and to execute the query. A query component’s

methods communicates with the database server, usually through an SQL Links driver for

Delphi Client/Server and Delphi Enterprise.

To learn more about using the

SQL

 property to write an SQL statement, see

“

Specifying

the SQL statement to execute

” on page 197

. To learn more about using parameters in

your SQL statements, see

“

Setting parameters

” on page 200

. To learn about preparing

a query, see

“

Preparing a query

” on page 207

, and to learn more about executing a

query, see

“

Executing a query

” on page 205

.

When to use TIBDataSet, TIBQuery, and TIBSQL

Both

TIBDataSet

,

TIBQuery,

and

 TIBSQL

can execute any valid dynamic SQL statement.

However, when you use

TIBSQL

 to execute

 SELECT

 statements, its results are unbuffered

and therefore uni-directional.

TIBDataSet

and

 TIBQuery

, on the other hand, are intended

primarily for use with

SELECT

 statements. They buffer the result set, so that it is completely

scrollable.

Use

TIBDataSet

 or

TIBQuery

when you require use of data-aware components or a

scrollable result set. In any other case, it is probably best to use

TIBSQL

, which requires

much less overhead.

Using a query component: an overview

To use a query component in an application, follow these steps at design time:

1.

Place a query component from the InterBase tab of the Component palette

in a data module, and set its

Name

 property appropriately for your

application.

2.

Set the

Database

 property of the component to the name of the

TIBDatabase

component to query.

CHAPTER 14

WORKING WITH QUERIES

196

INTERBASE 6

3.

Set the

Transaction

property of the component to the name of the

TIBTransaction

 component to query.

4.

Specify an SQL statement in the

SQL

 property of the component, and

optionally specify any parameters for the statement in the

Params

 property.

For more information, see

“

Specifying the SQL property at design time

”

on page 198

.

5.

If the query data is to be used with visual data controls, place a data source

component from the Data Access tab of the Component palette in the data

module, and set its

DataSet

 property to the name of the query component.

The data source component is used to return the results of the query (called

a

result set

) from the query to data-aware components for display. Connect

data-aware components to the data source using their

DataSource

 and

DataField

 properties.

6.

Activate the query component. For queries that return a result set, use the

Active

 property or the

Open

 method. For queries that only perform an action

on a table and return no result set, use the

ExecSQL

 method.

To execute a query for the first time at runtime, follow these steps:

1.

Close the query component.

2.

Provide an SQL statement in the

SQL

 property if you did not set the

SQL

property at design time, or if you want to change the SQL statement already

provided. To use the design-time statement as is, skip this step. For more

information about setting the

SQL

 property, see

“

Specifying the SQL

statement to execute

” on page 197

.

3.

Set parameters and parameter values in the

Params

 property either directly

or by using the

ParamByName

 method. If a query does not contain

parameters, or the parameters set at design time are unchanged, skip this

step. For more information about setting parameters, see

“

Setting

parameters

” on page 200

.

4.

Call

Prepare

 to bind parameter values into the query. Calling

Prepare

 is

optional, though highly recommended. For more information about

preparing a query, see

“

Preparing a query

” on page 207

.

5.

Call

Open

 for queries that return a result set, or call

ExecSQL

 for queries that

do not return a result set. For more information about opening and executing

a query see

“

Executing a query

” on page 205

.

SPECIFYING THE SQL STATEMENT TO EXECUTE

197

After you execute a query for the first time, then as long as you do not modify the SQL

statement, an application can repeatedly close and reopen or re-execute a query without

preparing it again. For more information about reusing a query, see

“

Executing a query

”

on page 205

.

Specifying the SQL statement to execute

Use the

SQL

 property to specify the SQL query statement to execute. At design time a

query is prepared and executed automatically when you set the query component’s

Active

property to

True

. At runtime, a query is prepared with a call to

Prepare

, and executed

when the application calls the component’s

Open

 or

ExecSQL

 methods.

The

SQL

 property is a

TStrings

 object, which is an array of text strings and a set of

properties, events, and methods that manipulate them. The strings in

SQL

 are

automatically concatenated to produce the SQL statement to execute. You can provide a

statement in as few or as many separate strings as you desire. One advantage to using a

series of strings is that you can divide the SQL statement into logical units (for example,

putting the

WHERE

 clause for a

SELECT

 statement into its own string), so that it is easier to

modify and debug a query.

The SQL statement can be a query that contains hard-coded field names and values, or it

can be a parameterized query that contains replaceable parameters that represent field

values that must be bound into the statement before it is executed. For example, this

statement is hard-coded:

SELECT * FROM Customer WHERE CustNo = 1231

Hard-coded statements are useful when applications execute exact, known queries each

time they run. At design time or runtime you can easily replace one hard-code query with

another hard-coded or parameterized query as needed. Whenever the SQL property is

changed the query is automatically closed and unprepared.

Note

In queries using local SQL, when column names in a query contain spaces or

special characters, the column name must be enclosed in quotes and must be preceded

by a table reference and a period. For example, BIOLIFE.”Species Name”.

A parameterized query contains one or more placeholder parameters, application

variables that stand in for comparison values such as those found in the

WHERE

 clause of

a

SELECT

 statement. Using parameterized queries enables you to change the value without

rewriting the application. Parameter values must be bound into the SQL statement before

it is executed for the first time. Query components do this automatically for you even if

you do not explicitly call the

Prepare

 method before executing a query.

CHAPTER 14

WORKING WITH QUERIES

198

INTERBASE 6

This statement is a parameterized query:

SELECT * FROM Customer WHERE CustNo = :Number

The variable

Number

, indicated by the leading colon, is a parameter that fills in for a

comparison value that must be provided at runtime and that may vary each time the

statement is executed. The actual value for

Number

 is provided in the query component’s

Params

 property.

Tip

It is a good programming practice to provide variable names for parameters that

correspond to the actual name of the column with which it is associated. For example, if

a column name is “Number,” then its corresponding parameter would be “:Number”.

Using matching names ensures that if a query uses its

DataSource

 property to provide

values for parameters, it can match the variable name to valid field names.

Specifying the SQL property at design time

You can specify the

SQL

 property at design time using the String List editor. To invoke the

String List editor for the

SQL

 property:

�

Double-click on the

SQL

 property value column, or

�

Click its ellipsis button.

You can enter an SQL statement in as many or as few lines as you want. Entering a

statement on multiple lines, however, makes it easier to read, change, and debug. Choose

OK to assign the text you enter to the

SQL

 property.

Normally, the

SQL

 property can contain only one complete SQL statement at a time,

although these statements can be as complex as necessary (for example, a

SELECT

statement with a

WHERE

 clause that uses several nested logical operators such as

AND

 and

OR

). InterBase supports “batch” syntax so you can enter multiple statements in the

SQL

property.

Note

With the Client/Server Suite or Enterprise edition, you can also use the SQL Builder

to construct a query based on a visible representation of tables and fields in a database.

To use the SQL Builder, select a query component, right-click it to invoke the context

menu, and choose Graphical Query Editor. To learn how to use the SQL Builder, open it

and use its online help.

SPECIFYING THE SQL STATEMENT TO EXECUTE

199

Specifying an SQL statement at runtime

There are three ways to set the

SQL

 property at runtime. An application can set the

SQL

property directly, it can call the

SQL

 property’s

LoadFromFile

 method to read an SQL

statement from a file, or an SQL statement in a string list object can be assigned to the

SQL

 property.

�

Setting the SQL property directly

To directly set the

SQL

 property at runtime,

1.

Call

Close

 to deactivate the query. Even though an attempt to modify the

SQL

property automatically deactivates the query, it is a good safety measure to

do so explicitly.

2.

If you are replacing the whole SQL statement, call the

Clear

 method for the

SQL

 property to delete its current SQL statement.

3.

If you are building the whole SQL statement from nothing or adding a line

to an existing statement, call the

Add

 method for the

SQL

 property to insert

and append one or more strings to the

SQL

 property to create a new SQL

statement. If you are modifying an existing line use the

SQL

 property with an

index to indicate the line affected, and assign the new value.

4.

Call

Open

 or

ExecSQL

 to execute the query.

The following code illustrates building an entire SQL statement from nothing.

with CustomerQuery do begin

Close; { close the query if it’s active }

with SQL do begin

Clear; { delete the current SQL statement, if any }

Add(‘SELECT * FROM Customer’); { add first line of SQL... }

Add(‘WHERE Company = “Sight Diver”’); { ... and second line }

end;

Open; { activate the query }

end;

The code below demonstrates modifying only a single line in an existing SQL statement.

In this case, the

WHERE

 clause already exists on the second line of the statement. It is

referenced via the

SQL

 property using an index of 1.

CustomerQuery.SQL[1] := ‘WHERE Company = “Kauai Dive Shoppe“’;

CHAPTER 14

WORKING WITH QUERIES

200

INTERBASE 6

Note

If a query uses parameters, you should also set their initial values and call the

Prepare

 method before opening or executing a query. Explicitly calling

Prepare

 is most

useful if the same SQL statement is used repeatedly; otherwise it is called automatically

by the query component.

�

Loading the SQL property from a file

You can also use the

LoadFromFile

 method to assign an SQL statement in a text file to

the

SQL

 property. The

LoadFromFile

 method automatically clears the current contents of

the

SQL

 property before loading the new statement from file. For example:

CustomerQuery.Close;

CustomerQuery.SQL.LoadFromFile(‘c:\orders.txt’);

CustomerQuery.Open;

Note

If the SQL statement contained in the file is a parameterized query, set the initial

values for the parameters and call

Prepare

 before opening or executing the query.

Explicitly calling

Prepare

 is most useful if the same SQL statement is used repeatedly;

otherwise it is called automatically by the query component.

�

Loading the SQL property from string list object

You can also use the

Assign

 method of the

SQL

 property to copy the contents of a string

list object into the

SQL

 property. The

Assign

 method automatically clears the current

contents of the

SQL

 property before copying the new statement. For example, copying an

SQL statement from a

TMemo

 component:

CustomerQuery.Close;

CustomerQuery.SQL.Assign(Memo1.Lines);

CustomerQuery.Open;

Note

If the SQL statement is a parameterized query, set the initial values for the

parameters and call

Prepare

 before opening or executing the query. Explicitly calling

Prepare

 is most useful if the same SQL statement is used repeatedly; otherwise it is called

automatically by the query component.

Setting parameters

A parameterized SQL statement contains parameters, or variables, the values of which can

be varied at design time or runtime. Parameters can replace data values, such as those

used in a

WHERE

clause for comparisons, that appear in an SQL statement. Ordinarily,

parameters stand in for data values passed to the statement. For example, in the following

INSERT

 statement, values to insert are passed as parameters:

SETTING PARAMETERS

201

INSERT INTO Country (Name, Capital, Population)

VALUES (:Name, :Capital, :Population)

In this SQL statement,

:name

,

:capital

, and

:population

 are placeholders for actual values

supplied to the statement at runtime by your application. Before a parameterized query

is executed for the first time, your application should call the

Prepare

 method to bind the

current values for the parameters to the SQL statement. Binding means that the server

allocates resources for the statement and its parameters that improve the execution speed

of the query.

with IBQuery1 do begin

Close;

Unprepare;

ParamByName(‘Name’).AsString := ‘Belize’;

ParamByName(‘Capital’).AsString := ‘Belmopan’;

ParamByName(‘Population’).AsInteger := ‘240000’;

Prepare;

Open;

end;

Supplying parameters at design time

At design time, parameters in the SQL statement appear in the parameter collection

editor. To access the

TParam

 objects for the parameters, invoke the parameter collection

editor, select a parameter, and access the

TParam

 properties in the Object Inspector. If

the SQL statement does not contain any parameters, no

TParam

 objects are listed in the

collection editor. You can only add parameters by writing them in the SQL statement.

To access parameters:

1.

Select the query component.

2.

Click on the ellipsis button for the

Params

 property in Object Inspector.

3.

In the parameter collection editor, select a parameter.

4.

The

TParam

 object for the selected parameter appears in the Object

Inspector.

5.

Inspect and modify the properties for the

TParam

 in the Object Inspector.

For queries that do not already contain parameters (the

SQL

 property is empty or the

existing SQL statement has no parameters), the list of parameters in the collection editor

dialog is empty. If parameters are already defined for a query, then the parameter editor

lists all existing parameters.

CHAPTER 14

WORKING WITH QUERIES

202

INTERBASE 6

Note

The

TIBQuery

 component shares the

TParam

 object and its collection editor with

a number of different components. While the right-click context menu of the collection

editor always contains the Add and Delete options, they are never enabled for

TIBQuery

parameters. The only way to add or delete

TIBQuery

 parameters is in the SQL statement

itself.

As each parameter in the collection editor is selected, the Object Inspector displays the

properties and events for that parameter. Set the values for parameter properties and

methods in the Object Inspector.

The

DataType

 property lists the data type for the parameter selected in the editing dialog.

Initially the type will be

ftUnknown

. You must set a data type for each parameter.

The

ParamType

 property lists the type of parameter selected in the editing dialog.

Initially the type will be

ptUnknown

. You must set a type for each parameter.

Use the

Value

 property to specify a value for the selected parameter at design

 t

ime. This

is not mandatory when parameter values are supplied at runtime. In these cases, leave

Value

 blank.

Supplying parameters at runtime

To create parameters at runtime, you can use the:

�

ParamByName

 method to assign values to a parameter based on its name.

�

Params

 property to assign values to a parameter based on the parameter’s ordinal

position within the SQL statement.

�

Params.ParamValues

property to assign values to one or more parameters in a single

command line, based on the name of each parameter set. This method uses variants and

avoids the need to cast values.

Note

In dialect 3, parameter names passed to functions are case-sensitive.

For all of the examples below, assume the

SQL

 property contains the SQL statement

below. All three parameters used are of data type

ftString

.

INSERT INTO "COUNTRY.DB"

(Name, Capital, Continent)

VALUES (:Name, :Capital, :Continent)

The following code uses

ParamByName

 to assign the text of an edit box to the Capital

parameter:

IBQuery1.ParamByName(‘Capital’).AsString := Edit1.Text;

SETTING PARAMETERS

203

The same code can be rewritten using the

Params

 property, using an index of 1 (the

Capital parameter is the second parameter in the SQL statement):

IBQuery1.Params[1].AsString := Edit1.Text;

The command line below sets all three parameters at once, using the

Params.ParamValues

 property:

IBQuery1.Params.ParamValues[‘Country;Capital;Continent’] :=

VarArrayOf([Edit1.Text, Edit2.Text, Edit3.Text]);

Using a data source to bind parameters

If parameter values for a parameterized query are not bound at design time or specified

at runtime, the query component attempts to supply values for them based on its

DataSource

 property.

DataSource

 specifies a different table or query component that the

query component can search for field names that match the names of unbound

parameters. This search dataset must be created and populated before you create the

query component that uses it. If matches are found in the search dataset, the query

component binds the parameter values to the values of the fields in the current record

pointed to by the data source.

You can create a simple application to understand how to use the

DataSource

 property

to link a query in a master-detail form. Suppose the data module for this application is

called

LinkModule

, and that it contains a query component called

SalesQuery

 that has

the following

SQL

 property:

SELECT Cust_No, Po_Number, Order_Date

FROM Sales

WHERE Cust_No = :Cust_No

The

LinkModule

 data module also contains:

�

A

TIBDatabase

 component named

SalesDatabase

 linked to the

EMPLOYEE.GDB

 database,

SalesQuery

 and

SalesTransaction

.

�

A

TIBTransaction

 component named

SalesTransaction

 linked to

SalesQuery

 and

SalesDatabase

.

�

A

TIBTable

 dataset component named

CustomersTable

 linked to the

CUSTOMER

 table,

CustomersDatabase

 and

CustomersTransaction

.

�

A

TIBDatabase

 component named

CustomersDatabase

 linked to the

EMPLOYEE.GDB

database,

CustomersTable

 and

CustomersTransaction

.

�

A

TIBTransaction

 component named

CustomersTransaction

 linked to

CustomersTable

and

CustomersDatabase

.

CHAPTER 14

WORKING WITH QUERIES

204

INTERBASE 6

�

A

TDataSource

 component named

SalesSource

. The

DataSet

 property of

SalesSource

points to

SalesQuery

.

�

A

TDataSource

 named

CustomersSource

 linked to

CustomersTable

. The

DataSource

property of the

OrdersQuery

 component is also set to

CustomersSource

. This is the

setting that makes

OrdersQuery

 a linked query.

Suppose, too, that this application has a form, named

LinkedQuery

 that contains two data

grids, a

Customers Table

 grid linked to

CustomersSource

, and an

SalesQuery

 grid linked

to

SalesSource

.

FIGURE 14.1

 illustrates how this application appears at design time.

FIGURE 14.1

Sample master/detail query form and data module at design time

Note

If you build this application, create the table component and its data source before

creating the query component.

EXECUTING A QUERY

205

If you compile this application, at runtime the

:Cust_No

 parameter in the SQL statement

for

SalesQuery

 is not assigned a value, so

SalesQuery

 tries to match the parameter by

name against a column in the table pointed to by

CustomersSource

.

CustomersSource

gets its data from

CustomersTable

, which, in turn, derives its data from the

CUSTOMER

table. Because

CUSTOMER

 contains a column called “Cust_No,” the value from the

Cust_No

 field in the current record of the

CustomersTable

 dataset is assigned to the

:Cust_No

 parameter for the

SalesQuery

SQL

 statement. The grids are linked in a

master-detail relationship. At runtime, each time you select a different record in the

Customers Table grid, the

SalesQuery

SELECT

 statement executes to retrieve all orders

based on the current customer number.

Executing a query

After you specify an SQL statement in the SQL property and set any parameters for the

query, you can execute the query. When a query is executed, the server receives and

processes SQL statements from your application. If the query is against local tables, the

SQL engine processes the SQL statement and, for a

SELECT

 query, returns data to the

application.

Note

Before you execute a query for the first time, you may want to call the

Prepare

method to improve query performance.

Prepare

 initializes the database server, each of

which allocates system resources for the query. For more information about preparing a

query, see

“

Preparing a query

” on page 207

.

The following sections describe executing both static and dynamic SQL statements at

design time and at runtime.

Executing a query at design time

To execute a query at design time, set its

Active

 property to

True

 in the Object Inspector.

The results of the query, if any, are displayed in any data-aware controls associated with

the query component.

Note

The

Active

 property can be used only with queries that returns a result set, such as

by the

SELECT

statement.

Executing a query at runtime

To execute a query at runtime, use one of the following methods:

�

Open

 executes a query that returns a result set, such as with the

SELECT

 statement.

CHAPTER 14

WORKING WITH QUERIES

206

INTERBASE 6

�

ExecSQL

 executes a query that does not return a result set, such as with the

INSERT

,

UPDATE

, or

DELETE

 statements.

Note

If you do not know at design time whether a query will return a result set at

runtime, code both types of query execution statements in a

try...except

 block. Put a call

to the

Open

 method in the

try

 clause. This allows you to suppress the error message that

would occur due to using an activate method not applicable to the type of SQL statement

used. Check the type of exception that occurs. If it is other than an

ENoResult

 exception,

the exception occurred for another reason and must be processed. This works because

an action query will be executed when the query is activated with the

Open

 method, but

an exception occurs in addition to that.

try

IBQuery2.Open;

except

on E: Exception do

if not (E is ENoResultSet) then

raise;

end;

�

Executing a query that returns a result set

To execute a query that returns a result set (a query that uses a

SELECT

 statement), follow

these steps:

1.

Call

Close

 to ensure that the query is not already open. If a query is already

open you cannot open it again without first closing it. Closing a query and

reopening it fetches a new version of data from the server.

2.

Call

Open

 to execute the query.

For example:

IBQuery.Close;

IBQuery.Open;{ query returns a result set }

For information on navigating within a result set, see

“

Disabling bi-directional

cursors

” on page 208

. For information on editing and updating a result set, see

“

Working with result sets

” on page 208

.

�

Executing a query without a result set

To execute a query that does not return a result set (a query that has an SQL statement

such as

INSERT

,

UPDATE

, or

DELETE

), call

ExecSQL

 to execute the query.

For example:

IBQuery.ExecSQL; { query does not return a result set }

PREPARING A QUERY

207

Preparing a query

Preparing a query is an optional step that precedes query execution. Preparing a query

submits the SQL statement and its parameters, if any, for parsing, resource allocation, and

optimization. The server, too, may allocate resources for the query. These operations

improve query performance, making your application faster, especially when working

with updatable queries.

An application can prepare a query by calling the

Prepare

 method. If you do not prepare

a query before executing it, then Delphi automatically prepares it for you each time you

call

Open

 or

ExecSQL

. Even though Delphi prepares queries for you, it is better

programming practice to prepare a query explicitly. That way your code is

self-documenting, and your intentions are clear. For example:

CustomerQuery.Close;

if not (CustomerQuery.Prepared) then

CustomerQuery.Prepare;

CustomerQuery.Open;

This example checks the query component’s

Prepared

 property to determine if a query

is already prepared.

Prepared

 is a Boolean value that is

True

 if a query is already

prepared. If the query is not already prepared, the example calls the

Prepare

 method

before calling

Open

.

Unpreparing a query to release resources

The

UnPrepare

 method sets the

Prepared

 property to

False

.

UnPrepare

�

Ensures that the

SQL

 property is prepared prior to executing it again.

�

Notifies the server to release any resources it has allocated for the statement.

To unprepare a query, call

CustomerQuery.UnPrepare;

When you change the text of the

SQL

 property for a query, the query component

automatically closes and unprepares the query.

Improving query performance

Following are steps you can take to improve query execution speed:

CHAPTER 14

WORKING WITH QUERIES

208

INTERBASE 6

�

Set the

TIBQuery

 component’s

UniDirectional

 property to

True

 if you do not need to

navigate backward through a result set (SQL-92 does not, itself, permit backward

navigation through a result set).

�

Prepare the query before execution. This is especially helpful when you plan to execute

a single query several times. You need only prepare the query once, before its first use.

For more information about query preparation, see

“

Preparing a query

” on page 207

.

Disabling bi-directional cursors

The

UniDirectional

 property determines whether or not bi-directional cursors are

enabled for a

TIBQuery

 component. When a query returns a result set, it also receives a

cursor, or pointer to the first record in that result set. The record pointed to by the cursor

is the currently active record. The current record is the one whose field values are

displayed in data-aware components associated with the result set’s data source.

UniDirectional

 is

False

 by default, meaning that the cursor for a result set can navigate

both forward and backward through its records. Bi-directional cursor support requires

some additional processing overhead, and can slow some queries. To improve query

performance, you may be able to set

UniDirectional

 to

True

, restricting a cursor to

forward movement through a result set.

If you do not need to be able to navigate backward through a result set, you can set

UniDirectional

 to

True

 for a query. Set

UniDirectional

 before preparing and executing a

query. The following code illustrates setting

UniDirectional

 prior to preparing and

executing a query:

if not (CustomerQuery.Prepared) then begin

CustomerQuery.UniDirectional := True;

CustomerQuery.Prepare;

end;

CustomerQuery.Open; { returns a result set with a one-way cursor }

Working with result sets

By default, the result set returned by a query is read-only. Your application can display

field values from the result set in data-aware controls, but users cannot edit those values.

To enable editing of a result set, your application must use a

TIBUpdateSQL

 component.

WORKING WITH RESULT SETS

209

Updating a read-only result set

Applications can update data returned in a read-only result set if they are using cached

updates. To update a read-only result set associated with a query component:

1.

Add a

TIBUpdateSQL

 component to the data module in your application to

essentially give you the ability to post updates to a read-only dataset.

2.

Enter the SQL update statement for the result set to the update component’s

ModifySQL

,

InsertSQL

, or

DeleteSQL

 properties. To do this more easily, right

click on the

TIBUpdateSQL

 component to access the UpdateSQL Editor

.

3.

210

INTERBASE 6

211

CHAPTER

15

Chapter 15

Working with Stored

Procedures

This chapter describes how to use stored procedures in your database applications. A

stored procedure is a self-contained program written in the procedure and trigger

language specific to the database system used. There are two fundamental types of stored

procedures. The first type retrieves data (like with a

SELECT

 query). The retrieved data can

be in the form of a dataset consisting of one or more rows of data, divided into one or

more columns. Or the retrieved data can be in the form of individual pieces of

information. The second type does not return data, but performs an action on data stored

in the database (like with a

DELETE

 statement).

InterBase servers return all data (datasets and individual pieces of information)

exclusively with output parameters.

In InterBase Express applications, access to stored procedures is provided by the

TIBStoredProc

 and

TIBQuery

 components. The choice of which to use for the access is

predicated on how the stored procedure is coded, how data is returned (if any), and the

database system used. The

TIBStoredProc

 and

TIBQuery

 components are both

descendants of

TIBCustomDataSet

, and inherit behaviors from

TIBCustomDataSet

. For

more information about

TIBCusomDataSet

, see

Chapter 12, “

Understanding

Datasets

.”

CHAPTER 15

WORKING WITH STORED PROCEDURES

212

INTERBASE 6

A stored procedure component is used to execute stored procedures that do not return

any data, to retrieve individual pieces of information in the form of output parameters,

and to relay a returned dataset to an associated data source component. The stored

procedure component allows values to be passed to and return from the stored procedure

through parameters, each parameter defined in the

Params

 property. The stored

procedure component is the preferred means for using stored procedures that either do

not return any data or only return data through output parameters.

A query component is primarily used to run InterBase stored procedures that only return

datasets via output parameters. The query component can also be used to execute a

stored procedure that does not return a dataset or output parameter values.

Use parameters to pass distinct values to or return values from a stored procedure. Input

parameter values are used in such places as the

WHERE

 clause of a

SELECT

 statement in a

stored procedure. An output parameter allows a stored procedure to pass a single value

to the calling application. Some stored procedures return a result parameter. See

“Input

parameters”

 and

“Output parameters”

 in the

InterBase 6 Language Reference

 and

“Working with Stored Procedures”

 in the

InterBase 6 Data Definition Guide

for more

information.

When should you use stored procedures?

If your server defines stored procedures, you should use them if they apply to the needs

of your application. A database server developer creates stored procedures to handle

frequently-repeated database-related tasks. Often, operations that act upon large

numbers of rows in database tables—or that use aggregate or mathematical functions—

are candidates for stored procedures. If stored procedures exist on the remote database

server your application uses, you should take advantage of them in your application.

Chances are you need some of the functionality they provide, and you stand to improve

the performance of your database application by:

�

Taking advantage of the server’s usually greater processing power and speed.

�

Reducing the amount of network traffic since the processing takes place on the server

where the data resides.

USING A STORED PROCEDURE

213

For example, consider an application that needs to compute a single value: the standard

deviation of values over a large number of records. To perform this function in your

application, all the values used in the computation must be fetched from the server,

resulting in increased network traffic. Then your application must perform the

computation. Because all you want in your application is the end result—a single value

representing the standard deviation—it would be far more efficient for a stored

procedure on the server to read the data stored there, perform the calculation, and pass

your application the single value it requires.

See

“Working with Stored Procedures”

 in the

InterBase 6 Data Definition Guide

for

more information.

Using a stored procedure

How a stored procedure is used in a Delphi application depends on how the stored

procedure was coded, whether and how it returns data, the specific database server used,

or a combination of these factors.

In general terms, to access a stored procedure on a server, an application must:

1.

Instantiate a

TIBStoredProc

 component and optionally associate it with a

stored procedure on the server. Or instantiate a

TIBQuery

 component and

compose the contents of its

SQL

 property to perform either a

SELECT

 query

against the stored procedure or an

EXECUTE

 command, depending on

whether the stored procedure returns a result set. For more information

about creating a

TIBStoredProc

, see

“

Creating a stored procedure

component

” on page 214

. For more information about creating a

TIBQuery

component, see

Chapter 14, “

Working with Queries

”

.

2.

Provide input parameter values to the stored procedure component, if

necessary. When a stored procedure component is not associated with stored

procedure on a server, you must provide additional input parameter

information, such as parameter names and data types. For more information

about providing input parameter information, see

“

Setting parameter

information at design time

” on page 225

.

3.

Execute the stored procedure.

4.

Process any result and output parameters. As with any other dataset

component, you can also examine the result dataset returned from the server.

For more information about output and result parameters, see

“

Using output

parameters

” on page 222

and

 “

Using the result parameter

” on page 224.

For information about viewing records in a dataset, see

“

Using stored

procedures that return result sets

” on page 216

.

CHAPTER 15

WORKING WITH STORED PROCEDURES

214

INTERBASE 6

Creating a stored procedure component

To create a stored procedure component for a stored procedure on a database server:

1.

Place stored procedure, database, and transaction components from the

InterBase page of the Component palette in a data module.

2.

Set the

Database

 and

Transaction

 properties of the stored procedure

component to the names of the database and transaction components.

3.

Set the

DatabaseName

 property in the

Database

 component.

Normally you should specify the

DatabaseName

 property, but if the server database

against which your application runs is currently unavailable, you can still create and

set up a stored procedure component by omitting the

DatabaseName

 and supplying

a stored procedure name and input, output, and result parameters at design time. For

more information about input parameters, see

“

Using input parameters

” on page

222

. For more information about output parameters, see

“

Using output parameters

”

on page 222

. For more information about result parameters, see

“

Using the result

parameter

” on page 224

4.

Optionally set the

StoredProcName

 property to the name of the stored

procedure to use. If you provided a value for the

Database

 property, and the

Database

 component is connected to the database, then you can select a

stored procedure name from the drop-down list for the property. A single

TIBStoredProc

 component can be used to execute any number of stored

procedures by setting the

StoredProcName

 property to a valid name in the

application. It may not always be desirable to set the

StoredProcName

 at

design time.

5.

Double-click the

Params

 property value box to invoke the StoredProc

Parameters editor to examine input and output parameters for the stored

procedure. If you did not specify a name for the stored procedure in Step 4,

or you specified a name for the stored procedure that does not exist on the

server specified in the

DatabaseName

 property in Step 3, then when you

invoke the parameters editor, it is empty.

See

“Working with Stored Procedures”

 in the

InterBase 6 Data Definition Guide

for

more information.

Note

If you do not specify the

Database

 property in Step 2, then you must use the

StoredProc Parameters editor to set up parameters at design time. For information about

setting parameters at design time, see

“

Setting parameter information at design time

”

on page 225

.

USING A STORED PROCEDURE

215

Creating a stored procedure

Ordinarily, stored procedures are created when the application and its database is

created, using tools supplied by InterBase. However, it is possible to create stored

procedures at runtime. For more information, see

“Creating procedures”

 in the

InterBase 6 Data Definition Guide

.

A stored procedure can be created by an application at runtime using an SQL statement

issued from a

TIBQuery

 component, typically with a

CREATE PROCEDURE

 statement. If

parameters are used in the stored procedure, set the

ParamCheck

 property of the

TIBQuery

 to

False

. This prevents the

TIBQuery

 from mistaking the parameter in the new

stored procedure from a parameter for the

TIBQuery

 itself.

Note

You can also use the SQL Explorer to examine, edit, and create stored procedures

on the server.

After the SQL property has been populated with the statement to create the stored

procedure, execute it by invoking the

ExecSQL

 method.

with IBQuery1 do begin

ParamCheck := False;

with SQL do begin

Clear;

Add(‘CREATE PROCEDURE GET_MAX_EMP_NAME’);

Add(‘RETURNS (Max_Name CHAR(15))’);

Add(‘AS’);

Add(‘BEGIN’);

Add(‘ SELECT MAX(LAST_NAME)’);

Add(‘ FROM EMPLOYEE’);

Add(‘ INTO :Max_Name;’);

Add(‘ SUSPEND;’);

Add(‘END’);

end;

ExecSQL;

end;

Preparing and executing a stored procedure

To use a stored procedure, you can optionally prepare it, and then execute it.

You can prepare a stored procedure at:

�

Design time, by choosing OK in the Parameters editor.

�

Runtime, by calling the

Prepare

 method of the stored procedure component.

CHAPTER 15

WORKING WITH STORED PROCEDURES

216

INTERBASE 6

For example, the following code prepares a stored procedure for execution:

IBStoredProc1.Prepare;

Note

If your application changes parameter information at runtime, you should prepare

the procedure again.

To execute a prepared stored procedure, call the

ExecProc

 method for the stored

procedure component. The following code illustrates code that prepares and executes a

stored procedure:

IBStoredProc1.Params[0].AsString := Edit1.Text;

IBStoredProc1.Prepare;

IBStoredProc1.ExecProc;

Note

If you attempt to execute a stored procedure before preparing it, the stored

procedure component automatically prepares it for you, and then unprepares it after it

executes. If you plan to execute a stored procedure a number of times, it is more efficient

to call

Prepare

 yourself, and then only call

UnPrepare

 once, when you no longer need

to execute the procedure.

When you execute a stored procedure, it can return all or some of these items:

�

A dataset consisting of one or more records that can be viewed in data-aware controls

associated with the stored procedure through a data source component.

�

Output parameters.

�

A result parameter that contains status information about the stored procedure’s

execution.

Using stored procedures that return result sets

Stored procedures that return data in datasets, rows and columns of data, should most

often be used with a query component. However, a stored procedure component can also

serve this purpose.

�

Retrieving a result set with a TIBQuery

To retrieve a dataset from a stored procedure using a

TIBQuery

 component:

1.

Instantiate a query component.

2.

In the

TIBQuery.SQL

 property, write a

SELECT

 query that uses the name of the

stored procedure instead of a table name.

USING A STORED PROCEDURE

217

3.

If the stored procedure requires input parameters, express the parameter

values as a comma-separated list, enclosed in parentheses, following the

procedure name.

4.

Set the

Active

 property to

True

 or invoke the

Open

 method.

For example, the InterBase stored procedure

GET_EMP_PROJ

, below, accepts a value using

the input parameter

EMP_NO

and returns a dataset through the output parameter

PROJ_ID

.

CREATE PROCEDURE GET_EMP_PROJ (EMP_NO SMALLINT)

RETURNS (PROJ_ID CHAR(5))

AS

BEGIN

FOR SELECT PROJ_ID

FROM EMPLOYEE_PROJECT

WHERE EMP_NO = :EMP_NO

INTO :PROJ_ID

DO

SUSPEND;

END

The SQL statement issued from a

TIBQuery

 to use this stored procedure would be:

SELECT *

FROM GET_EMP_PROJ(52)

Using stored procedures that return data using parameters

Stored procedures can be composed to retrieve individual pieces of information, as

opposed to whole rows of data, through parameters. For instance, a stored procedure

might retrieve the maximum value for a column, add one to that value, and then return

that value to the application. Such stored procedures can be used and the values

inspected using either a

TIBQuery

 or a

TIBStoredProc

 component. The preferred method

for retrieving parameter values is with a

TIBStoredProc

.

�

Retrieving individual values with a TIBQuery

Parameter values retrieved via a

TIBQuery

 component take the form of a single-row

dataset, even if only one parameter is returned by the stored procedure. To retrieve

individual values from stored procedure parameters using a

TIBQuery

 component:

CHAPTER 15

WORKING WITH STORED PROCEDURES

218

INTERBASE 6

1.

Instantiate a query component.

2.

In the

TIBQuery.SQL

 property, write a

SELECT

 query that uses the name of the

stored procedure instead of a table name. The

SELECT

 clause of this query can

specify the parameter by its name, as if it were a column in a table, or it can

simply use the * operator to retrieve all parameter values.

3.

If the stored procedure requires input parameters, express the parameter

values as a comma-separated list, enclosed in parentheses, following the

procedure name.

4.

Set the

Active

 property to

True

 or invoke the

Open

 method.

For example, the InterBase stored procedure

GET_HIGH_EMP_NAME

, below, retrieves the

alphabetically last value in the

LAST_NAME

 column of a table named

EMPLOYEE.

 The stored

procedure returns this value in the output parameter

High_Last_Name

.

CREATE PROCEDURE GET_HIGH_EMP_NAME

RETURNS (High_Last_Name CHAR(15))

AS

BEGIN

SELECT MAX(LAST_NAME)

FROM EMPLOYEE

INTO :High_Last_Name;

SUSPEND;

END

The SQL statement issued from a

TIBQuery

 to use this stored procedure would be:

SELECT High_Last_Name

FROM GET_HIGH_EMP_NAME

�

Retrieving individual values with a TIBStoredProc

To retrieve individual values from stored procedure output parameters using a

TIBStoredProc

 component:

1.

Instantiate a stored procedure component.

2.

In the

StoredProcName

 property, specify the name of the stored procedure.

3.

If the stored procedure requires input parameters, supply values for the

parameters using the

Params

 property or

ParamByName

 method.

4.

Invoke the

ExecProc

 method.

5.

Inspect the values of individual output parameters using the

Params

property or

ParamByName

 method.

USING A STORED PROCEDURE

219

For example, the InterBase stored procedure

GET_HIGH_EMP_NAME

, below, retrieves the

alphabetically last value in the

LAST_NAME

 column of a table named

EMPLOYEE

. The stored

procedure returns this value in the output parameter

High_Last_Name

.

CREATE PROCEDURE GET_HIGH_EMP_NAME

RETURNS (High_Last_Name CHAR(15))

AS

BEGIN

SELECT MAX(LAST_NAME)

FROM EMPLOYEE

INTO :High_Last_Name;

SUSPEND;

END

The Delphi code to get the value in the High_Last_Name output parameter and store it

to the

Text

 property of a

TEdit

 component is:

with StoredProc1 do begin

StoredProcName := 'GET_HIGH_EMP_NAME';

ExecProc;

Edit1.Text := ParamByName('High_Last_Name').AsString;

end;

Using stored procedures that perform actions on data

Stored procedures can be coded such that they do not return any data at all, and only

perform some action in the database. SQL operations involving the

INSERT

 and

DELETE

statements are good examples of this type of stored procedure. For instance, instead of

allowing a user to delete a row directly, a stored procedure might be used to do so. This

would allow the stored procedure to control what is deleted and also to handle any

referential integrity aspects, such as a cascading delete of rows in dependent tables.

�

Executing an action stored procedure with a TIBQuery

To execute an action stored procedure using a

TIBQuery

 component:

1.

Instantiate a query component.

2.

In the

TIBQuery.SQL

 property, include the command necessary to execute

the stored procedure and the stored procedure name. (The command to

execute a stored procedure can vary from one database system to another. In

InterBase, the command is

EXECUTE PROCEDURE

.)

CHAPTER 15

WORKING WITH STORED PROCEDURES

220

INTERBASE 6

3.

If the stored procedure requires input parameters, express the parameter

values as a comma-separated list, enclosed in parentheses, following the

procedure name.

4.

Invoke the

TIBQuery.ExecSQL

 method.

For example, the InterBase stored procedure

ADD_EMP_PROJ

, below, adds a new row to

the table

EMPLOYEE_PROJECT

. No dataset is returned and no individual values are returned

in output parameters.

CREATE PROCEDURE ADD_EMP_PROJ (EMP_NO SMALLINT, PROJ_ID CHAR(5))

AS

BEGIN

BEGIN

INSERT INTO EMPLOYEE_PROJECT (EMP_NO, PROJ_ID)

VALUES (:EMP_NO, :PROJ_ID);

WHEN SQLCODE -530 DO

EXCEPTION UNKNOWN_EMP_ID;

END

SUSPEND;

END

The SQL statement issued from a

TIBQuery

 to execute this stored procedure would be:

EXECUTE PROCEDURE ADD_EMP_PROJ(20, “GUIDE”)

�

Executing an action stored procedure with a TIBStoredProc

To retrieve individual values from stored procedure output parameters using a

TIBStoredProc

 component:

1.

Instantiate a stored procedure component.

2.

In the

StoredProcName

 property, specify the name of the stored procedure.

3.

If the stored procedure requires input parameters, supply values for the

parameters using the

Params

 property or

ParamByName

 method.

4.

Invoke the

ExecProc

 method.

For example, the InterBase stored procedure

ADD_EMP_PROJ

, below, adds a new row to

the table

EMPLOYEE_PROJECT

. No dataset is returned and no individual values are returned

in output parameters.

CREATE PROCEDURE ADD_EMP_PROJ (EMP_NO SMALLINT, PROJ_ID CHAR(5))

AS

BEGIN

BEGIN

INSERT INTO EMPLOYEE_PROJECT (EMP_NO, PROJ_ID)

UNDERSTANDING STORED PROCEDURE PARAMETERS

221

VALUES (:EMP_NO, :PROJ_ID);

WHEN SQLCODE -530 DO

EXCEPTION UNKNOWN_EMP_ID;

END

SUSPEND;

END

The Delphi code to execute the

ADD_EMP_PROJ

 stored procedure is:

with StoredProc1 do begin

StoredProcName := ‘ADD_EMP_PROJ’;

ExecProc;

end;

Understanding stored procedure parameters

There are four types of parameters that can be associated with stored procedures:

�

Input parameters

, used to pass values to a stored procedure for processing.

�

Output parameters

, used by a stored procedure to pass return values to an application.

�

Input/output parameters

, used to pass values to a stored procedure for processing, and

used by the stored procedure to pass return values to the application.

�

A

result parameter

, used to return an error or status value to an application. A stored

procedure can only return one result parameter.

Whether a stored procedure uses a particular type of parameter depends both on the

general language implementation of stored procedures on your database server and on

a specific instance of a stored procedure. For example, individual stored procedures on

any server may either be implemented using input parameters, or may not be. On the

other hand, some uses of parameters are server-specific. For example, the InterBase

implementation of a stored procedure never returns a result parameter.

Access to stored procedure parameters is provided by

TParam

 objects in the

TIBStoredProc.Params

 property. If the name of the stored procedure is specified at design

time in the

StoredProcName

 property, a

TParam

 object is automatically created for each

parameter and added to the

Params

 property. If the stored procedure name is not

specified until runtime, the

TParam

 objects need to be programmatically created at that

time. Not specifying the stored procedure and manually creating the

TParam

 objects

allows a single

TIBStoredProc

 component to be used with any number of available stored

procedures.

CHAPTER 15

WORKING WITH STORED PROCEDURES

222

INTERBASE 6

Note

Some stored procedures return a dataset in addition to output and result

parameters. Applications can display dataset records in data-aware controls, but must

separately process output and result parameters. For more information about displaying

records in data-aware controls, see

“

Using stored procedures that return result sets

”

on page 216

.

Using input parameters

Application use input parameters to pass singleton data values to a stored procedure.

Such values are then used in SQL statements within the stored procedure, such as a

comparison value for a

WHERE

 clause. If a stored procedure requires an input parameter,

assign a value to the parameter prior to executing the stored procedure.

If a stored procedure returns a dataset and is used through a

 SELECT

 query in a

TIBQuery

component, supply input parameter values as a comma-separated list, enclosed in

parentheses, following the stored procedure name. For example, the SQL statement

below retrieves data from a stored procedure named

GET_EMP_PROJ

 and supplies an input

parameter value of 52.

SELECT PROJ_ID

FROM GET_EMP_PROJ(52)

If a stored procedure is executed with a

TIBStoredProc

 component, use the

Params

property or the

ParamByName

 method access to set each input parameter. Use the

TParam

 property appropriate for the data type of the parameter, such as the

TParam.AsString

 property for a CHAR type parameter. Set input parameter values prior

to executing or activating the

TIBStoredProc

 component. In the example below, the

EMP_NO parameter (type

SMALLINT

) for the stored procedure

GET_EMP_PROJ

 is assigned

the value 52.

with IBStoredProc1 do begin

ParamByName(‘EMP_NO’).AsSmallInt := 52;

ExecProc;

end;

Using output parameters

Stored procedures use output parameters to pass singleton data values to an application

that calls the stored procedure. Output parameters are not assigned values except by the

stored procedure and then only after the stored procedure has been executed. Inspect

output parameters from an application to retrieve its value after invoking the

TIBStoredProc.ExecProc

 method.

UNDERSTANDING STORED PROCEDURE PARAMETERS

223

Use the

TIBStoredProc.Params

 property or

TIBStoredProc.ParamByName

 method to

reference the

TParam

 object that represents a parameter and inspect its value. For

example, to retrieve the value of a parameter and store it into the

Text

 property of a

TEdit

component:

with IBStoredProc1 do begin

ExecProc;

Edit1.Text := Params[0].AsString;

end;

Most stored procedures return one or more output parameters. Output parameters may

represent the sole return values for a stored procedure that does not also return a dataset,

they may represent one set of values returned by a procedure that also returns a dataset,

or they may represent values that have no direct correspondence to an individual record

in the dataset returned by the stored procedure. Each server’s implementation of stored

procedures differs in this regard.

Using input/output parameters

Input/output parameters serve both function that input and output parameters serve

individually. Applications use an input/output parameter to pass a singleton data value

to a stored procedure, which in turn reuses the input/output parameter to pass a

singleton data value to the calling application. As with input parameters, the input value

for an input/output parameter must be set before the using stored procedure or query

component is activated. Likewise, the output value in an input/output parameter will not

be available until after the stored procedure has been executed.

In the example Oracle stored procedure below, the parameter IN_OUTVAR is an

input/output parameter.

CREATE OR REPLACE PROCEDURE UPDATE_THE_TABLE (IN_OUTVAR IN OUT

INTEGER)

AS

BEGIN

UPDATE ALLTYPETABLE

SET NUMBER82FLD = IN_OUTVAR

WHERE KEYFIELD = 0;

IN_OUTVAR:=1;

END UPDATE_THE_TABLE;

In the Delphi program code below,

IN_OUTVAR

 is assigned an input value, the stored

procedure executed, and then the output value in

IN_OUTVAR

 is inspected and stored to

a memory variable.

CHAPTER 15

WORKING WITH STORED PROCEDURES

224

INTERBASE 6

with StoredProc1 do begin

ParamByName(‘IN_OUTVAR’).AsInteger := 103;

ExecProc;

IntegerVar := ParamByName(‘IN_OUTVAR’).AsInteger;

end;

Using the result parameter

In addition to returning output parameters and a dataset, some stored procedures also

return a single result parameter. The result parameter is usually used to indicate an error

status or the number of records processed base on stored procedure execution. See your

database server’s documentation to determine if and how your server supports the result

parameter. Result parameters are not assigned values except by the stored procedure and

then only after the stored procedure has been executed. Inspect a result parameter from

an application to retrieve its value after invoking the

TIBStoredProc.ExecProc

 method.

Use the

TIBStoredProc.Params

 property or

TIBStoredProc.ParamByName

 method to

reference the TParam object that represents the result parameter and inspect its value.

DateVar := StoredProc1.ParamByName('MyOutputParam').AsDate;

Accessing parameters at design time

If you connect to a remote database server by setting the

Database

 and

StoredProcName

properties at design time, then you can use the StoredProc Parameters editor to view the

names and data types of each input parameter, and you can set the values for the input

parameters to pass to the server when you execute the stored procedure.

I

M

P

O

R

T

A

N

T

Do not change the names or data types for input parameters reported by the server, or

when you execute the stored procedure an exception is raised.

Some servers do not report parameter names or data types. In these cases, use the SQL

Explorer or IBConsole to look at the source code of the stored procedure on the server

to determine input parameters and data types. See the SQL Explorer online help for more

information.

At design time, if you do not receive a parameter list from a stored procedure on a remote

server (for example because you are not connected to a server), then you must invoke

the

StoredProc

 Parameters editor, list each required input parameter, and assign each a

data type and a value. For more information about using the

StoredProc

 Parameters

editor to create parameters, see

“

Setting parameter information at design time

” on

page 225

.

UNDERSTANDING STORED PROCEDURE PARAMETERS

225

Setting parameter information at design time

You can invoke the

StoredProc

 parameter collection editor at design time to set up

parameters and their values.

The parameter collection editor allows you to set up stored procedure parameters. If you

set the

Database

 and

StoredProcName

 properties of the

TIBStoredProc

 component at

design time, all existing parameters are listed in the collection editor. If you do not set

both of these properties, no parameters are listed and you must add them manually.

Additionally, some database types do not return all parameter information, like types. For

these database systems, use the SQL Explorer utility to inspect the stored procedures,

determine types, and then configure parameters through the collection editor and the

Object Inspector. The steps to set up stored procedure parameters at design time are:

1.

Optionally set the

Database

 and

StoredProcName

 properties.

2.

In the Object Inspector, invoke the parameter collection editor by clicking on

the ellipsis button in the

Params

 field.

3.

If the

Database

 and

StoredProcName

 properties are not set, no parameters

appear in the collection editor. Manually add parameter definitions by

right-clicking within the collection editor and selecting Add from the context

menu.

4.

Select parameters individually in the collection editor to display their

properties in the Object Inspector.

5.

If a type is not automatically specified for the

ParamType

 property, select a

parameter type (

Input

,

Output

,

Input/Output

, or

Result

) from the property’s

drop-down list.

6.

If a data type is not automatically specified for the

DataType

 property, select

a data type from the property’s drop-down list.

7.

Use the

Value

 property to optionally specify a starting value for an input or

input/output parameter.

Right-clicking in the parameter collection editor invokes a context menu for operating on

parameter definitions. Depending on whether any parameters are listed or selected,

enabled options include: adding new parameters, deleting existing parameters, moving

parameters up and down in the list, and selecting all listed parameters.

You can edit the definition for any

TParam

 you add, but the attributes of the

TParam

objects you add must match the attributes of the parameters for the stored procedure on

the server. To edit the

TParam

 for a parameter, select it in the parameter collection editor

and edit its property values in the Object Inspector.

CHAPTER 15

WORKING WITH STORED PROCEDURES

226

INTERBASE 6

Note

You can never set values for output and result parameters. These types of

parameters have values set by the execution of the stored procedure.

Creating parameters at runtime

If the name of the stored procedure is not specified in StoredProcName until runtime, no

TParam

 objects will be automatically created for parameters and they must be created

programmatically. This can be done using the

TParam.Create

 method or the

TParams.AddParam

 method.

For example, the InterBase stored procedure

GET_EMP_PROJ

, below, requires one input

parameter (

EMP_NO

) and one output parameter (

PROJ_ID

).

CREATE PROCEDURE GET_EMP_PROJ (EMP_NO SMALLINT)

RETURNS (PROJ_ID CHAR(5))

AS

BEGIN

FOR SELECT PROJ_ID

FROM EMPLOYEE_PROJECT

WHERE EMP_NO = :EMP_NO

INTO :PROJ_ID

DO

SUSPEND;

END

The Delphi code to associate this stored procedure with a

TIBStoredProc

 named

StoredProc1

 and create

TParam

 objects for the two parameters using the

TParam.Create

method is:

var

P1, P2: TParam;

begin

{...}

with StoredProc1 do begin

StoredProcName := 'GET_EMP_PROJ';

Params.Clear;

P1 := TParam.Create(Params, ptInput);

P2 := TParam.Create(Params, ptOutput);

try

Params[0].Name := ‘EMP_NO’;

Params[1].Name := ‘PROJ_ID’;

ParamByname(‘EMP_NO’).AsSmallInt := 52;

ExecProc;

VIEWING PARAMETER INFORMATION AT DESIGN TIME

227

Edit1.Text := ParamByname(‘PROJ_ID’).AsString;

finally

P1.Free;

P2.Free;

end;

end;

{...}

end;

Viewing parameter information at design time

If you have access to a database server at design time, there are two ways to view

information about the parameters used by a stored procedure:

�

Invoke the SQL Explorer to view the source code for a stored procedure on a remote

server. The source code includes parameter declarations that identify the data types and

names for each parameter.

�

Use the Object Inspector to view the property settings for individual

TParam

 objects.

You can use the SQL Explorer to examine stored procedures on your database servers. If

you are using ODBC drivers you cannot examine stored procedures with the SQL

Explorer. While using the SQL Explorer is not always an option, it can sometimes provide

more information than the Object Inspector viewing

TParam

 objects. The amount of

information returned about a stored procedure in the Object Inspector depends on your

database server.

To view individual parameter definitions in the Object Inspector:

1.

Select the stored procedure component.

2.

Set the

Database

 property of a stored procedure component to the

Database

property of a

TIBDatabase

.

3.

Set the

StoredProcName

 property to the name of the stored procedure.

4.

Click the ellipsis button in for the

TIBStoredProc.Params

 property in the

Object Inspector.

5.

Select individual parameters in the collection editor to view their property

settings in the Object Inspector.

For some servers some or all parameter information may not be accessible.

CHAPTER 15

WORKING WITH STORED PROCEDURES

228

INTERBASE 6

In the Object Inspector, when viewing individual

TParam

 objects, the

ParamType

property indicates whether the selected parameter is an input, output, input/output, or

result parameter. The

DataType

 property indicates the data type of the value the

parameter contains, such as string, integer, or date. The

Value

 edit box enables you to

enter a value for a selected input parameter.

For more about setting parameter values, see

“

Setting parameter information at

design time

” on page 225

.

Note

You can never set values for output and result parameters. These types of

parameters have values set by the execution of the stored procedure.

229

CHAPTER

16

Chapter 16

Working with Cached

Updates

Cached updates enable you to retrieve data from a database, cache and edit it locally, and

then apply the cached updates to the database as a unit. When cached updates are

enabled, updates to a dataset (such as posting changes or deleting records) are stored in

an internal cache instead of being written directly to the dataset’s underlying table. When

changes are complete, your application calls a method that writes the cached changes to

the database and clears the cache.

This chapter describes when and how to use cached updates. It also describes the

TIBUpdateSQL

 component that can be used in conjunction with cached updates to update

virtually any dataset, particularly datasets that are not normally updatable.

Deciding when to use cached updates

Cached updates are primarily intended to reduce data access contention on remote

database servers by:

�

Minimizing transaction times.

�

Minimizing network traffic.

CHAPTER 16

WORKING WITH CACHED UPDATES

230

INTERBASE 6

While cached updates can minimize transaction times and drastically reduce network

traffic, they may not be appropriate for all database client applications that work with

remote servers. There are three areas of consideration when deciding to use cached

updates:

�

Cached data is local to your application, and is not under transaction control. In a busy

client/server environment this has two implications for your application:

·

Other applications can access and change the actual data on the server while your users

edit their local copies of the data.

·

Other applications cannot see any data changes made by your application until it

applies all its changes.

�

In master/detail relationships managing the order of applying cached updates can be

tricky. This is particularly true when there are nested master/detail relationships where

one detail table is the master table for yet another detail table and so on.

�

Applying cached updates to read-only, query-based datasets requires use of update

objects.

The InterBase Express components provide cached update methods and transaction

control methods you can use in your application code to handle these situations, but you

must take care that you cover all possible scenarios your application is likely to encounter

in your working environment.

Using cached updates

This section provides a basic overview of how cached updates work in an application. If

you have not used cached updates before, this process description serves as a guideline

for implementing cached updates in your applications.

To use cached updates, the following order of processes must occur in an application:

1.

Enable cached updates

.

 Enabling cached updates causes a read-only

transaction that fetches as much data from the server as is necessary for

display purposes and then terminates. Local copies of the data are stored in

memory for display and editing. For more information about enabling and

disabling cached updates, see

“

Enabling and disabling cached updates

” on

page 231

.

2.

Display and edit the local copies of records, permit insertion of new records,

and support deletions of existing records. Both the original copy of each

record and any edits to it are stored in memory. For more information about

displaying and editing when cached updates are enabled, see

“

Applying

cached updates

” on page 233

.

USING CACHED UPDATES

231

3.

Fetch additional records as necessary. As a user scrolls through records,

additional records are fetched as needed. Each fetch occurs within the

context of another short duration, read-only transaction. (An application can

optionally fetch all records at once instead of fetching many small batches of

records.) For more information about fetching all records, see

“

Fetching

records

” on page 232

.

4.

Continue to display and edit local copies of records until all desired changes

are complete.

5.

Apply the locally cached records to the database or cancel the updates. For

each record written to the database, an

OnUpdateRecord

 event is triggered.

If an error occurs when writing an individual record to the database, an

OnUpdateError

 event is triggered which enables the application to correct

the error, if possible, and continue updating. When updates are complete, all

successfully applied updates are cleared from the local cache. For more

information about applying updates to the database, see

“

Applying cached

updates

” on page 233

.

If instead of applying updates, an application cancels updates, the locally cached copy of

the records and all changes to them are freed without writing the changes to the database.

For more information about canceling updates, see

“

Canceling pending cached

updates

” on page 236

.

Enabling and disabling cached updates

Cached updates are enabled and disabled through the

CachedUpdates

 properties of

TIBDataSet

,

 TIBTable

,

TIBQuery

, and

TStoredProc

.

CachedUpdates

 is

False

 by default,

meaning that cached updates are not enabled for a dataset.

Note

Client datasets always cache updates. They have no

CachedUpdates

 property

because you cannot disable cached updates on a client dataset.

To use cached updates, set

CachedUpdates

 to

True

, either at design time (through the

Object Inspector), or at runtime. When you set

CachedUpdates

 to

True

, the dataset’s

OnUpdateRecord

 event is triggered if you provide it. For more information about the

OnUpdateRecord

 event, see

“

Creating an OnUpdateRecord event handler

” on page

255

.

For example, the following code enables cached updates for a dataset at runtime:

CustomersTable.CachedUpdates := True;

CHAPTER 16

WORKING WITH CACHED UPDATES

232

INTERBASE 6

When you enable cached updates, a copy of all records necessary for display and editing

purposes is cached in local memory. Users view and edit this local copy of data. Changes,

insertions, and deletions are also cached in memory. They accumulate in memory until

the current cache of local changes is applied to the database. If changed records are

successfully applied to the database, the record of those changes are freed in the cache.

Note

Applying cached updates does not disable further cached updates; it only writes the

current set of changes to the database and clears them from memory.

To disable cached updates for a dataset, set

CachedUpdates

 to

False

. If you disable cached

updates when there are pending changes that you have not yet applied, those changes

are discarded without notification. Your application can test the

UpdatesPending

property for this condition before disabling cached updates. For example, the following

code prompts for confirmation before disabling cached updates for a dataset:

if (CustomersTable.UpdatesPending)

if (Application.MessageBox(“Discard pending updates?”,

“Unposted changes”,

MB_YES + MB_NO) = IDYES) then

CustomersTable.CachedUpdates = False;

Fetching records

By default, when you enable cached updates, datasets automatically handle fetching of

data from the database when necessary. Datasets fetch enough records for display. During

the course of processing, many such record fetches may occur. If your application has

specific needs, it can fetch all records at one time. You can fetch all records by calling the

dataset’s

FetchAll

 method.

FetchAll

 creates an in-memory, local copy of all records from

the dataset. If a dataset contains many records or records with large Blob fields, you may

not want to use

FetchAll

.

Client datasets use the

PacketRecords

 property to indicate the number of records that

should be fetched at any time. If you set the

FetchOnDemand

 property to

True

, the client

dataset automatically handles fetching of data when necessary. Otherwise, you can use

the

GetNextPacket

 method to fetch records from the data server. For more information

about fetching records using a client dataset, see “Requesting data from an application

server” in the “Creating and using a client dataset” chapter of the

Delphi 5 Developer’s

Guide

.

USING CACHED UPDATES

233

Applying cached updates

When a dataset is in cached update mode, changes to data are not actually written to the

database until your application explicitly calls methods that apply those changes.

Normally an application applies updates in response to user input, such as through a

button or menu item.

I

M

P

O

R

T

A

N

T

To apply updates to a set of records retrieved by an SQL query that does not return a live

result set, you must use a

TIBUpdateSQL

 object to specify how to perform the updates.

For updates to joins (queries involving two or more tables), you must provide one

TIBUpdateSQL

 object for each table involved, and you must use the

OnUpdateRecord

event handler to invoke these objects to perform the updates. For more information, see

“

Updating a read-only result set

” on page 254

. For more information about creating

and using an

OnUpdateRecord

 event handler, see

“

Creating an OnUpdateRecord event

handler

” on page 255

.

Applying updates is a two-phase process that should occur in the context of a transaction

component to enable your application to recover gracefully from errors.

When applying updates under transaction control, the following events take place:

1.

A database transaction starts.

2.

Cached updates are written to the database (phase 1). If you provide it, an

OnUpdateRecord

 event is triggered once for each record written to the

database. If an error occurs when a record is applied to the database, the

OnUpdateError

 event is triggered if you provide one.

If the database write is unsuccessful:

�

Database changes are rolled back, ending the database transaction.

�

Cached updates are not committed, leaving them intact in the internal cache buffer.

If the database write is successful:

�

Database changes are committed, ending the database transaction.

�

Cached updates are committed, clearing the internal cache buffer (phase 2).

The two-phased approach to applying cached updates allows for effective error recovery,

especially when updating multiple datasets (for example, the datasets associated with a

master/detail form). For more information about handling update errors that occur when

applying cached updates, see

“

Handling cached update errors

” on page 256

.

CHAPTER 16

WORKING WITH CACHED UPDATES

234

INTERBASE 6

There are actually two ways to apply updates. To apply updates for a specified set of

datasets associated with a database component, call the database component’s

ApplyUpdates

 method. To apply updates for a single dataset, call the dataset’s

ApplyUpdates

 and

Commit

 methods. These choices, and their strengths, are described in

the following sections.

�

Applying cached updates with a database component method

Ordinarily, applications cache updates at the dataset level. However, there are times when

it is important to apply the updates to multiple interrelated datasets in the context of a

single transaction. For example, when working with master/detail forms, you will likely

want to commit changes to master and detail tables together.

To apply cached updates to one or more datasets in the context of a database connection,

call the database component’s

ApplyUpdates

 method. The following code applies updates

to the

CustomersQuery

 dataset in response to a button click event:

procedure TForm1.ApplyButtonClick(Sender: TObject);

begin

IBDatabase1.ApplyUpdates([CustomersQuery]);

end;

The above sequence starts a transaction, and writes cached updates to the database. If

successful, it also commits the transaction, and then commits the cached updates. If

unsuccessful, this method rolls back the transaction, and does not change the status of

the cached updates. In this latter case, your application should handle cached update

errors through a dataset’s

OnUpdateError

 event. For more information about handling

update errors, see

“

Handling cached update errors

” on page 256

.

The main advantage to calling a database component’s

ApplyUpdates

 method is that you

can update any number of dataset components that are associated with the database. The

parameter for the

ApplyUpdates

 method for a database is an array of

TIBCustomDataSet

.

For example, the following code applies updates for two queries used in a master/detail

form:

IBDatabase1.ApplyUpdates([CustomerQuery, OrdersQuery]);

For more information about updating master/detail tables, see

“

Applying updates for

master/detail tables

” on page 235

.

USING CACHED UPDATES

235

�

Applying cached updates with

a

dataset component methods

You can apply updates for individual datasets directly using the dataset’s

ApplyUpdates

m

ethod

. A

pplying updates at the dataset level gives you control over the order in which

updates are applied to individual datasets. Order of update application is especially

critical for handling master/detail relationships. To ensure the correct ordering of updates

for master/detail tables, you should always apply updates at the dataset level. For more

information see

“

Applying updates for master/detail tables

” on page 235

.

The following code illustrates how you apply updates within a transaction for the

CustomerQuery

 dataset previously used to illustrate updates through a database method:

procedure TForm1.ApplyButtonClick(Sender: TObject)

begin

IBTransaction1.StartTransaction;

CustomerQuery.ApplyUpdates; {try to write the updates to the

database }

IBTransaction1.Commit; { on success, commit the changes }

except

IBTransaction1.Rollback; { on failure, undo any changes }

end;

If an exception is raised during the

ApplyUpdates

 call, the database transaction is rolled

back. Rolling back the transaction ensures that the underlying database table is not

changed. The

raise

 statement inside the try...except

 block re-

raises

 the exception,

thereby preventing the call to

CommitUpdates

. Because

CommitUpdates

 is not called, the

internal cache of updates is not cleared so that you can handle error conditions and

possibly retry the update.

�

Applying updates for master/detail tables

When you apply updates for master/detail tables, the order in which you list datasets to

update is significant. Generally you should always update master tables before detail

tables, except when handling deleted records. In complex master/detail relationships

where the detail table for one relationship is the master table for another detail table, the

same rule applies.

You can update master/detail tables at the database or dataset component levels. For

purposes of control (and of creating explicitly self-documented code), you should apply

updates at the dataset level. The following example illustrates how you should code

cached updates to two tables,

Master

 and

Detail

, involved in a master/detail relationship:

IBTransaction1.StartTransaction;

try

Master.ApplyUpdates;

Detail.ApplyUpdates;

CHAPTER 16

WORKING WITH CACHED UPDATES

236

INTERBASE 6

Database1.Commit;

except

IBTransaction1.Rollback;

raise;

end;

Master.CommitUpdates;

Detail.CommitUpdates;

If an error occurs during the application of updates, this code also leaves both the cache

and the underlying data in the database tables in the same state they were in before the

calls to

ApplyUpdates

.

If an exception is raised during the call to

Master.ApplyUpdates

, it is handled like the

single dataset case previously described. Suppose, however, that the call to

Master.ApplyUpdates

 succeeds, and the subsequent call to

Detail.ApplyUpdates

 fails. In

this case, the changes are already applied to the master table. Because all data is updated

inside a database transaction, however, even the changes to the master table are rolled

back when

IBTransaction1.Rollback

 is called in the except block. Furthermore,

UpdatesMaster.CommitUpdates

 is not called because the exception which is re-

raised

causes that code to be skipped, so the cache is also left in the state it was before the

attempt to update.

To appreciate the value of the two-phase update process, assume for a moment that

ApplyUpdates

 is a single-phase process which updates the data

and the cache

. If this were

the case, and if there were an error while applying the updates to the

Detail

 table, then

there would be no way to restore both the data and the cache to their original states. Even

though the call to

IBTransaction1.Rollback

 would restore the database, there would be

no way to restore the cache.

Canceling pending cached updates

Pending cached updates are updated records that are posted to the cache but not yet

applied to the database. There are three ways to cancel pending cached updates:

�

To cancel all pending updates and disable further cached updates, set the

CachedUpdates

property to

False

.

�

To discard all pending updates without disabling further cached updates, call the

CancelUpdates

 method.

�

To cancel updates made to the current record call

RevertRecord

.

The following sections discuss these options in more detail.

USING CACHED UPDATES

237

�

Cancelling pending updates and disabling further cached updates

To cancel further caching of updates and delete all pending cached updates without

applying them, set the

CachedUpdates

 property to

False

. When

CachedUpdates

 is set to

False

, the

CancelUpdates

 method is automatically invoked.

From the update cache, deleted records are undeleted, modified records revert to original

values, and newly inserted record simply disappear.

Note

This option is not available for client datasets.

�

Canceling pending cached updates

CancelUpdates

 clears the cache of all pending updates, and restores the dataset to the

state it was in when the table was opened, cached updates were last enabled, or updates

were last successfully applied. For example, the following statement cancels updates for

the

CustomersTable

:

CustomersTable.CancelUpdates;

From the update cache, deleted records are undeleted, modified records revert to original

values, and newly inserted records simply disappear.

Note

Calling

CancelUpdates

 does not disable cached updating. It only cancels currently

pending updates. To disable further cached updates, set the

CachedUpdates

 property to

False

.

�

Canceling updates to the current record

RevertRecord

 restores the current record in the dataset to the state it was in when the

table was opened, cached updates were last enabled, or updates were last successfully

applied. It is most frequently used in an

OnUpdateError

 event handler to correct error

situations. For example,

CustomersTable.RevertRecord;

Undoing cached changes to one record does not affect any other records. If only one

record is in the cache of updates and the change is undone using

RevertRecord

, the

UpdatesPending

 property for the dataset component is automatically changed from

True

to

False

.

If the record is not modified, this call has no effect. For more information about creating

an

OnUpdateError

 handler, see

“

Creating an OnUpdateRecord event handler

” on

page 255

.

CHAPTER 16

WORKING WITH CACHED UPDATES

238

INTERBASE 6

Undeleting cached records

To undelete a cached record requires some coding because once the deleted record is

posted to the cache, it is no longer the current record and no longer even appears in the

dataset. In some instances, however, you may want to undelete such records. The process

involves using the

UpdateRecordTypes

 property to make the deleted records “visible,” and

then calling

RevertRecord

. Here is a code example that undeletes all deleted records in a

table:

procedure TForm1.UndeleteAll(DataSet: TDataSet)

begin

DataSet.UpdateRecordTypes := [cusDeleted];

{ show only deleted records }

try

DataSet.First;

{ go to the first previously deleted record }

while not (DataSet.Eof)

DataSet.RevertRecord;

{ undelete until we reach the last record]

except

{ restore updates types to recognize only modified,

inserted, and unchanged }

DataSet.UpdateRecordTypes := [cusModified, cusInserted,

cusUnmodified];

raise;

end;

DataSet.UpdateRecordTypes := [cusModified, cusInserted,

cusUnmodified];

end;

Specifying visible records in the cache

The

UpdateRecordTypes

 property controls what type of records are visible in the cache

when cached updates are enabled.

UpdateRecordTypes

 works on cached records in much

the same way as filters work on tables.

UpdateRecordTypes

 is a set, so it can contain any

combination of the following values:

USING CACHED UPDATES

239

The default value for

UpdateRecordTypes

 includes only

cusModified, cusInserted,

cusUnmodified

, and

cusUninserted

 with deleted records (

cusDeleted

) not displayed.

The

UpdateRecordTypes

 property is primarily useful in an

OnUpdateError

 event handler

for accessing deleted records so they can be undeleted through a call to

RevertRecord

.

This property is also useful if you wanted to provide a way in your application for users

to view only a subset of cached records, for example, all newly inserted (

cusInserted

)

records.

For example, you could have a set of four radio buttons (

RadioButton1

 through

RadioButton4

) with the captions All, Modified, Inserted, and Deleted. With all four radio

buttons assigned to the same

OnClick

 event handler, you could conditionally display all

records (except deleted, the default), only modified records, only newly inserted records,

or only deleted records by appropriately setting the

UpdateRecordTypes

 property.

procedure TForm1.UpdateFilterRadioButtonsClick(Sender: TObject);

begin

if RadioButton1.Checked then

CustomerQuery.UpdateRecordTypes := [cusUnmodified, cusModified,

cusInserted]

else if RadioButton2.Checked then

CustomerQuery.UpdateRecordTypes := [cusModified]

else if RadioButton3.Checked then

CustomerQuery.UpdateRecordTypes := [cusInserted]

else

CustomerQuery.UpdateRecordTypes := [cusDeleted];

end;

For more information about creating an

OnUpdateError

 handler, see

“

Creating an

OnUpdateRecord event handler

” on page 255

.

Value

Meaning

cusModified

Modified records

cusInserted

Inserted records

cusDeleted

Deleted records

cusUninserted

Uninserted records

cusUnmodified

Unmodified records

TABLE 16.1

TIBUpdateRecordType values

CHAPTER 16

WORKING WITH CACHED UPDATES

240

INTERBASE 6

Checking update status

When cached updates are enabled for your application, you can keep track of each

pending update record in the cache by examining the

UpdateStatus

 property for the

record. Checking update status is most frequently used in

OnUpdateRecord

 and

OnUpdateError

 event handlers. For more information about creating and using an

OnUpdateRecord

 event, see

“

Creating an OnUpdateRecord event handler

” on page

255

. For more information about creating and using an

OnUpdateError

 event, see

“

Handling cached update errors

” on page 256

.

As you iterate through a set of pending changes,

UpdateStatus

 changes to reflect the

update status of the current record.

UpdateStatus

 returns one of the following values for

the current record:

When a dataset is first opened all records will have an update status of

usUnmodified

. As

records are inserted, deleted, and so on, the status values change. Here is an example of

UpdateStatus

 property used in a handler for a dataset’s

OnScroll

 event. The event handler

displays the update status of each record in a status bar.

procedure TForm1.CustomerQueryAfterScroll(DataSet: TDataSet);

begin

with CustomerQuery do begin

case UpdateStatus of

usUnmodified: StatusBar1.Panels[0].Text := 'Unmodified';

usModified: StatusBar1.Panels[0].Text := 'Modified';

usInserted: StatusBar1.Panels[0].Text := 'Inserted';

usDeleted: StatusBar1.Panels[0].Text := 'Deleted';

else StatusBar1.Panels[0].Text := 'Undetermined status';

end;

end;

end;

Value

Meaning

usUnmodified

Record is unchanged

usModified

Record is changed

usInserted

Record is a new record

usDeleted

Record is deleted

TABLE 16.2

Return values for UpdateStatus

USING UPDATE OBJECTS TO UPDATE A DATASET

241

Note

If a record’s

UpdateStatus

 is

usModified

, you can examine the

OldValue

 property

for each field in the dataset to determine its previous value.

OldValue

 is meaningless for

records with

UpdateStatus

 values other than

usModified

. For more information about

examining and using

OldValue

, see “Accessing a field’s OldValue, NewValue, and

CurValue properties” in the

Delphi 5 Developer’s Guide

.

Using update objects to update a dataset

TIBUpdateSQL

 is an update component that uses SQL statements to update a dataset. You

must provide one

TIBUpdateSQL

 component for each underlying table accessed by the

original query that you want to update.

Note

If you use more than one update component to perform an update operation, you

must create an

OnUpdateRecord

 event to execute each update component.

An update component actually encapsulates four

TIBQuery

 components. Each of these

query components perform a single update task. One query component provides an SQL

UPDATE

 statement for modifying existing records; a second query component provides an

INSERT

 statement to add new records to a table; a third component provides a

DELETE

statement to remove records from a table, and a forth component provides a

SELECT

statement to refresh the records in a table.

When you place an update component in a data module, you do not see the query

components it encapsulates. They are created by the update component at runtime based

on four update properties for which you supply SQL statements:

�

ModifySQL

 specifies the

UPDATE

 statement.

�

InsertSQL

 specifies the

INSERT

 statement.

�

DeleteSQL

 specifies the

DELETE

statement.

�

RefreshSQL

 specifies the

SELECT

 statement

At runtime, when the update component is used to apply updates, it:

1.

Selects an SQL statement to execute based on the

UpdateKind

 parameter

automatically generated on a record update event.

UpdateKind

 specifies

whether the current record is modified, inserted, or deleted.

2.

Provides parameter values to the SQL statement.

3.

Prepares and executes the SQL statement to perform the specified update.

CHAPTER 16

WORKING WITH CACHED UPDATES

242

INTERBASE 6

Specifying the UpdateObject property for a dataset

One or more update objects can be associated with a dataset to be updated. Associate

update objects with the update dataset either by setting the dataset component’s

UpdateObject

 property to the update object or by setting the update object’s

DataSet

property to the update dataset. Which method is used depends on whether only one base

table in the update dataset is to be updated or multiple tables.

You must use one of these two means of associating update datasets with update objects.

Without proper association, the dynamic filling of parameters in the update object’s SQL

statements cannot occur. Use one association method or the other, but never both.

How an update object is associated with a dataset also determines how the update object

is executed. An update object might be executed automatically, without explicit

intervention by the application, or it might need to be explicitly executed. If the

association is made using the dataset component’s

UpdateObject

 property, the update

object will automatically be executed. If the association is made with the update object’s

DataSet

 property, you must programmatically execute the update object.

The sections that follow explain the process of associating update objects with update

dataset components in greater detail, along with suggestions about when each method

should be used and effects on update execution.

�

Using a single update object

When only one of the base tables referenced in the update dataset needs to be updated,

associate an update object with the dataset by setting the dataset component’s

UpdateObject

 property to the name of the update object.

IBQuery1.UpdateObject := UpdateSQL1;

The update SQL statements in the update object are automatically executed when the

update dataset’s

ApplyUpdates

 method is called. The update object is invoked for each

record that requires updating. Do not call the update object’s

ExecSQL

 method in a

handler for the

OnUpdateRecord

 event as this will result in a second attempt to apply

each record’s update.

If you supply a handler for the dataset’s

OnUpdateRecord

 event, the minimum action that

you need to take in that handler is setting the event handler’s

UpdateAction

 parameter to

uaApplied

. You may optionally perform data validation, data modification, or other

operations like setting parameter values.

USING UPDATE OBJECTS TO UPDATE A DATASET

243

�

Using multiple update objects

When more than one base table referenced in the update dataset needs to be updated,

you need to use multiple update objects: one for each base table updated. Because the

dataset component’s

UpdateObject

 only allows one update object to be associated with

the dataset, you must associate each update object with the dataset by setting its

DataSet

property to the name of the dataset. The

DataSet

 property for update objects is not

available at design time in the Object Inspector. You can only set this property at runtime.

IBUpdateSQL1.DataSet := IBQuery1;

The update SQL statements in the update object are not automatically executed when the

update dataset’s

ApplyUpdates

 method is called. To update records, you must supply a

handler for the dataset component’s

OnUpdateRecord

 event and call the update object’s

ExecSQL

 or

Apply

 method. This invokes the update object for each record that requires

updating.

In the handler for the dataset’s

OnUpdateRecord

 event, the minimum actions that you

need to take in that handler are:

�

Calling the update object’s

SetParams

 method (if you later call

ExecSQL

).

�

Executing the update object for the current record with

ExecSQL

 or

Apply

.

�

Setting the event handler’s

UpdateAction

 parameter to

uaApplied

.

You may optionally perform data validation, data modification, or other operations that

depend on each record’s update.

Note

It is also possible to have one update object associated with the dataset using the

dataset component’s

UpdateObject

 property, and the second and subsequent update

objects associated using their

DataSet

 properties. The first update object is executed

automatically on calling the dataset component’s

ApplyUpdates

 method. The rest need to

be manually executed.

Creating SQL statements for update components

To update a record in an associated dataset, an update object uses one of three SQL

statements. The four SQL statements delete, insert, refresh, and modify records cached

for update. The statements are contained in the update object’s string list properties

DeleteSQL

,

InsertSQL

,

RefreshSQL

, and

ModifySQL

. As each update object is used to

update a single table, the object’s update statements each reference the same base table.

As the update for each record is applied, one of the four SQL statements is executed

against the base table updated. Which SQL statement is executed depends on the

UpdateKind

 parameter automatically generated for each record’s update.

CHAPTER 16

WORKING WITH CACHED UPDATES

244

INTERBASE 6

Creating the SQL statements for update objects can be done at design time or at runtime.

The sections that follow describe the process of creating update SQL statements in greater

detail.

�

Creating SQL statements at design time

To create the SQL statements for an update component,

1.

Select the

TIBUpdateSQL

 component.

2.

Select the name of the update component from the drop-down list for the

dataset component’s

UpdateObject

 property in the Object Inspector. This step

ensures that the Update SQL editor you invoke in the next step can determine

suitable default values to use for SQL generation options.

3.

Right-click the update component and select UpdateSQL Editor from the

context menu to invoke the Update SQL editor. The editor creates SQL

statements for the update component’s

ModifySQL

,

RefreshSQL

,

InsertSQL

,

and

DeleteSQL

 properties based on the underlying data set and on the values

you supply to it.

The Update SQL editor has two pages. The Options page is visible when you first invoke

the editor. Use the Table Name combo box to select the table to update. When you specify

a table name, the Key Fields and Update Fields list boxes are populated with available

columns.

The Update Fields list box indicates which columns should be updated. When you first

specify a table, all columns in the Update Fields list box are selected for inclusion. You

can multi-select fields as desired.

The Key Fields list box is used to specify the columns to use as keys during the update.

Instead of setting Key Fields you can click the Primary Keys button to choose key fields

for the update based on the table’s primary index. Click Dataset Defaults to return the

selection lists to the original state: all fields selected as keys and all selected for update.

Check the Quote Field Names check box if your server requires quotation marks around

field names.

After you specify a table, select key columns, and select update columns, click Generate

SQL to generate the preliminary SQL statements to associate with the update component’s

ModifySQL

,

InsertSQL

,

 RefreshSQL

, and

DeleteSQL

 properties. In most cases you may

want or need to fine tune the automatically generated SQL statements.

To view and modify the generated SQL statements, select the SQL page. If you have

generated SQL statements, then when you select this page, the statement for the

ModifySQL

 property is already displayed in the SQL Text memo box. You can edit the

statement in the box as desired.

USING UPDATE OBJECTS TO UPDATE A DATASET

245

I

M

P

O

R

T

A

N

T

Keep in mind that generated SQL statements are starting points for creating update

statements. You may need to modify these statements to make them execute correctly.

For example, when working with data that contains NULL values, you need to modify

the WHERE clause to read

WHERE field IS NULL

rather then using the generated field variable. Test each of the statements directly yourself

before accepting them.

Use the Statement Type radio buttons to switch among generated SQL statements and edit

them as desired.

To accept the statements and associate them with the update component’s SQL

properties, click OK.

�

Understanding parameter substitution in update SQL statements

Update SQL statements use a special form of parameter substitution that enables you to

substitute old or new field values in record updates. When the Update SQL editor

generates its statements, it determines which field values to use. When you write the

update SQL, you specify the field values to use.

When the parameter name matches a column name in the table, the new value in the

field in the cached update for the record is automatically used as the value for the

parameter. When the parameter name matches a column name prefixed by the string

“OLD_”, then the old value for the field will be used. For example, in the update SQL

statement below, the parameter :LastName is automatically filled with the new field value

in the cached update for the inserted record.

INSERT INTO Names

(LastName, FirstName, Address, City, State, Zip)

VALUES (:LastName, :FirstName, :Address, :City, :State, :Zip)

New field values are typically used in the

InsertSQL

 and

ModifySQL

 statements. In an

update for a modified record, the new field value from the update cache is used by the

UPDATE

 statement to replace the old field value in the base table updated.

In the case of a deleted record, there are no new values, so the

DeleteSQL

 property uses

the “:OLD_FieldName” syntax. Old field values are also normally used in the

WHERE

clause of the SQL statement for a modified or deletion update to determine which record

to update or delete.

CHAPTER 16

WORKING WITH CACHED UPDATES

246

INTERBASE 6

In the

WHERE

clause of an

UPDATE

 or

DELETE

 update SQL statement, supply at least the

minimal number of parameters to uniquely identify the record in the base table that is

updated with the cached data. For instance, in a list of customers, using just a customer’s

last name may not be sufficient to uniquely identify the correct record in the base table;

there may be a number of records with “Smith” as the last name. But by using parameters

for last name, first name, and phone number could be a distinctive enough combination.

Even better would be a unique field value like a customer number.

For more information about old and new value parameter substitution, see “Accessing a

field’s OldValue, NewValue, and CurValue properties” in the

Delphi 5 Developer’s Guide

.

�

Composing update SQL statements

The

TIBUpdateSQL

 component has four properties for updating SQL statements:

DeleteSQL

,

InsertSQL

,

 RefreshSQL

, and

ModifySQL

. As the names of the properties imply,

these SQL statements delete, insert, refresh, and modify records in the base table.

The

DeleteSQL

 property should contain only an SQL statement with the

DELETE

command. The base table to be updated must be named in the FROM clause. So that the

SQL statement only deletes the record in the base table that corresponds to the record

deleted in the update cache, use a

WHERE

 clause. In the

WHERE

 clause, use a parameter

for one or more fields to uniquely identify the record in the base table that corresponds

to the cached update record. If the parameters are named the same as the field and

prefixed with “OLD_”, the parameters are automatically given the values from the

corresponding field from the cached update record. If the parameter are named in any

other manner, you must supply the parameter values.

DELETE FROM Inventory I

WHERE (I.ItemNo = :OLD_ItemNo)

Some tables types might not be able to find the record in the base table when fields used

to identify the record contain NULL values. In these cases, the delete update fails for those

records. To accommodate this, add a condition for those fields that might contain NULLs

using the IS NULL predicate (in addition to a condition for a non-NULL value). For

example, when a FirstName field may contain a NULL value:

DELETE FROM Names

WHERE (LastName = :OLD_LastName) AND

((FirstName = :OLD_FirstName) OR (FirstName IS NULL))

USING UPDATE OBJECTS TO UPDATE A DATASET

247

The

InsertSQL

 statement should contain only an SQL statement with the

INSERT

command. The base table to be updated must be named in the

INTO

 clause. In the

VALUES

clause, supply a comma-separated list of parameters. If the parameters are named the

same as the field, the parameters are automatically given the value from the cached

update record. If the parameter are named in any other manner, you must supply the

parameter values. The list of parameters supplies the values for fields in the newly

inserted record. There must be as many value parameters as there are fields listed in the

statement.

INSERT INTO Inventory

(ItemNo, Amount)

VALUES (:ItemNo, 0)

The

RefreshSQL

 statement should contain only an SQL statement with the

SELECT

command. The base table to be updated must be named in the

FROM

 clause. If the

parameters are named the same as the field, the parameters are automatically given the

value from the cached update record. If the parameter are named in any other manner,

you must supply the parameter values.

SELECT COUNTRY, CURRENCY

FROM Country

WHERE

 COUNTRY = :COUNTRY and CURRENCY = :CURRENCY

The

ModifySQL

 statement should contain only an SQL statement with the

UPDATE

command. The base table to be updated must be named in the

FROM

 clause. Include one

or more value assignments in the

SET

 clause. If values in the

SET

 clause assignments are

parameters named the same as fields, the parameters are automatically given values from

the fields of the same name in the updated record in the cache. You can assign additional

field values using other parameters, as long as the parameters are not named the same

as any fields and you manually supply the values. As with the

DeleteSQL

 statement,

supply a

WHERE

 clause to uniquely identify the record in the base table to be updated

using parameters named the same as the fields and prefixed with “OLD_”. In the update

statement below, the parameter :ItemNo is automatically given a value and :Price is not.

UPDATE Inventory I

SET I.ItemNo = :ItemNo, Amount = :Price

WHERE (I.ItemNo = :OLD_ItemNo)

CHAPTER 16

WORKING WITH CACHED UPDATES

248

INTERBASE 6

Considering the above update SQL, take an example case where the application end-user

modifies an existing record. The original value for the ItemNo field is 999. In a grid

connected to the cached dataset, the end-user changes the ItemNo field value to 123 and

Amount to 20. When the ApplyUpdates method is invoked, this SQL statement affects all

records in the base table where the ItemNo field is 999, using the old field value in the

parameter :OLD_ItemNo. In those records, it changes the ItemNo field value to 123

(using the parameter :ItemNo, the value coming from the grid) and Amount to 20.

�

Using an update component’s Query property

Use the

Query

 property of an update component to access one of the update SQL

properties

DeleteSQL

,

InsertSQL

,

 RefreshSQL

, or

ModifySQL

, such as to set or alter the SQL

statement. Use

UpdateKind

 constant values as an index into the array of query

components. The

Query

 property is only accessible at runtime.

The statement below uses the

UpdateKind

 constant

ukDelete

 with the

Query

 property to

access the

DeleteSQL

 property.

with IBUpdateSQL1.Query[ukDelete] do begin

Clear;

Add(‘DELETE FROM Inventory I’);

Add(‘WHERE (I.ItemNo = :OLD_ItemNo)’);

end;

Normally, the properties indexed by the

Query

 property are set at design time using the

Update SQL editor. You might, however, need to access these values at runtime if you are

generating a unique update SQL statement for each record and not using parameter

binding. The following example generates a unique

Query

 property value for each row

updated:

procedure TForm1.EmpAuditUpdateRecord(DataSet: TDataSet;

UpdateKind: TUpdateKind; var UpdateAction: TUpdateAction);

begin

with IBUpdateSQL1 do begin

case UpdateKind of

ukModified:

begin

Query[UpdateKind].Text := Format('update emptab set Salary

= %d where EmpNo = %d',

[EmpAuditSalary.NewValue, EmpAuditEmpNo.OldValue]);

ExecSQL(UpdateKind);

end;

ukInserted:

{...}

ukDeleted:

USING UPDATE OBJECTS TO UPDATE A DATASET

249

{...}

end;

end;

UpdateAction := uaApplied;

end;

Note

Query

 returns a value of type

TIBDataSetUpdateObject

. To treat this return value

as a

TIBUpdateSQL

 component, to use properties and methods specific to

TIBUpdateSQL

,

typecast the

UpdateObject

 property. For example:

with (DataSet.UpdateObject as IBUpdateSQL).Query[UpdateKind] do begin

{ perform operations on the statement in DeleteSQL }

end;

For an example of using this property, see

“

Calling the SetParams method

” on page

251

.

�

Using the DeleteSQL, InsertSQL, ModifySQL, and RefreshSQL properties

Use the

DeleteSQL

,

InsertSQL

,

ModifySQL

,

and

RefreshSQL

 properties to set the update

SQL statements for each. These properties are all string list containers. Use the methods

of string lists to enter SQL statement lines as items in these properties. Use an integer

value as an index to reference a specific line within the property. The

DeleteSQL

,

InsertSQL

,

ModifySQL

,

and

RefreshSQL

 properties are accessible both at design time and

at runtime.

with UpdateSQL1.DeleteSQL do begin

Clear;

Add(‘DELETE FROM Inventory I’);

Add(‘WHERE (I.ItemNo = :OLD_ItemNo)’);

end;

Below, the third line of an SQL statement is altered using an index of 2 with the

ModifySQL

 property.

UpdateSQL1.ModifySQL[2] := ‘WHERE ItemNo = :ItemNo’;

Executing update statements

There are a number of methods involved in executing the update SQL for an individual

record update. These method calls are typically used within a handler for the

OnUpdateRecord

 event of the update object to execute the update SQL to apply the

current cached update record. The various methods are applicable under different

circumstances. The sections that follow discuss each of the methods in detail.

CHAPTER 16

WORKING WITH CACHED UPDATES

250

INTERBASE 6

�

Calling the Apply method

The

Apply

 method for an update component manually applies updates for the current

record. There are two steps involved in this process:

1.

Values for the record are bound to the parameters in the appropriate update

SQL statement.

2.

The SQL statement is executed.

Call the

Apply

 method to apply the update for the current record in the update cache.

Only use

Apply

 when the update object is not associated with the dataset using the dataset

component’s

UpdateObject

 property, in which case the update object is not automatically

executed.

Apply

 automatically calls the

SetParams

 method to bind old and new field

values to specially named parameters in the update SQL statement. Do not call

SetParams

yourself when using

Apply

. The

Apply

 method is most often called from within a handler

for the dataset’s

OnUpdateRecord

 event.

If you use the dataset component’s UpdateObject property to associate dataset and update

object, this method is called automatically. Do not call

Apply

 in a handler for the dataset

component’s

OnUpdateRecord

 event as this will result in a second attempt to apply the

current record’s update.

In a handler for the

OnUpdateRecord

 event, the

UpdateKind

 parameter is used to

determine which update SQL statement to use. If invoked by the associated dataset, the

UpdateKind

 is set automatically. If you invoke the method in an

OnUpdateRecord

 event,

pass an

UpdateKind

 constant as the parameter of

Apply

.

procedure TForm1.EmpAuditUpdateRecord(DataSet: TDataSet;

UpdateKind: TUpdateKind; var UpdateAction: TUpdateAction);

begin

IBUpdateSQL1.Apply(UpdateKind);

UpdateAction := uaApplied;

end;

If an exception is raised during the execution of the update program, execution continues

in the

OnUpdateError

 event, if it is defined.

Note

The operations performed by

Apply

 are analogous to the

SetParams

 and

ExecSQL

methods described in the following sections.

USING UPDATE OBJECTS TO UPDATE A DATASET

251

�

Calling the SetParams method

The

SetParams

 method for an update component uses special parameter substitution

rules to substitute old and new field values into the update SQL statement. Ordinarily,

SetParams

 is called automatically by the update component’s

Apply

 method. If you call

Apply

 directly in an

OnUpdateRecord

 event, do not call

SetParams

 yourself. If you

execute an update object using its

ExecSQL

 method, call

SetParams

 to bind values to the

update statement’s parameters.

SetParams

 sets the parameters of the SQL statement indicated by the

UpdateKind

parameter. Only those parameters that use a special naming convention automatically

have a value assigned. If the parameter has the same name as a field or the same name

as a field prefixed with “OLD_” the parameter is automatically a value. Parameters named

in other ways must be manually assigned values. For more information see the section

“

Understanding parameter substitution in update SQL statements

” on page 245

.

The following example illustrates one such use of

SetParams

:

procedure TForm1.EmpAuditUpdateRecord(DataSet: TDataSet;

UpdateKind: TUpdateKind; var UpdateAction: TUpdateAction);

begin

with DataSet.UpdateObject as TIBUpdateSQL do begin

SetParams(UpdateKind);

if UpdateKind = ukModified then

IBQuery[UpdateKind].ParamByName('DateChanged').Value := Now;

ExecSQL(UpdateKind);

end;

UpdateAction := uaApplied;

end;

This example assumes that the

ModifySQL

 property for the update component is as

follows:

UPDATE EmpAudit

SET EmpNo = :EmpNo, Salary = :Salary, Changed = :DateChanged

WHERE EmpNo = :OLD_EmpNo

In this example, the call to

SetParams

 supplies values to the

EmpNo

 and

Salary

parameters. The

DateChanged

 parameter is not set because the name does not match the

name of a field in the dataset, so the next line of code sets this value explicitly.

�

Calling the ExecSQL method

The

ExecSQL

 method for an update component manually applies updates for the current

record. There are two steps involved in this process:

CHAPTER 16

WORKING WITH CACHED UPDATES

252

INTERBASE 6

1.

Values for the record are bound to the parameters in the appropriate update

SQL statement.

2.

The SQL statement is executed.

Call the

ExecSQL

 method to apply the update for the current record in the update cache.

Only use

ExecSQL

 when the update object is not associated with the dataset using the

dataset component’s

UpdateObject

 property, in which case the update object is not

automatically executed.

ExecSQL

 does not automatically call the

SetParams

 method to

bind update SQL statement parameter values; call

SetParams

 yourself before invoking

ExecSQL

. The

ExecSQL

 method is most often called from within a handler for the dataset’s

OnUpdateRecord

 event.

If you use the dataset component’s

UpdateObject

 property to associate dataset and update

object, this method is called automatically. Do not call

ExecSQL

 in a handler for the

dataset component’s

OnUpdateRecord

 event as this will result in a second attempt to

apply the current record’s update.

In a handler for the

OnUpdateRecord

 event, the

UpdateKind

 parameter is used to

determine which update SQL statement to use. If invoked by the associated dataset, the

UpdateKind

 is set automatically. If you invoke the method in an

OnUpdateRecord

 event,

pass an

UpdateKind

 constant as the parameter of

ExecSQL

.

procedure TForm1.EmpAuditUpdateRecord(DataSet: TDataSet;

UpdateKind: TUpdateKind; var UpdateAction: TUpdateAction);

begin

with (DataSet.UpdateObject as TIBUpdateSQL) do begin

SetParams(UpdateKind);

ExecSQL(UpdateKind);

end;

UpdateAction := uaApplied;

end;

If an exception is raised during the execution of the update program, execution continues

in the

OnUpdateError

 event, if it is defined.

Note

The operations performed by

ExecSQL

 and

SetParams

 are analogous to the

Apply

method described previously.

USING UPDATE OBJECTS TO UPDATE A DATASET

253

Using dataset components to update a dataset

Applying cached updates usually involves use of one or more update objects. The update

SQL statements for these objects apply the data changes to the base table. Using update

components is the easiest way to update a dataset, but it is not a requirement. You can

alternately use dataset components like

TIBTable

 and

TIBQuery

 to apply the cached

updates.

In a handler for the dataset component’s OnUpdateRecord event, use the properties and

methods of another dataset component to apply the cached updates for each record.

For example, the following code uses a table component to perform updates:

procedure TForm1.EmpAuditUpdateRecord(DataSet: TDataSet;

UpdateKind: TUpdateKind; var UpdateAction: TUpdateAction);

begin

if UpdateKind = ukInsert then

UpdateTable.AppendRecord([DataSet.Fields[0].NewValue,

DataSet.Fields[1].NewValue])

else

if UpdateTable.Locate('KeyField',

VarToStr(DataSet.Fields[1].OldValue), []) then

case UpdateKind of

ukModify:

begin

Edit;

UpdateTable.Fields[1].AsString :=

VarToStr(DataSet.Fields[1].NewValue);

Post;

end;

ukInsert:

begin

Insert;

UpdateTable.Fields[1].AsString :=

VarToStr(DataSet.Fields[1].NewValue);

Post;

end;

ukModify: DeleteRecord;

end;

UpdateAction := uaApplied;

end;

CHAPTER 16

WORKING WITH CACHED UPDATES

254

INTERBASE 6

Updating a read-only result set

To manually update a read-only dataset:

1.

Add a

TIBUpdateSQL

 component to the data module in your application.

2.

Set the dataset component’s

UpdateObject

 property to the name of the

TIBUpdateSQL

 component in the data module.

3.

Enter the SQL update statement for the result set to the update component’s

ModifySQL

,

InsertSQL

,

DeleteSQL

, or

 RefreshSQL

properties, or use the

Update SQL editor.

4.

Close the dataset.

5.

Set the dataset component’s

CachedUpdates

 property to

True

.

6.

Reopen the dataset.

In many circumstances, you may also want to write an

OnUpdateRecord

 event handler

for the dataset.

Controlling the update process

When a dataset component’s

ApplyUpdates

 method is called, an attempt is made to apply

the updates for all records in the update cache to the corresponding records in the base

table. As the update for each changed, deleted, or newly inserted record is about to be

applied, the dataset component’s

OnUpdateRecord

 event fires.

Providing a handler for the

OnUpdateRecord

 event allows you to perform actions just

before the current record’s update is actually applied. Such actions can include special

data validation, updating other tables, or executing multiple update objects. A handler

for the

OnUpdateRecord

 event affords you greater control over the update process.

The sections that follow describe when you might need to provide a handler for the

OnUpdateRecord

 event and how to create a handler for this event.

Determining if you need to control the updating process

Some of the time when you use cached updates, all you need to do is call

ApplyUpdates

to apply cached changes to the base tables in the database. In most other cases, however,

you either might want to or must provide additional processing to ensure that updates

can be properly applied. Use a handler for the updated dataset component’s

OnUpdateRecord

 event to provide this additional processing.

CONTROLLING THE UPDATE PROCESS

255

For example, you might want to use the

OnUpdateRecord

 event to provide validation

routines that adjust data before it is applied to the table, or you might want to use the

OnUpdateRecord

 event to provide additional processing for records in master and detail

tables before writing them to the base tables.

In many cases you must provide additional processing. For example, if you access

multiple tables using a joined query, then you must provide one

TIBUpdateSQL

object for

each table in the query, and you must use the

OnUpdateRecord

 event to make sure each

update object is executed to write changes to the tables.

The following sections describe how to create and use an

TIBUpdateSQL

 object and how

to create and use an

OnUpdateRecord

 event.

Creating an OnUpdateRecord event handler

The

OnUpdateRecord

 event handles cases where a single update component cannot be

used to perform the required updates, or when your application needs more control over

special parameter substitution. The

OnUpdateRecord

 event fires once for the attempt to

apply the changes for each modified record in the update cache.

To create an

OnUpdateRecord

 event handler for a dataset:

1.

Select the dataset component.

2.

Choose the Events page in the Object Inspector.

3.

Double-click the

OnUpdateRecord

 property value to invoke the code editor.

Here is the skeleton code for an

OnUpdateRecord

 event handler:

procedure TForm1.DataSetUpdateRecord(DataSet: TDataSet;

 UpdateKind: TUpdateKind; var UpdateAction: TUpdateAction);

begin

{ perform updates here... }

end;

The

DataSet

 parameter specifies the cached dataset with updates.

The

UpdateKind

 parameter indicates the type of update to perform. Values for

UpdateKind

 are

ukModify

,

ukInsert

, and

ukDelete

. When using an update component,

you need to pass this parameter to its execution and parameter binding methods. For

example using

ukModify

 with the

Apply

 method executes the update object’s

ModifySQL

statement. You may also need to inspect this parameter if your handler performs any

special processing based on the kind of update to perform.

CHAPTER 16

WORKING WITH CACHED UPDATES

256

INTERBASE 6

The

UpdateAction

 parameter indicates if you applied an update or not. Values for

UpdateAction

 are

uaFail

 (the default),

uaAbort

,

uaSkip

,

uaRetry

,

uaApplied

. Unless you

encounter a problem during updating, your event handler should set this parameter to

uaApplied

 before exiting. If you decide not to update a particular record, set the value to

uaSkip

 to preserve unapplied changes in the cache.

If you do not change the value for

UpdateAction

, the entire update operation for the

dataset is aborted. For more information about

UpdateAction

, see

“

Specifying the action

to take

” on page 258

.

In addition to these parameters, you will typically want to make use of the

OldValue

 and

NewValue

properties for the field component associated with the current record. For

more information about

OldValue

and

 NewValue

 see “Accessing a field’s OldValue,

NewValue, and CurValue properties” in the

Delphi 5 Developer’s Guide

.

I

M

P

O

R

T

A

N

T

The

OnUpdateRecord

 event, like the

OnUpdateError

 and

OnCalcFields

 event handlers,

should never call any methods that change which record in a dataset is the current

record.

Here is an

OnUpdateRecord

 event handler that executes two update components using

their

Apply

 methods. The

UpdateKind

 parameter is passed to the

Apply

 method to

determine which update SQL statement in each update object to execute.

procedure TForm1.EmpAuditUpdateRecord(DataSet: TDataSet;

UpdateKind: TUpdateKind; var UpdateAction: TUpdateAction);

begin

EmployeeUpdateSQL.Apply(UpdateKind);

JobUpdateSQL.Apply(UpdateKind);

UpdateAction := uaApplied;

end;

In this example the

DataSet

 parameter is not used. This is because the update

components are not associated with the dataset component using its

UpdateObject

property.

Handling cached update errors

Because there is a delay between the time a record is first cached and the time cached

updates are applied, there is a possibility that another application may change the record

in a database before your application applies its updates. Even if there is no conflict

between user updates, errors can occur when a record’s update is applied.

HANDLING CACHED UPDATE ERRORS

257

A dataset component’s

OnUpdateError

 event enables you to catch and respond to errors.

You should create a handler for this event if you use cached updates. If you do not, and

an error occurs, the entire update operation fails.

I

M

P

O

R

T

A

N

T

Do not call any dataset methods that change the current record (such as

Next

 and

Prior

)

in an

OnUpdateError

 event handler. Doing so causes the event handler to enter an

endless loop.

Here is the skeleton code for an

OnUpdateError

 event handler:

procedure TForm1.DataSetUpdateError(DataSet: TDataSet; E:

EDatabaseError;

UpdateKind: TUpdateKind; var UpdateAction: TUpdateAction);

begin

{ ... perform update error handling here ... }

end;

The following sections describe specific aspects of error handling using an

OnUpdateError

 handler, and how the event’s parameters are used.

Referencing the dataset to which to apply updates

DataSet

 references the dataset to which updates are applied. To process new and old

record values during error handling you must supply this reference.

Indicating the type of update that generated an error

The

OnUpdateRecord

 event receives the parameter

UpdateKind

, which is of type

TUpdateKind

. It describes the type of update that generated the error. Unless your error

handler takes special actions based on the type of update being carried out, your code

probably will not make use of this parameter.

The following table lists possible values for

UpdateKind:

Value

Meaning

ukModify

Editing an existing record caused an error

ukInsert

Inserting a new record caused an error

ukDelete

Deleting an existing record caused an error

TABLE 16.3

UpdateKind values

CHAPTER 16

WORKING WITH CACHED UPDATES

258

INTERBASE 6

The example below shows the decision construct to perform different operations based

on the value of the

UpdateKind

 parameter.

procedure TForm1.DataSetUpdateError(DataSet: TDataSet; E:

EDatabaseError;

UpdateKind: TUpdateKind; var UpdateAction: TUpdateAction);

begin

case UpdateKind of

ukModify:

begin

{ handle error due to applying record modification update }

end;

ukInsert:

begin

{ handle error due to applying record insertion update }

end;

ukDelete:

begin

{ handle error due to applying record deletion update }

end;

end;

end;

Specifying the action to take

UpdateAction

 is a parameter of type

TUpdateAction

. When your update error handler is

first called, the value for this parameter is always set to

uaFail

. Based on the error

condition for the record that caused the error and what you do to correct it, you typically

set

UpdateAction

 to a different value before exiting the handler.

UpdateAction

can be set

to one of the following values:

HANDLING CACHED UPDATE ERRORS

259

If your error handler can correct the error condition that caused the handler to be

invoked, set

UpdateAction

 to the appropriate action to take on exit. For error conditions

you correct, set

UpdateAction

 to

uaRetry

 to apply the update for the record again.

When set to

uaSkip

, the update for the row that caused the error is skipped, and the

update for the record remains in the cache after all other updates are completed.

Both

 uaFail

 and

uaAbort

 cause the entire update operation to end.

uaFail

 raises an

exception, and displays an error message.

uaAbort

 raises a silent exception (does not

display an error message).

Note

If an error occurs during the application of cached updates, an exception is

raised

and an error message displayed. Unless the

ApplyUpdates

 is called from within a
try...except

 construct, an error message to the user displayed from inside your

OnUpdateError

 event handler may cause your application to display the same error

message twice. To prevent error message duplication, set

UpdateAction

 to

uaAbort

 to

turn off the system-generated error message display.

The

uaApplied

 value should only be used inside an

OnUpdateRecord

 event. Do not set

this value in an update error handler. For more information about update record events,

see

Creating an OnUpdateRecord event handler

 on page 255

.

Value

Meaning

uaAbort

Aborts the update operation without displaying an error message

uaFail

Aborts the update operation, and displays an error message; this is the default value for

UpdateAction

 when you enter an update error handler

uaSkip

Skips updating the row, but leaves the update for the record in the cache

uaRetry

Repeats the update operation; correct the error condition before setting

UpdateAction

 to

this value

uaApplied

Not used in error handling routines

TABLE 16.4

UpdateAction values

260

INTERBASE 6

261

CHAPTER

17

Chapter 17

Debugging with SQL

Monitor

Use the

TIBSQLMonitor

 component to monitor the dynamic SQL that passes through the

InterBase server. You can write an application that can view only its own SQL statements,

or you can write a generic SQL monitor application that monitors the dynamic SQL of all

applications built with InterBase Express (IBX).

Use the

TIBSQLMonitor

 component to watch dynamic SQL taking place in all InterBase

data access applications both before and after they have been compiled.

SQL monitoring involves a bit of overhead, so you should be aware of the following:

�

If no SQL monitors are loaded, there is little to no overhead

�

SQL monitoring can be switched off globally by an application to ensure that it does not

get bogged down during debugging

�

Disabling monitoring in an application that does not require it further reduces the

overhead

Building a simple monitoring application

To build a simple SQL monitoring application, follow these steps:

CHAPTER 17

DEBUGGING WITH SQL MONITOR

262

INTERBASE 6

1.

Open a new form in Delphi.

2.

Add a

Memo

 component to the form and clear the

Lines

 property.

3.

Add a

TIBSQLMonitor

 component to the form

4.

Double-click the

OnSQL

 event and add the following line of code:

Memo1.Lines.Add(EventText);

5.

Compile the application.

You can now start another IBX application and monitor the code

.

263

CHAPTER

18

Chapter 18

Importing and Exporting

Data

InterBase Express (IBX) provides a convenient means to migrate data to and from the

database. The

TIBSQL

 component, along with the

TIBBatchInput

 and

TIBBatchOutput

objects make it possible to import and export data to and from databases in virtually any

format.

Descendents of this class can specify a file name (for input or output), and a

TIBXSQLDA

object representing a record or parameters. The

ReadyFile

 method is called right before

performing the batch input or output.

Exporting and importing raw data

Use the

TIBSQL

 component, along with the

TIBOutputRawFile

and

TIBInputRawFile

objects to perform batch imports and exports of raw data. A raw file is the equivalent of

InterBase external file output. Raw files are not limited to straight character format, so

whatever structure is defined by your query is what goes in the file.

Use an

SQL SELECT

 statement to export the data to the raw file, and an

INSERT

 statement

to import the raw data into another database.

CHAPTER 18

IMPORTING AND EXPORTING DATA

264

INTERBASE 6

Raw files are probably the fastest way, aside from external tables, to get data in and out

of an InterBase database, although dealing with fixed-width files can be somewhat

difficult.

Exporting raw data

To export raw data, you will need

TIBSQL

,

TIBDatabase

, and

TIBTransaction

components. Associate the components with each other, select a source database, and set

the connections to active.

Tip

Use the Database Editor to set up the database component. To start the Database Editor,

right click the database component with the mouse and select Database Editor from the

drop down menu.

The following code snippet outputs selected data with an

SQL SELECT

 statement from the

SOURCE

 table to the file

source_raw

.

procedure TForm1.Button1Click(Sender: TObject);

var

 RawOutput : TIBOutputRawFile;

begin

 IBSQL1.SQL.Text := 'Select name, number, hired from Source';

 RawOutput := TIBOutputRawFile.Create;

 try

 RawOutput.Filename := 'source_raw';

 IBSQL1.BatchOutput(RawOutput);

 finally

RawOutput.Free;

 end;

end;

Importing raw data

To import raw data, you will need

TIBSQL

,

TIBDatabase

, and

TIBTransaction

components. Associate the components with each other, select a destination database,

and set the connections to active.

Tip

Use the Database Editor to set up the database component. To start the Database Editor,

right click the database component with the mouse and select Database Editor from the

drop down menu.

EXPORTING AND IMPORTING DELIMITED DATA

265

It is important to note that you must import data into a table with the same column

definitions and datatypes, and in the same order; otherwise, all sorts of unpredictable and

undesirable results may occur.

The following code snippet inputs selected data with an

SQL INSERT

 statement from the

source_raw

file created in the last example into the

DESTINATION

 table.

procedure TForm1.Button2Click(Sender: TObject);

var

 RawInput : TIBInputRawFile;

begin

 IBSQL2.SQL.Text := 'Insert into Destination values(:name, :number,

:hired)';

 RawInput := TIBInputRawFile.Create;

 try

 RawInput.Filename := 'source_raw';

 IBSQL2.BatchInput(RawInput);

 finally

 RawInput.Free;

 end;

end;

Exporting and importing delimited data

Use the

TIBSQL

 component, along with

TIBOutputDelimitedFile

and

TIBInputDelimitedFile

 objects to perform batch exports and imports of data to and from

a database into pipe-tilde (|~) and z

-w

-F

 delimited files.

Use an

SQL SELECT

 statement to export the data to the delimited file, and an

INSERT

statement to import the delimited data into another database.

By default, the column delimiter is a tab, and the row delimiter is a tab-line feed (z

-w

-F

). Use the

ColDelimiter

and

RowDelimiter

properties to change the column

delimiter and row delimiter, respectively.

For example, to set the column delimiter to a comma, you could use the following line

of code:

DelimOutput.ColDelimiter := ',';

Note

Columns may contain spaces before the delimiter. For example, if you have a

column called NAME which is defined as a CHAR(10), and the name “Joe” is in that

column, then “Joe” will be followed by 7 spaces before the column is delimited.

CHAPTER 18

IMPORTING AND EXPORTING DATA

266

INTERBASE 6

Exporting delimited data

To export delimited data, you will need

TIBSQL

,

TIBDatabase

, and

TIBTransaction

components. Set up the database component, and associate the components with each

other. In the following example, the database and transaction components are set to

active in the code.

Tip

Use the Database Editor to set up the database component. To start the Database Editor,

right click the database component with the mouse and select Database Editor from the

drop down menu.

The following code snippet outputs selected data with an

SQL SELECT

 statement from the

SOURCE

 table to the file

source_delim

.

procedure TForm1.Button3Click(Sender: TObject);

var

 DelimOutput : TIBOutputDelimitedFile;

begin

 IBSQL3.Database.Open;

 IBSQL3.Transaction.StartTransaction;

 IBSQL3.SQL.Text := 'Select name, number, hired from Source';

 DelimOutput := TIBOutputDelimitedFile.Create;

 try

 DelimOutput.Filename := 'source_delim';

 IBSQL3.BatchOutput(DelimOutput);

 finally

 DelimOutput.Free;

 IBSQL3.Transaction.Commit;

 end;

end;

Importing delimited data

To import delimited data, you will need

TIBSQL

,

TIBDatabase

, and

TIBTransaction

components.et up the database component, and associate the components with each

other. In the following example, the database and transaction components are set to

active in the code.

Tip

Use the Database Editor to set up the database component. To start the Database Editor,

right click the database component with the mouse and select Database Editor from the

drop down menu

EXPORTING AND IMPORTING DELIMITED DATA

267

It is important to note that you must import data into a table with the same column

definitions and datatypes, and in the same order; otherwise, all sorts of unpredictable and

undesirable results may occur.

The following code snippet inputs selected data with an

SQL INSERT

 statement from the

source_delim

file created in the last example into the

DESTINATION

 table.

procedure TForm1.Button4Click(Sender: TObject);

var

 DelimInput : TIBInputDelimitedFile;

begin

 IBSQL4.Database.Open;

 IBSQL4.Transaction.StartTransaction;

 IBSQL4.SQL.Text := 'Insert into Destination values(:name, :number,

:hired)';

 DelimInput := TIBInputDelimitedFile.Create;

 try

 DelimInput.Filename := 'source_delim';

 IBSQL4.BatchInput(DelimInput);

 finally

 DelimInput.Free;

 IBSQL4.Transaction.Commit;

 end;

end;

268

INTERBASE 6

269

CHAPTER

19

Chapter 19

Working with InterBase

Services

InterBase Express (IBX) comes with a set of service components (located on the

InterBase Admin page of the Component palette), which allow you to build InterBase

database and server administration tools directly into your application.

This chapter shows you how to build all of the InterBase database services into your

applications, including:

�

Configuration

�

Backup and Restore

�

Licensing

�

Security

�

Validation

�

Statistics

�

Log

�

Server properties

CHAPTER 19

WORKING WITH INTERBASE SERVICES

270

INTERBASE 6

Overview of the InterBase service components

This section describes the general concepts of the InterBase service components and

methods for attaching and detaching from a services manager.

About the services manager

All InterBase servers include a facility called the

services manager

. The InterBase service

components enable client applications to submit requests to the services manager of an

InterBase server, and the service manager performs the tasks. the server can be local (on

the same host as your application), or remote (on another host on the network). The

services components offer the same features when connected to either local or remote

InterBase servers.

Service component hierarchy

The root object of the InterBase service components is

TIBCustomService

, from which

descend

TIBControlService

 and

TIBServerProperties. TIBServerProperties

contains

properties and methods specific to server configuration, while

TIBControlService

 is the

ancestor object from which all the database configuration and administration

components descend.

OVERVIEW OF THE INTERBASE SERVICE COMPONENTS

271

FIGURE 19.1

InterBase service component hierarchy

The following three components descend directly from

TIBControlService

:

�

TIBControlAndQueryService

 contains all the database administration elements, such as

monitoring, maintenance, and backup and restore, as well as all of the user validation

and security elements.

�

TIBConfigService

 contains all the methods and properties for database configuration.

�

TIBLicensingService

 contains all the properties and methods to add and remove database

licenses.

Attaching to a service manager

To initiate a connection from your application to an InterBase service manager:

1.

Place a service component on a form.

2.

Set the

ServerName

 property for that component to the name of the server

on which the services are to be run.

TIBValidationService

TIBSecurityService

TIBControlAndQueryService TIBConfigService TIBLicensingService

TIBLogService

TIBStatisticalService

TIBBackupRestoreService

TIBBackupService

TIBRestoreService

TIBControlService TIBServerProperties

TIBCustomService

CHAPTER 19

WORKING WITH INTERBASE SERVICES

272

INTERBASE 6

3.

Use the

Protocol

 property to set the network protocol with which to connect

to the server.

4.

Set the

Active

 property to

True

. A login dialog is displayed. If you do not wish

to display the login dialog, set the user name and password in the

Params

string editor, and set

LoginPrompt

 to

False

.

To start the service, use the

ServiceStart

 method.

Note

TIBLicensingService

 and

TIBSecurityService

 do not require that you start the

service using the

ServiceStart

 method. For example, to add a license you could use:

Action := LicenseAdd;
ServiceStart;

or you could use:

AddLicense;

Detaching from a service manager

After you finish your tasks with the services components, you should end the connection

with the service manager by setting the

Active

property to

False

. This calls the

Detach

method which detaches the service component from the service manager.

Setting database properties

The configuration service component,

TIBConfigService

allows the

SYSDBA

 user to attach

to an InterBase database server and configure its behavior, including:

�

Bringing a database online

�

Shutting down a database

�

Setting the sweep interval

�

Setting the async mode

�

Setting the page buffers

�

Setting the access mode

�

Setting the database reserve space

�

Activating the database shadow

SETTING DATABASE PROPERTIES

273

Bringing a database online

Use the

BringDatabaseOnline

 method of the

TIBConfigService

 component to bring a

database back online.

For example, you could associate the

BringDatabaseOnline

 method to a menu item:

procedure TForm1.BringDatabaseOnline1Click(Sender: TObject);

begin

with IBConfigService1 do

begin

BringDatabaseOnline;

end;

end;

For more information, refer to “Restarting a database” in the

InterBase 6 Operations

Guide

.

Shutting down a database

Use the

ShutdownDatabase

 method of the

TIBConfigService

 component to shut down

the database (or perform an action of type

 TShutdownMode

 and shut down the database)

after a specified number of seconds.

The database shutdown options are:

For example, you could use radio buttons to select the shut down mode and an

Edit

component to specify the number of seconds before shutting down a database:

Shutdown Mode

Meaning

Forced

Shut down the database after the specified number of seconds; to shut down

the database immediately, set the shutdown interval to 0

DenyTransaction

Deny new transactions and shut down the database after the specified number

of seconds; if transactions are active after the shutdown interval has expired,

the shutdown will fail; to shut down the database immediately, set the

shutdown interval to 0

DenyAttachment

Deny new attachments and shut down the database after the specified number

of seconds; if attachments are active after the shutdown interval has expired,

the shutdown will fail; to shut down the database immediately, set the

shutdown interval to 0

TABLE 19.1

Database shutdown modes

CHAPTER 19

WORKING WITH INTERBASE SERVICES

274

INTERBASE 6

if RadioButton1.Checked then

ShutdownDatabase(Forced, (StrToInt(Edit4.Text)));

if RadioButton2.Checked then

ShutdownDatabase(DenyTransaction,(StrToInt(Edit4.Text)));

if RadioButton3.Checked then

ShutdownDatabase(DenyAttachment,(StrToInt(Edit4.Text)));

For more information, refer to “Database shutdown and restart” in the

InterBase 6 Operations Guide.

Setting the sweep interval

Use the

SetSweepInterval

 method of the

TIBConfigService

 component to set the database

sweep interval. The sweep interval refers to the number of transactions between database

sweeps. To turn off database sweeps, set the sweep interval to 0.

For example, you could set up an application that allows a user to set the sweep interval

in an

Edit

 component:

procedure TDBConfigForm.Button1Click(Sender: TObject);

begin

with IBConfigService1 do

begin

SetSweepInterval(StrtoInt(Edit1.Text));

end;

end;

For more information, refer to “Sweep interval and automated housekeeping” in the

InterBase 6 Operations Guide

.

Setting the async mode

InterBase 6 allows you to write to databases in both synchronous and asynchronous

modes. In synchronous mode, the database writes are forced. In asynchronous mode, the

database writes are buffered.

Set the

SetAsyncMode

method of the

IBConfigService

 component to

True

 to set the

database write mode to asynchronous.

procedure TDBConfigForm.CheckBox2Click(Sender: TObject);

begin

with IBConfigService1 do

begin

SetAsyncMode(True);

SETTING DATABASE PROPERTIES

275

end;

end;

For more information, refer to “Forced writes vs. buffered writes” in the

InterBase 6

Operations Guide

.

Setting the page buffers

The

SetPageBuffers

 method of the

IBConfigService

 component lets you set the number

of database page buffers. For example, you could set up an application that allows a user

to set the number of page buffers in an

Edit

 component:

procedure TDBConfigForm.Button1Click(Sender: TObject);

begin

with IBConfigService1 do

begin

SetPageBuffers(StrtoInt(Edit2.Text));

end;

end;

For more information on page buffers, refer to “Default cache size per database” in the

InterBase 6 Operations Guide

.

Setting the access mode

Set the

SetReadOnly

 method of the

IBConfigService

 component to

True

 to set the

database access mode to read-only.

procedure TDBConfigForm.CheckBox1Click(Sender: TObject);

begin

with IBConfigService1 do

begin

SetReadOnly(True);

end;

end;

Note

Once you set the database to read-only, you will be unable to change any of the

other database options until you set

SetReadOnly

 method to

False

 again.

For more information on access mode, refer to “Read-only databases” in the

InterBase 6

Operations Guide

.

CHAPTER 19

WORKING WITH INTERBASE SERVICES

276

INTERBASE 6

Setting the database reserve space

Use the

SetReserveSpace

 method of the

IBConfigService

 component to reserve space on

the data page for versioning.

procedure TDBConfigForm.CheckBox3Click(Sender: TObject);

begin

with IBConfigService1 do

begin

SetReserveSpace(True);

end;

end;

Activating the database shadow

The

ActivateShadow

 method of the

IBConfigService

 component lets you activate a

shadow file for database use.

For example, you could associate the

ActivateShadow

 method to a button:

procedure TDBConfigForm.Button2Click(Sender: TObject);

begin

with IBConfigService1 do

begin

 ActivateShadow;

end;

end;

For more information, see “Shadowing” in the

InterBase 6 Operations Guide

.

Backing up and restoring databases

IBX comes with both Backup and Restore services:

TIBBackupService

 and

TIBRestoreService

, respectively. These are discussed in

“

Backing up databases

”

 and

“

Restoring databases

.”

For more information on backup and restore, refer to “Database backup and restore” in

the

O

perations Guide

.

BACKING UP AND RESTORING DATABASES

277

Setting common backup and restore properties

TIBBackupService

 and

TIBRestoreService

 descend from a common ancestor, which

contains the following properties :

Backing up databases

TIBBackupService

 contains many properties and methods to allow you to build a backup

component into your application. Only the

SYSDBA

 user or the database owner will be

able to perform backup operations on a database.

When backing up a database under normal circumstances, the backup file will always be

on the local server since the backup service cannot open a file over a network connection.

However,

TIBBackupService

 can create a remote file in one of the following is true:

�

The server is running on Windows NT, the path to the backup file is specified as an UNC

name, and the destination for the file is another Windows NT machine (or a machine

which can be connected to via UNC naming conventions).

�

The destination drive is mounted via NFS (or some equivalent) on the machine running

the InterBase server.

�

Setting the backup options

The

Options

 property allows you to build backup options of type

TBackupOption

 into

your application. The backup options are:

Property

Meaning

BackupFile

The path of the backup file name

BackupFileLength

The length in pages of the restored database file; must exceed 2 gigabytes;

you must supply a length for each database file except the last

DatabaseName

Path of the primary file of the database from the server’s point of view; you

can specify multiple database files

Verbose

If set to

True

, displays backup or restore information in verbose mode

BufferSize

The number of default cache buffers to configure for attachments to the

restored database

TABLE 19.2

Common backup and restore properties

CHAPTER 19

WORKING WITH INTERBASE SERVICES

278

INTERBASE 6

�

Displaying backup output

Set the

Verbose

 property to

True

 to display the backup output to a data control, such as

a

Memo

 component.

�

Setting up a backup component

To set up a simple backup component:

1.

Drop a

TIBBackupService

 component on a Delphi form.

2.

Drop

Button

 and

Memo

 components on the form.

3.

Enter the name and path of the database to be backed up in the

DatabaseName

 field and the name and path of the database backup file in

the

BackupFile

 string field of the Object Inspector, or double click on the

button and set the properties in code:

procedure TForm1.Button1Click(Sender: TObject);

begin

with IBBackupService1 do

 begin

DatabaseName := 'd:\temp\examples\database\employee.gdb';

 BackupFile.Add('d:\temp\employee1.gbk');

 end;

end;

Option

Meaning

IgnoreChecksums

Ignore checksums during backup

IgnoreLimbo

Ignored limbo transactions during backup

MetadataOnly

Output backup file for metadata only with empty tables

NoGarbageCollect

Suppress normal garbage collection during backup; improves performance on

some databases

OldMetadataDesc

Output metadata in pre-4.0 format

NonTransportable

Output backup file with non-XDR data format; improves space and performance

by a negligible amount

ConvertExtTables

Convert external table data to internal tables

TABLE 19.3

TIBBackupService

 options

BACKING UP AND RESTORING DATABASES

279

4.

Attach to the service manager as described in

“

Attaching to a service

manager

” on page 271

, or set the properties in code:

with IBBackupService1 do

 begin

ServerName := 'Poulet';

LoginPrompt := False;

Params.Add('user_name=sysdba');

Params.Add('password=masterkey');

Active := True;

end;

5.

Set any other options in the Object inspector (or set them in code), and then

start the service with the

ServiceStart

 method.

The final code for a backup application that displays verbose backup output in a

Memo

component might look like this:

procedure TForm1.Button1Click(Sender: TObject);

begin

 with IBBackupService1 do

 begin

 ServerName := 'Poulet';

 LoginPrompt := False;

 Params.Add('user_name=sysdba');

 Params.Add('password=masterkey');

 Active := True;

 try

 verbose := True;

 Options := [NonTransportable, IgnoreLimbo];

 DatabaseName := 'd:\interbase\examples\database\employee.gdb';

 BackupFile.Add('d:\temp\employee1.gbk');

 ServiceStart;

 While not Eof do

 Memo1.Lines.Add(GetNextLine);

 finally

 Active := False;

 end;

 end;

end;

CHAPTER 19

WORKING WITH INTERBASE SERVICES

280

INTERBASE 6

�

Backing up a database to multiple files

InterBase allows you to back up a database to multiple files. To do this, you must specify

the size of each backup file except for the last, which will hold the remaining

information.

procedure TForm1.Button2Click(Sender: TObject);

begin

 with IBBackupService1 do

 begin

 ServerName := 'Poulet';

 LoginPrompt := False;

 Params.Add('user_name=sysdba');

 Params.Add('password=masterkey');

 Active := True;

 try

 Verbose := True;

 Options := [MetadataOnly, NoGarbageCollection];

 DatabaseName := 'c:\interbase\examples\database\employee.gdb';

BackupFile.Add('c:\temp\e1.gbk = 2048');

 BackupFile.Add('c:\temp\e2.gbk' = 4096);

 BackupFile.Add('c:\temp\e3.gbk'); ServiceStart;

 While not Eof do

 Memo1.Lines.Add(GetNextLine);

 finally

 Active := False;

 end;

 end;

end;

Restoring databases

TIBRestoreService

 contains many properties and methods to allow you to build a restore

component into your application. Only the

SYSDBA

 user or the database owner may use

the

TIBRestoreService

 to overwrite an existing database.

The username and password used to connect to the

TIBRestoreService

 will be used to

connect to the database for restore.

BACKING UP AND RESTORING DATABASES

281

�

Setting the database cache size

Use the

PageBuffers

 property to set the cache size for the restored database. The default

is 2048 buffer pages in the database cache. To change the database cache size, set it in

the Object Inspector or in code:

PageBuffers := 3000

�

Setting the page size

InterBase supports database page sizes of 1024, 2048, 4096, and 8192 bytes. By default,

the database will be restored with the page size with which it was created. To change the

page size, you can set it in the Object Inspector or in code:

PageSize := 4096;

Changing the page size can improve database performance, depending on the datatype

size, row length, and so forth. For a discussion of how page size affects performance, see

“Page size” in the

InterBase 6 Operations Guide.

�

Setting the restore options

The

Options

 property allows you to build restore options of type

TRestoreOption

 into your

application. The restore options are:

�

Displaying restore output

Set the

Verbose

 property to

True

 to display the restore output to a data control, such as a

Memo

 component.

Option

Meaning

DeactivateIndex

Do not build indexes during restore

NoShadow

Do not recreate shadow files during restore

NoValidity

Do not enforce validity conditions (for example, NOT NULL) during restore

OneRelationATime

Commit after completing a restore of each table

Replace

Replace database if one exists

Create

Restore but do not overwrite an existing database

UseAllSpace

Do not reserve 20% of each datapage for future record versions; useful for

read-only databases

TABLE 19.4

TIBRestoreService

options

CHAPTER 19

WORKING WITH INTERBASE SERVICES

282

INTERBASE 6

�

Setting up a restore component

To set up a simple restore component:

1.

Drop a

TIBRestoreService

 component on a Delphi form.

2.

Drop

Button

 and

Memo

 components on the form.

3.

Enter the name and path of the database to be restored in the

DatabaseName

field and the name and path of the database backup file in the

BackupFile

string field of the Object Inspector, or double click on the button and set the

properties in code:

procedure TForm1.Button1Click(Sender: TObject);

begin

with IBRestoreService1 do

 begin

DatabaseName.Add('c:\interbase\examples\database\employee.gdb');

BackupFile.Add('c:\temp\employee1.gbk');

 end;

4.

Attach to the service manager as described in

“

Attaching to a service

manager

” on page 271

, or set the properties in code:

begin

 with IBRestoreService1 do

 begin

 ServerName := 'Poulet';

LoginPrompt := False;

Params.Add('user_name=sysdba');

Params.Add('password=masterkey');

Active := True;

end;

5.

Set any other options in the Object inspector (or set them in code), and then

start the restore service with the

ServiceStart

 method.

The final code for a restore application that displays verbose restore output in a

Memo

component might look like this:

procedure TForm1.Button1Click(Sender: TObject);

begin

 with IBRestoreService1 do

 begin

 ServerName := 'Poulet';

 LoginPrompt := False;

 Params.Add('user_name=sysdba');

 Params.Add('password=masterkey');

BACKING UP AND RESTORING DATABASES

283

 Active := True;

 try

 Verbose := True;

 Options := [Replace, UseAllSpace];

 PageBuffers := 3000;

 PageSize := 4096;

 DatabaseName.Add('c:\interbase6\tutorial\tutorial.gdb');

BackupFile.Add('c:\interbase6\tutorial\backups\tutor5.gbk');

ServiceStart;

 While not Eof do

 Memo1.Lines.Add(GetNextLine);

 finally

 Active := False;

 end;

 end;

end;

�

Restoring a database from multiple backup files

InterBase allows you to restore a database from multiple files. The following code

example shows how to do this.

procedure TForm1.Button3Click(Sender: TObject);

begin

 with IBRestoreService1 do

 begin

 ServerName := 'Poulet';

 LoginPrompt := False;

 Params.Add('user_name=sysdba');

 Params.Add('password=masterkey');

 Active := True;

 try

 Verbose := True;

 Options := [Replace, UseAllSpace];

 PageBuffers := 3000;

 PageSize := 4096;

 BackupFile.Add('c:\temp\employee1.gbk');

 BackupFile.Add('c:\temp\employee2.gbk');

 BackupFile.Add('c:\temp\employee3.gbk');

 DatabaseName.Add('c:\interbase\examples\database\employee.gdb');

 ServiceStart;

 While not Eof do

 Memo1.Lines.Add(GetNextLine);

CHAPTER 19

WORKING WITH INTERBASE SERVICES

284

INTERBASE 6

 finally

 Active := False;

 end;

 end;

end;

�

Restoring a database to multiple files

You might want to restore a database to multiple files to distribute it among different

disks, which provides more flexibility in allocating system resources. The following code

example shows how to do this.

procedure TForm1.Button2Click(Sender: TObject);

begin

 with IBRestoreService1 do

 begin

 ServerName := 'Poulet';

 LoginPrompt := False;

 Params.Add('user_name=sysdba');

 Params.Add('password=masterkey');

 Active := True;

 try

 Verbose := True;

 Options := [Replace, UseAllSpace];

 PageBuffers := 3000;

 PageSize := 4096;

 BackupFile.Add('c:\temp\employee1.gbk');

 DatabaseName.Add('c:\temp\employee2.gdb = 2048');

 DatabaseName.Add('c:\temp\employee3.gdb = 2048');

 DatabaseName.Add('c:\temp\employee4.gdb');

 ServiceStart;

 While not Eof do

 Memo1.Lines.Add(GetNextLine);

 finally

 Active := False;

 end;

 end;

end;

PERFORMING DATABASE MAINTENANCE

285

Performing database maintenance

TIBValidationService

 contains many properties and methods to allow you to perform

database validation and resolve limbo transactions. These are discussed in the following

sections. For more information, refer to “Database Configuration and Maintenance” in

the

O

perations Guide

.

Validating a database

Use the

Options

property of

TIBValidationService

 component to invoke a database

validation. Set any of the following options of type

TValidateOption

 to

True

 to perform

the appropriate validation:

Option

Meaning

LimboTransactions

Returns limbo transaction information, including:

•

Transaction ID

•

Host site

•

Remote site

•

Remote database path

•

Transaction state

•

Suggested transaction action

•

Transaction action

•

Multiple database information

CheckDB

Request a read-only validation of the database without correcting

any problems

IgnoreChecksum

Ignore all checksum errors when validating or sweeping

TABLE 19.5

TIBValidationService

options

CHAPTER 19

WORKING WITH INTERBASE SERVICES

286

INTERBASE 6

To set these options in code, use the

Options

 property:

Options := [CheckDB, IgnoreChecksum, KillShadows];

Note

Not all combinations of validation options work together. For example, you could

not simultaneously mend and validate the database at the same time. Conversely, some

options are intended to be used with other options, such as

IgnoreChecksum

 with

SweepDB

 or

ValidateDB

, or

ValidateFull

 with

ValidateDB

.

To use the

LimboTransactions

 option, see the following section.

Displaying limbo transaction information

Use the

FetchLimboTransaction

 method along with the

LimboTransactions

 option to

retrieve a record of all current limbo transactions. The following code snippet will display

the contents of the

TLimboTransactionInfo

 record, provided that there are any limbo

transactions to display.

try

 Options := [LimboTransactions];

 FetchLimboTransactionInfo;

 for I := 0 to LimboTransactionInfoCount - 1 do

 begin

 with LimboTransactionInfo[i] do

 begin

 Memo1.Lines.Add('Transaction ID: ' + IntToStr(ID));

 Memo1.Lines.Add('Host Site: ' + HostSite);

 Memo1.Lines.Add('Remote Site: ' + RemoteSite);

KillShadows

Remove references to unavailable shadow files

MendDB

Mark corrupted records as unavailable so that subsequent

operations skip them

SweepDB

Request database sweep to mark outdated records as free space

ValidateDB

Locate and release pages that are allocated but unassigned to any

data structures

ValidateFull

Check record and page structures, releasing unassigned record

fragments; use with

ValidateDB

Option

Meaning

TABLE 19.5

TIBValidationService

options

PERFORMING DATABASE MAINTENANCE

287

 Memo1.Lines.Add('Remote Database Path: ' +

RemoteDatabasePath);

 //Memo1.Lines.Add('Transaction State: ' + TransactionState);

 Memo1.Lines.Add('-----------------------------------');

 end;

 end;

 finally

Resolving limbo transactions

You can correct transactions in a limbo state using the

GlobalAction

 property of the

TIBValidationService

 to perform one of the following actions of type

TTransactionGlobalAction

 on the database specified by the

DatabaseName

 property:

For example, to set the global action using radio buttons:

with IBValidationService1 do

try

if RadioButton1.Checked then GlobalAction := (CommitGlobal);

if RadioButton2.Checked then GlobalAction := (RollbackGlobal);

if RadioButton3.Checked then GlobalAction :=

(RecoverTwoPhaseGlobal);

if RadioButton4.Checked then GlobalAction := (NoGlobalAction);

Action

Meaning

CommitGlobal

Commits the limbo transaction specified by ID or commits all

limbo transactions

RollbackGlobal

Rolls back the limbo transaction specified by ID or rolls back all

limbo transactions

RecoverTwoPhaseGlobal

Performs automated two-phase recovery, either for a limbo

transaction specified by ID or for all limbo transactions

NoGlobalAction

Takes no action.

TABLE 19.6

TIBValidationService

 actions

CHAPTER 19

WORKING WITH INTERBASE SERVICES

288

INTERBASE 6

Requesting database and server status reports

TIBStatisticalService

 contains many properties and methods to allow you to build a

statistical component into your application. Only the

SYSDBA

 user or owner of the

database will be able to run this service.

Requesting database statistics

Use the

Options

 property of

TIBStatisticalService

to request database statistics. These

options are incremental; that is, setting

DbLog

 to

True

 also returns

HeaderPages

 statistics,

setting

IndexPages

 to

True

 returns also returns

DbLog

 and

HeaderPages

 statistics, and so

forth. Set any of the following options of type

TStatOption

 to

True

 to retrieve the

appropriate information:

To use the statistical service:

1.

Drop an

IBStatisticalServices

 component on a Delphi form.

2.

Attach to the service manager as described in

“

Attaching to a service

manager

” on page 271

.

3.

Set the

DatabaseName

 property to the path of the database for which you

would like statistics.

4.

Set the options for which statistics you would like to receive, either by setting

them to

True

 in the Object Inspector, or in code using the

Options

 property.

5.

Start the statistical service using the

ServiceStart

 method.

The following example displays the statistics for a database. With a button click,

HeaderPages

 and

DBLog

 statistics are returned until the end of the file is reached.

Option

Meaning

HeaderPages

Stop reporting statistics after reporting the information on the header page

DbLog

Stop reporting statistics after reporting information on the log pages

IndexPages

Request statistics for the user indexes in the database

DataPages

Request statistics for data tables in the database

SystemRelations

Request statistics for system tables and indexes in addition to user tables and

indexes

TABLE 19.7

TIBStatisticalService options

USING THE LOG SERVICE

289

procedure TForm1.Button1Click(Sender: TObject);

begin

with IBStatisticalService1 do

 begin

 ServerName := 'Poulet';

 DatabaseName := 'C:\interbase6\tutorial\tutorial.gdb';

 LoginPrompt := False;

 Params.Add('user_name=sysdba');

 Params.Add('password=masterkey');

 Active := True;

 ServiceStart;

 try

 Options := [DataPages, DBLog];

 While not Eof do

 Memo1.Lines.Add(GetNextLine);

 finally

 Active := False;

 end;

 end;

 end;

Using the log service

Use the

TIBLogService

 to retrieve the

interbase.log

 file, if it exists, from the server. If the log

file does not exist, an error is returned.

To use the log service:

1.

Drop a

TIBLogService

component on a Delphi application.

2.

Drop

Button

 and

Memo

 components on the same application.

3.

Attach to the service manager as described in

“

Attaching to a service

manager

” on page 271

.

4.

Start the log service using the

ServiceStart

 method.

The following example displays the contents of the

interbase.log

 file. With a click of the

button, the log file is displayed until the end of the file is reached.

procedure TForm1.Button1Click(Sender: TObject);

begin

with IBLogService1 do

 begin

 ServerName := 'Poulet';

CHAPTER 19

WORKING WITH INTERBASE SERVICES

290

INTERBASE 6

 LoginPrompt := False;

 Params.Add('user_name=sysdba');

 Params.Add('password=masterkey');

 Active := True;

 ServiceStart;

 try

 While not Eof do

 Memo1.Lines.Add(GetNextLine);

 finally

 Active := False;

 end;

 end;

end;

Configuring users

Security for InterBase relies on a central database for each server host. This database

contains legitimate users who have permission to connect to databases and InterBase

services on that host. The database also contains an encrypted password for the user. This

user and password applies to any database on that server host.

You can use the

TIBSecurityService

 component to list, add, delete, and modify users.

These are discussed in the following sections.

For more information on InterBase database security, refer to “DataBase Security” in the

InterBase 6 Operations Guide

.

Adding a user to the security database

Use the

AddUser

 method along with the following properties to add a user to the

isc4.gdb

security database.

CONFIGURING USERS

291

The following code snippet allows you to set user information in

Edit

 components, and

then adds the user with the

AddUser

 method.

try

UserName := Edit1.Text;

FirstName := Edit2.Text;

MiddleName := Edit3.Text;

LastName := Edit4.Text;

UserID := StrToInt(Edit5.Text);

GroupID := StrToInt(Edit6.Text);

Password := Edit7.Text;

AddUser;

finally

Listing users in the security database

Use the

DisplayUser

 and

DisplayUsers

 methods to display information for a single user

or all users in the

isc4.gdb

 security database, respectively.

Property

Purpose

UserName

User name to create; maximum 31 characters

Password

Password for the user; maximum 31 characters, only first 8 characters are

significant

FirstName

Optional first name of person using this user name

MiddleName

Optional middle name of person using this user name

LastName

Optional last name of person using this user name

UserID

Optional user ID number, defined in

/etc/passwd

, to assign to the user

GroupID

Optional groupID number, defined in

/etc/group

, to assign to the user

SQLRole

Op

tional role to use when attaching to the isc4.gdb security database; for more

information on roles in InterBase, refer to “ANSI SQL 3 roles” in the

 InterBase 6

Operations Guide

TABLE 19.8

TIBSecurityService

 properties

CHAPTER 19

WORKING WITH INTERBASE SERVICES

292

INTERBASE 6

�

Displaying information for a single user

To view the information for a single user, use the

DisplayUser

 method. The following

code snippet displays all the informatoin contained in the

TUserInfoArray

, keyed on the

UserName

 field.

try

 UserName := Edit1.Text;

 DisplayUser(UserName);

 Edit2.Text := UserInfo[0].FirstName;

 Edit3.Text := UserInfo[0].MiddleName;

 Edit4.Text := UserInfo[0].LastName;

 Edit5.Text := IntToStr(UserInfo[0].UserID);

 Edit6.Text := IntToStr(UserInfo[0].GroupID);

finally

�

Displaying information for all users

To view all users, use the

DisplayUsers

 method.

DisplayUsers

 displays the user

information contained in the

TUserInfo

 array. The following code snippet displays all

users in a memo window.

try

DisplayUsers;

for I := 0 to UserInfoCount - 1 do

begin

with UserInfo[i] do

begin

Memo1.Lines.Add('User Name : ' + UserName);

Memo1.Lines.Add('Name: ' + FirstName + ' ' + MiddleName +

' ' + LastName);

Memo1.Lines.Add('UID: ' + IntToStr(UserId));

Memo1.Lines.Add('GID: ' + IntToStr(GroupId));

Memo1.Lines.Add('-----------------------------------');

end;

end;

finally

Removing a user from the security database

Use the

DeleteUser

 method to remove a user from the

isc4.gdb

 security database.

The following code snippet calls the

DeleteUser

 method to delete the user indicated by

the

UserName

 property:

ADMINISTERING SOFTWARE ACTIVATION CERTIFICATES

293

try

 UserName := Edit1.Text;

 DeleteUser;

finally

 Edit1.Clear;

 Active := False;

end;

If you remove a user entry from

isc4.gdb

, no one can log into any database on that server

using that name. You must create a new entry for that name using the

AddUser

 method.

Modifying a user in the security database

Use the

ModifyUser

 method along with the properties listed in

TABLE 19.8

 to modify user

information in the

isc4.gdb

 security database. You cannot change the

UserName

 property,

only the properties associated with that user name.

To modify user information you could display the user information using the example in

“

Displaying information for a single user

” on page 292

. The

TUserInfo

 record is

displayed in the Edit boxes. Use the

ModifyUser

 code in the same way as the

AddUser

code.

Administering software activation certificates

You can use the

TIBLicensingService

 component to install or remove software activation

certificates.

Listing software activation certificates

You cannot use the

TIBLicensingService

 component to view license information. You

must use the License option in

TIBStatisticalService

. For more information, see

“

Displaying license information

” on page 296

.

Adding a software activation certificate

Use the

AddLicense

 method along with the

Key

 and

ID

 properties to add a software

activation certificate.

For example, the following code attaches to a server, and adds a license with the click of

a button after the

Key

 and

ID

 are entered into

Edit

 components.

CHAPTER 19

WORKING WITH INTERBASE SERVICES

294

INTERBASE 6

procedure TForm1.Button1Click(Sender: TObject);

begin

 with IBLicensingService1 do

 begin

 ServerName := 'Poulet';

 LoginPrompt := False;

 Protocol := Local;

 Params.Add('user_name=SYSDBA');

 Params.Add('password=masterkey');

 Active := True;

 try

 Key := Edit1.Text;

 ID := Edit2.Text;

 AddLicense;

 ServiceStart;

 finally

 if Active then

 Active := False;

 end;

 end;

end;

�

Using the Action property

Instead of using the

AddLicense

 or

RemoveLicense

 methods, you could use the

Action

property:

Action := LicenseAdd;

or

Action := LicenseRemove;

Removing a software activation certificate

Use the

RemoveLicense

 method along with the

Key

 property to remove a software

activation certificate:

procedure TForm1.Button2Click(Sender: TObject);

begin

 with IBLicensingService1 do

 begin

 ServerName := 'Poulet';

 LoginPrompt := False;

DISPLAYING SERVER PROPERTIES

295

 Params.Add('user_name=SYSDBA');

 Params.Add('password=masterkey');

 Active := True;

 try

 Key := Edit3.Text;

 finally

 RemoveLicense;

 Active := False;

 end;

 end;

end;

Displaying server properties

Use the

Options

 property of

TIBServerProperties

 to return server configuration

information, including the version of the database and server, license and license mask

information, and InterBase configuration parameters. These options are discussed in the

following sections.

Displaying the database information

Use the

Database

 option to display the

TDatabaseInfo

 record, which consists of the

number of databases attached to the server, the number of databases on the server, and

the names and paths of the database files.

You can set the

Database

 option to

True

 in the Object Inspector, or set it in code.

The following code displays the elements of the

TDatabaseInfo

 record.

NoOfAttachements

 and

NoOfDatabases

 are strings displayed in

Label

 components, while

DbName

 is an array of type string, and displayed in a

Memo

 component.

Options := [Database];

 FetchDatabaseInfo;

 Label1.Caption := 'Number of Attachments = ' +

IntToStr(DatabaseInfo.NoOfAttachments);

 Label2.Caption := 'Number of Databases = ' +

IntToStr(DatabaseInfo.NoOfDatabases);

 for I:= 0 to High(DatabaseInfo.DbName) do

 Memo1.Lines.Add(DatabaseInfo.DbName[i])

CHAPTER 19

WORKING WITH INTERBASE SERVICES

296

INTERBASE 6

Displaying license information

Use the

License

 option to display all software activation certificate IDs and keys currently

enabled on the server. The license information is stored as a record, which consists of the

Key, ID, and description, all of which are arrays of type string. The number of licensed

users on the system is displayed as an integer. You can set

License

 to

True

 in the Object

Inspector, or you can set it in code.

The following code displays the number of licensed users in a

Label

 component, and

displays the

Key

,

ID

, and

Desc

 arrays in a

Memo

 component.

Options := [License];

 FetchLicenseInfo;

 Label1.Caption := 'Licensed Users = ' +

IntToStr(LicenseInfo.LicensedUsers);

 for I:= 0 to High(LicenseInfo.Key) do

 Memo1.Lines.Add(LicenseInfo.Key[i] + ':' + LicenseInfo.ID[i]

+ ':' + LicenseInfo.Desc[i]);

Displaying license mask information

Use the

LicenseMask

 option to display the license and capability masks on the server. A

license mask is a bitmask representing the software activation certificate options

currently enabled on the server. A capability mask is a bitmask representing the

capabilities currently enabled on the server. You can set

LicenseMask

 to

True

 in the

Object Inspector, or you can set it in code.

The following code displays the

LicenseMask

 and

CapabilityMask

 elements of the

TLicenseMaskInfo

 record as

Label

 components on a form.

Options := [LicenseMask];

 FetchLicenseMaskInfo;

 Label1.Caption := 'License Mask = ' +

IntToStr(LicenseMaskInfo.LicenseMask);

 Label2.Caption := 'Capability Mask = ' +

IntToStr(LicenseMaskInfo.CapabilityMask);

DISPLAYING SERVER PROPERTIES

297

Displaying InterBase configuration parameters

Use the

ConfigParams

 option along with the

FetchConfigParams

 or

Fetch

 method to

display the parameters and values in the

ibconfig

 file on the server (

isc_config

 on UNIX and

Linux). ConfigParams displays the location of the InterBase executable, the lock file, the

message file, and the security database. It also displays the configuration file parameters.

You can set

ConfigParams

 to

True

 in the Object Inspector, or you can set it in code.

The following code snippet shows how you could display configuration parameters as

label captions.

Options := [ConfigParameters];

FetchConfigParams;

Label1.Caption := 'Base File = ' + ConfigParams.BaseLocation;

Label2.Caption := 'Lock File = ' + ConfigParams.LockFileLocation;

Label3.Caption := 'Message File = ' +

ConfigParams.MessageFileLocation;

Label4.Caption := 'Security Database = ' +

ConfigParams.SecurityDatabaseLocation;

You could also set the

ConfigFileData

 array to display server key values in a

Memo

component.

var

 I: Integer;

 st1: string;

.

.

.

for I:= 0 to High(ConfigParams.ConfigFileData.ConfigFileValue) do

 begin

 case ConfigParams.ConfigFileData.ConfigFileKey[i] of

 ISCCFG_IPCMAP_KEY: st1 := 'IPCMAP_KEY';

 ISCCFG_LOCKMEM_KEY: st1 := 'LOCKMEM_KEY';

 .

 .

 .

 ISCCFG_DUMMY_INTRVL_KEY: st1 := 'DUMMY_INTRVL_KEY';

 end;

 Memo1.Lines.Add(st1 + ' = ' +

IntTostr(ConfigParams.ConfigFileData.ConfigFileValue[i]));

CHAPTER 19

WORKING WITH INTERBASE SERVICES

298

INTERBASE 6

Displaying the server version

Use the

Version

 option to display the server version information. The

TVersionInfo

 record

contains the server version, the implementation version, and the service version.

You can set the

Version

 option to

True

 in the Object Inspector, or set the

Options

 property

in code.

The following code displays server properties in

Label

 components when a button is

clicked:

Options := [Version];

FetchVersionInfo;

 Label1.Caption := 'Server Version = ' + VersionInfo.ServerVersion;

 Label2.Caption := 'Server Implementation = ' +

VersionInfo.ServerImplementation;

 Label3.Caption := 'Service Version = ' +

IntToStr(VersionInfo.ServiceVersion);

end;

299

CHAPTER

20

Chapter 20

Programming with

Database Events

Use the

TIBEvents

 component in your IBX-based application to register interest in and

asynchronously handle InterBase server events. The InterBase event mechanism enables

applications to respond to action and database changes made by other, concurrently

running applications without the need for those applications to communicate directly

with each other, and without incurring the expense of CPU time required for period

polling to determine if an event has occurred.

Use the

TIBEvents

 component in your application to register an event (or a list of events)

with the

event manager

. The event manager maintains a list of events posted to it by

triggers and stored procedures. It also maintains a list of applications that have registered

an interest in events. Each time a new event is posted to it, the event manager notifies

interested applications that the event has occurred.

To use

TIBEvents

 in your application:

1.

Create a trigger or stored procedure on the InterBase server which will post

an event.

2.

Add a

TIBDatabase

 and a

TIBEvents

 component to your form.

3.

Add the events to the

Events

 list and register them with the event manager.

4.

Write an

OnEventAlert

 event handler for each event.

CHAPTER 20

PROGRAMMING WITH DATABASE EVENTS

300

INTERBASE 6

Events are passed by triggers or stored procedures only when the transaction under

which they occur is posted. In addition, InterBase consolidates events before posting

them. For example, if an InterBase trigger posts 20 x STOCK_LOW events within a

transaction, when the transaction is committed these will be consolidated into a single

STOCK_LOW event, and the client will only receive one event notification.

For more information on events, refer to “Working with Events” in the

Embedded SQL

G

uide

.

Setting up event alerts

Double click on the ellipsis button (...) of the

Events

 property add an event to the

Events

list. Each

TIBEvents

 component can handle up to 15 events. If you need to respond to

more that 15 events use more that one

TIBEvents

 component. If you attempt to add too

many events at runtime, an exception will be raised.

To add an event to the

Events

 list use the following code

TIBEvents.Events.Add('STOCK_LOW')

Writing an event handler

OnEventAlert

 is called every time an InterBase event is received by an

IBEvents

component. The

EventName

 variable contains the name of the event that has just been

received. The

EventCount

 variable contains the number of

EventName

 events that have

been received since

OnEventAlert

 was last called

.

O

nEventAlert

 runs as a separate thread to allow for true asynchronous event processing,

however, the

IBEvents

 component provides synchronization code to ensure that only one

OnEventAlert

 event handler executes at any one time.

301

CHAPTER

21

Chapter 21

Writing Installation

Wizards

This chapter talks about the install/uninstall components.

Installing

TIBInstall

 (and its ancestor,

TIBSetup

) provide properties to allow you to build an

InterBase install component into your application.

TIBInstall

 allows you to set the

installation source and destination, display your own installation messages, and set the

individual InterBase components to be installed. These are discussed in the following

sections.

The following sections describe how to set up an installation application, including

selecting the installation options, setting the source and destination installation

directories, and tracking the installation progress. Once the installation component is set

up, execute it using the

InstallExecute

 method.

Defining the installation component

Use the following properties with

 TIBInstall

 to define your installation component:

CHAPTER 21

WRITING INSTALLATION WIZARDS

302

INTERBASE 6

�

Setting the installation options

The

InstallOptions

 property allows you to set which InterBase components are to be

installed. Set any of the following options to

True

 to install it. For more information on

each option, refer to the online help for

TInstallOptions

.

TIBInstall

 keeps track of the installed options in the uninstall file.

The following code snippet shows how you could set up a series of check boxes to allow

a user to select the InterBase main components:

Property

Purpose

DestinationDirectory

Sets or returns the installation target path; if not set, defaults to

what is in the Windows Registry

InstallOptions

Sets which InterBase components are to be installed; see below

MsgFilePath

Sets or returns the directory path where the

ibinstall.msg

 file can

be found

Progress

Returns an integer from 0 to 100 indicating the percentage of

installation completed; if unset, no progress is displayed

RebootToComplete

If set to

True

, returns a message instructing the user to reboot after

installation is complete

SourceDirectory

Sets or returns the path of the installation source files; in most

cases, this will be a path on the InterBase CD

UnInstallFile

Returns the name and path of the uninstall file, which contains

information on the installed options

TABLE 21.1

TIBInstall

 properties

Option

Installs:

CmdLineTools

the InterBase command line tools, including isql,gbak, and gsec

ConnectivityClients

the InterBase connectivity clients, including ODBC, OLE DB, and

JDBC

Examples

the InterBase database and API examples

MainComponents

the main InterBase components, including the client, server,

documentation, GUI tools, and development tools.

TABLE 21.2

TIBInstall

 options

INSTALLING

303

procedure TSampleform.ExecuteClick(Sender: TObject);

var

 MComps : TMainOptions;

begin

 Execute.Visible := False;

 Cancel.Visible := True;

 MComps := [];

if ServerCheck.Checked then

 Include(MComps, moServer);

if ClientCheck.Checked then

 Include(MComps, moClient);

if ConServerCheck.Checked then

 Include(MComps, moConServer);

if GuiToolsCheck.Checked then

 Include(MComps, moGuiTools);

if DevCheck.Checked then

 Include(MComps, moDevelopment);

if DocCheck.Checked then

 Include(MComps, moDocumentation);

IBInstall1.InstallOptions.MainComponents := MComps;

�

Setting up the source and destination directories

Use the

SourceDirectory

,

DestinationDirectory

 and

SuggestedDestination

 properties

along with the

InstallCheck

method to set up the source and destination directories for

your installation component. The following code snippet uses two TDirectoryListBox

components,

SrcDir

 and

DestDir

, to allow the user to change the source and destination

directories. The

InstallCheck

 method checks to see if everything is prepared for the

installaion.

try

 IBInstall1.SourceDirectory := SrcDir.Directory;

 IBInstall1.DestinationDirectory := DestDir.Directory;

 IBInstall1.InstallCheck;

 except

 on E:EIBInstallError do

 begin

CHAPTER 21

WRITING INSTALLATION WIZARDS

304

INTERBASE 6

 Label1.Caption := '';

 Cancel.Visible := False;

 Execute.Visible := True;

 ProgressBar1.Visible := False;

 Exit;

 end;

 end;

�

Setting up the installation progress components

Use the

Progress

 property, along with a

ProgressBar

 component track the installation

status.

function TSampleform.IBInstall1StatusChange(

 Sender: TObject; StatusComment : String): TStatusResult;

begin

 Result := srContinue;

 ProgressBar1.Position := IBInstall1.Progress;

 Label1.Caption := StatusComment;

if Cancelling then

 begin

 if Application.MessageBox(PChar('UserAbort'),

 PChar('Do you want to exit'), MB_YESNO) = IDYES then

 Result := srAbort;

 end

 else

 // Update billboards and other stuff as necessary

 Application.ProcessMessages;

end;

Defining the uninstall component

Use the

TIBUnInstall

 component to define which components are removed and what

messages are displayed when the user uninstalls InterBase. The following code snippet

shows a simple uninstall component.

procedure TUninstall.bUninstallClick(Sender: TObject);

begin

DEFINING THE UNINSTALL COMPONENT

305

 IBUninstall1.UnInstallFile :=

'C:\Program Files\InterBase Corp\InterBase\ibuninst.000';

 bUninstall.Visible := False;

 ProgressBar1.Visible := True;

try

 IBUninstall1.UnInstallCheck;

 except

 on E:EIBInstallError do

 begin

 Application.MessageBox(PChar(E.Message), PChar('Precheck

Error'), MB_OK);

 Label1.Caption := '';

 bUninstall.Visible := True;

 ProgressBar1.Visible := False;

 Exit;

 end;

 end;

try

 IBUninstall1.UnInstallExecute;

 except

 on E:EIBInstallError do

 begin

 Application.MessageBox(PChar(E.Message), PChar('Install Error'),

MB_OK);

 Label1.Caption := '';

 bUninstall.Visible := True;

 ProgressBar1.Visible := False;

 Exit;

 end;

 end;

 Label1.Caption := 'Uninstall Completed';

 ProgressBar1.Visible := False;

 bCancel.Visible := False;

 bExit.Visible := True;

end;

306

INTERBASE 6

307

APPENDIX

A

Appendix U

InterBase Document

Conventions

This appendix covers the following topics:

�

The InterBase 6 documentation set

�

The printing conventions used to display information in text

�

The printing conventions used to display information in syntax, code, and examples

APPENDIX U

INTERBASE DOCUMENT CONVENTIONS

308

INTERBASE 6

The InterBase documentation set

The InterBase documentation set is an integrated package designed for all levels of users.

It consists of six full-length printed books plus the

Release Notes

 and

 Getting Started,

which describes installation and database migration

. Each of these books is also provided

in Adobe Acrobat PDF format and is accessible on line. If Adobe Acrobat is not already

installed on your system, you can find it on the InterBase distribution CD-ROM or at

http//www.adobe.com/products/acrobat

. Acrobat is available for Windows platforms and most

flavors of UNIX.

Printing conventions

The InterBase documentation set uses various typographic conventions to identify objects

and syntactic elements.

Book

Description

Operations Guide

Provides an introduction to InterBase and an explanation of tools and

procedures for performing administrative tasks on databases and

database servers; also includes full reference on InterBase utilities,

including

isql

,

gbak

,

gfix

, and others

Data Definition Guide

Explains how to create, alter, and delete database objects using the SQL

language

Developer’s Guide

Provides both reference and task-oriented material for users of the

Borland RAD tools (Delphi, C++ Builder, and JBuilder); includes chapters

on writing UDFs, driver configuration, developing embedded

installation applications, and using the new InterBase Data Access

Components

Language Reference

Describes the SQL language syntax and usage; includes references for

procedure and trigger language, InterBase keywords, functions in the

InterBase UDF library, error codes, character sets, and the system tables

Embedded SQL Guide

(formerly called the

Programmer’s Guide

) Describes how to write

embedded SQL database applications in a host language, precompiled

through

gpre

API Guide

Explains how to write database applications using the InterBase API

TABLE A.1

Books in the InterBase 6 documentation set

SYNTAX CONVENTIONS

309

The following table lists typographic conventions used in text, and provides examples of

their use:

Syntax conventions

The following table lists the conventions used in syntax statements and sample code, and

provides examples of their use:

Conven-

tion

Purpose

Example

UPPERCASE

SQL keywords, SQL functions, and names of

all database objects such as tables, columns,

indexes, and stored procedures

•

the

SELECT

 statement retrieves data from the

CITY

 column

in the

CITIES

 table

•

can be used in

CHAR

,

VARCHAR

, and

BLOB

 text columns

•

the

CAST()

 function

italic

New terms, emphasized words, all elements

from host languages, and all user-supplied

items

•

isc_decode_date()

•

the host variable,

segment_length

•

contains six variables, or

data members

bold

File names, menu picks, and all commands

that are entered at a system prompt,

including their switches, arguments, and

parameters

•

gbak

,

isql

,

gsec

.

gfix

•

specify the

gpre -

sqlda old

 switch

•

a script,

ib_udf.sql

, in the

examples

 subdirectory

•

the

employee.gdb

 database; the

employee

 database

•

the

Session | Advanced Settings

 command

TABLE A.2

Text conventions

Convention

Purpose

Example

UPPERCASE

Keywords that must be typed exactly as

they appear when used
•SET TERM !!;
•ADD [CONSTRAINT] CHECK

italic

User-supplied parameters that cannot

be broken into smaller units

• CREATE TRIGGER

name FOR

table;

• ALTER EXCEPTION

name '

message'

<

italic>

Parameters in angle brackets can be

broken into smaller syntactic units; the

expansion syntax for these parameters

follows the current syntax statement

WHILE (<condition>) DO
<compound_statement>

TABLE A.3

Syntax conventions

APPENDIX U

INTERBASE DOCUMENT CONVENTIONS

310

INTERBASE 6

[]

Optional syntax: you do not need to

include anything that is enclosed in

square brackets; when elements within

these brackets are separated by the pipe

symbol (|), you can choose only one

•CREATE [UNIQUE][ASCENDING | DESCENDING]

• [FILTER [FROM

subtype] TO

subtype]

{ }

You must include one and only one of

the enclosed options, which are

separated by the pipe symbol (|)

{INTO | USING}

|

You can choose only one of a group

whose elements are separated by this

pipe symbol

SELECT [DISTINCT | ALL]

...

You can repeat the clause enclosed in

brackets with the “…” symbol as many

times as necessary

(<col> [,<col>…])

Convention

Purpose

Example

TABLE A.3

Syntax conventions (

continued

)

i

A

Abort method 176

access mode, databases 275

access privileges

See

 security

access rights 182

Action property 287

ActivateShadow method 276

Active property

datasets 169, 171

queries 205

tables 182

active record

canceling cached updates 237

synchronizing 188

Add method, queries 199

adding

See also

 inserting

AddLicense method 293

AddUser method 290

administering users 290, 293

AfterClose event 171

Allocation property 162

alternative indexes 184

API

advantages 28

functions 28

Install and Licensing 29

Append method 174

application development

API applications 28

Borland tools 26

embedded SQL applications 27

InterBase Express 26

overview 26

applications

database 135

network protocols 24, 160

optimizing searches 183

preprocessing

See

 gpre

synchronizing tables 188

Apply method, update objects 250

ApplyUpdates method

cached updates 234

TIBCustomDataSet 178

architecture, database applications 140

arithmetic functions

See

 aggregate functions

arrays

See also

 error status array

in UDFs 79

asynchronous mode, setting 274

AutoCalcFields property 177

B

backing up and restoring databases 276–281

remote server 277

BackoutCount property 165

BackupFile property 277

BackupFileLength property 277

BaseLevel property 162

BeforeClose event 171, 172

bi-directional cursors 208

Blob fields, updating 232

Blob filters, declaring 94

Blob UDFs 79, 88–92

control structures 89–90

blob_concatenate() 91

blob_get_segment 89

blob_handle 90

blob_put_segment 90

briefcase model 153

BufferSize property 277

C

C language

writing function modules 79

cached updates 178, 229

and queries 255

applying 233

canceling 236–237

checking status 240–241

client datasets and 231

defined 177

enabling/disabling 231

error handling 256–259

caution 257

fetching records 232

InterBase support 152

overview 229–231

pending 232

Index

ii

INTERBASE 6

queries and 209

record type constants 239

transactions and 233

undeleting records 238–239

CachedUpdates property 33, 178, 231

calculated fields 175, 177

CallableStatement class 54

calling UDFs 87–88

Cancel method 172, 173

canceling cached updates 236–237

CancelUpdates method 178, 237

CanModify property

datasets 173

characters, queries and special 197

CheckDB, TValidateOption 285

ClassNotFoundException 39

Clear method 199

client application

definition 23

client applications

cached updates and 230

network protocols 160

retrieving data 193, 195

client datasets

cached updates and 231

defined 148

clients

See

 SQL client applications; Windows

clients

client-side caching 27

Close method

datasets 171

queries 199

tables 182

Commit method 34

CommitGlobal, TTransactionGlobalAction 287

commits

hard 32

soft 32

communication protocols, networks 160

compiling

UDFs 82

Component palette

creating databases 158

Data Controls page 145

InterBase Admin page 269

InterBase page 136

conditions, testing

See also

 search conditions

ConfigParameters, TPropertyOption 297

Connected property 160

connections

database 159–161

database servers 159, 161

disconnecting 161

network protocols 160

remote applications, unauthorized access 159

setting parameters 159

constraints

See also

 integrity constraints

Constraints property 34

ConvertExtTables, TBackupOption 278

Create, TRestoreOption 281

CreateTable method 186

creating

UDFs 78

current record

canceling cached updates 237

synchronizing 188

CurrentMemory property 163

cursor

bi-directional 208

queries and 208

cusDeleted constant 239

cusInserted constant 239

cusModified constant 239

custom datasets 148

cusUninserted constant 239

cusUnmodified constant 239

D

data

access components 136

analyzing 147

changing 175

graphing 147

grids 146

links 189

synchronizing 188

Data Controls page (Component palette) 145

Data Dictionary 138

iii

data filters

datasets 185

queries vs. 193

data source, configuring 75

data sources

binding to queries 203

remote servers 161

TDataSource 145

data state constants 169

data structures

Blob 89–90

data-aware controls 145

displaying data 208

editing 174

grids 146

database

events 299

database applications 135

architecture 140

flat-file 153

scaling 141, 154

database architecture 140

database components 157–158

creating 158

temporary 158

database drivers 46

database modification 56

Database property 150

database servers 159, 194

DatabaseName property 277, 287

databases 136–148

access mode 275

adding tables 186

and datasets 150

applying cached updates 234

asynchronous mode, setting 274

backing up 276–281

backing up on remote server 277

bringing online 273

changing data 175

characteristics 162

deleting tables 185

disconnecting 161

environmental characteristics 163

getting information 162

limiting data retrieval 185

local 136

logging into 159

maintenance 285–287

Open method 160

operation counts 164

page buffers 275

performance statistics 164

properties, setting 272

relational 135

remote 136

renaming tables 186

resorting fields 184

restoring 276–281

retrieving data 229

services 269–298

shadowing 276

shutting down 273

statistics 288

sweep interval, setting 274

tables 148

transactions 137, 151

unauthorized access 159

validation 285–287

versioning 276

DataPages, TStatOption 288

DataSet component 168

DataSetCount property 161

datasets

Active property 169, 171

adding records 174

and databases 150

applying cached updates 234, 235

as logical tables 147

browsing 172

CanModify property 173

changing data 175

Close method 171

closing 161, 169, 171

custom 148

default state 170

editing 173

event handling 176

getting active 161

getting previous values 241

iv

INTERBASE 6

modes 169

moving through 175

Open method 169

opening 168

referencing 257

searching 175

states 169

TDataSet 168

updating 241, 253, 257

updating multiple 234

DataSets property 161

DataSource property, queries 203

datatypes

for UDF parameters 79

UDFs 79

DBChart component 147

DBFileName property 162

DBImplementationClass property 162

DBInmplementationNo property 162

DbLog, TStatOption 288

DBSiteName property 162

DBSQLDialect property 162

DeactivateIndex, TRestoreOption 281

Decision Cube page (Component palette) 147

decision support 147

declaring Blob filters 94

DELETE

calling UDFs 88

Delete method 173

DELETE statements 206, 241

DeleteCount property 165

DeleteSQL property 241

DeleteTable method 186

DeleteUser method 292

deleting

See

 dropping

DenyAttachment, database shutdown mode 273

DenyTransaction, database shutdown mode 273

detaching from databases 161

detail forms, cached updates and 235

detail, datasets 189–191

disabling cached updates 231

disconnected model 153

displaying

server properties 295

DisplayUser method 291

DLLs

UDFs and 83

drill-down forms 146

driver flags 32

DriverManager and Driver methods 50

E

Edit method 173

editing data 173

EmptyTable method 185

enabling cached updates 231

environmental characteristics 163

errors

user-defined

See

 exceptions

errors, cached updates 256–259

caution 257

event alerts, setting up 300

event handler, writing 300

event manager 299

events

See also

 triggers

datasets 176

update objects 255–256

events, database 299

ExecProc method 216

ExecSQL method

executing a query at runtime 206

preparing a query 207

update objects 251

executable procedures 58

executeQuery method 54

executing queries 205–206

from text files 200

update objects 251

executing stored procedures 215

expression-based columns

See

 computed columns

ExpungeCount property 165

F

FetchAll method 178, 232

Fetches property 164

fetching records 232

FetchLimboTransaction method 286

fields

v

attributes 138

definitions 187

getting previous values 241

lists 184

resorting 184

Filter property 34

filters

data 185

queries vs. 193

Find method, caution for using 183

flat-file applications 153

Forced database shutdown mode 273

ForcedWrites property 163

forms

drill down 146

master/detail tables 146, 189–191

synchronizing data 188

FREE_IT 81

functions

user-defined

See

 UDFs

G

generator

added to triggers 34

GetIndexNames method 183

GoTo method, caution for using 183

GotoCurrent method 188

gpre

preprocessor 27

grids, data-aware 146

H

Handle property 162

hard commits 32

HeaderPages, TStatOption 288

I

I/O

See

 input, output

IgnoreChecksum, TValidateOption 285

IgnoreChecksums, TBackupOption 278

IgnoreLimbo, TBackupOption 278

implicit transactions 151

index definitions 187

indexes 183–185

alternative 184

getting 183

IndexFieldCount property 184

IndexFieldNames property 184

IndexName vs. 184

IndexFields property 184

IndexName property 184

IndexFieldNames vs. 184

IndexPages, TStatOption 288

input parameters 221

INSERT

calling UDFs 88

Insert method 174

INSERT statements 206, 241

InsertCount property 165

inserting

See also

 adding

InsertSQL property 241

integrity constraints

See also

 specific type

Interactive SQL

See

 isql

InterBase Admin page (component palette) 269

InterBase page (Component palette) 136

InterBase UDF library 92

interbase.log file, viewing 289

InterClient

and JDBC driver manager 44

and the JDBC API 68

applets 63

applications 65

architecture 43

classes 46

drivers 46, 47

JDBC extensions 49

program deployment 62

URLs 51

use 44

internal caches 229

InTransaction property 151

IProvider interface, creating 144

isc4.gdb 291

J

JBuilder 37

and JDBC drivers 38

vi

INTERBASE 6

JDBC

API 45

closing connections 56

driver class 39

drivers 61

InterClient 42

URL standards 51

URLs 39

joins, cached updates and 255

K

key constraints

See

 FOREIGN KEY constraints;

PRIMARY KEY constraints

keywords, and JDBC use 39

KillShadows, TValidateOption 286

L

License, TPropertyOption 296

limbo transactions

resolving 287

retrieving 286

LimboTransactions, TValidateOption 285

links 189

listing, software activation certificates 293

live result sets 208

updating 254

LoadFromFile method 200

local connection 23

local databases 136

Locate method 34, 182

logging errors 289

login dialog box 159

login scripts 159

LoginPrompt property 159

Lookup method 182

loops

See

 repetitive statements

M

maintained aggregates 147

Marks property 164

master/detail forms 146, 189–191

cached updates and 235

master/detail relationships 146

MasterFields property 189

MasterSource property 189

max_seglen 90

MaxMemory property 163

memory, allocating for UDFs 80

MendDB, TValidateOption 286

MetadataOnly, TBackupOption 278

methods, terminating 176

mobile computing 153

modifying

See

 altering;updating

ModifySQL property 241

ModifyUser method 293

monitoring dynamic SQL 261

multi-tiered applications 136, 140, 143

N

naming, variables 198

navigating datasets 175

networks

accessing data 230

connecting to 160

NoGarbageCollect, TBackupOption 278

NoGlobalAction, TTransactionGlobalAction 287

NonTransportable, TBackupOption 278

NoReserve property 163

NoShadow, TRestoreOption 281

NoValidity, TRestoreOption 281

number_segments 90

NumBuffers property 163

numeric values

See

 values

O

ODBC drivers 161

ODSMajorVersion property 163

ODSMinorVersion property 163

OldMetadataDesc, TBackupOption 278

OldValue property 241

OnCalcFields event 175, 177

OneRelationATime, TRestoreOption 281

one-to-many relationships 189

OnEventAlert event handler 299

OnLogin event 158, 159

OnStateChange event 171

OnUpdateError event 257

TIBCustomDataset 178

vii

UpdateRecordTypes property 239

OnUpdateRecord event

cached updates 255

example code 257

TIBCustomDataSet 178

update objects 241, 250, 252, 255

UpdateAction 259

Open method

databases 160

datasets 169

queries 205, 207

tables 182

Options property

TIBBackupService 278

TIBRestoreService 281

TIBServerProperties 295

TIBStatisticalService 288

TIBValidationService 285

ORDER BY clause 184

output parameters 221

P

page buffers, setting 275

PageSize property 163

ParamByName method 202

parameter substitution (SQL) 245, 251

parameterized queries 197

creating 200–205

at runtime 202

defined 194

running from text files 200

parameters

UDFs 79

Params property

queries 202

setting user name and password 159

performance statistics 164

persistent database components 157

Post method 172, 173

Prepare method

queries 200, 207

stored procedures 215

PreparedStatement object 53, 58, 60

preparing queries 207

preprocessor

See

 gpre

primary key 34

privileges 182

privileges

See

 security

procedures

executable 58

select 58

stored 58

procedures

See

 stored procedures

protocols, network connections 160

PurgeCount property 165

Q

queries 148

cached updates and 255

creating 195, 198

at runtime 199

DataSource property 203

defining statements 197–200

ExecSQL method 207

optimizing 205, 207–208

overview 195–197

parameter substitution 245, 251

preparing 207

result sets 206, 208–??

cursors and 208

getting at runtime 206

updating 209, 254

running 205–206, 251

from text files 200

setting parameters 200–205

at runtime 202

special characters and 197

submitting statements 207

update objects and 241, 243

whitespace characters and 197

Query Builder 198

query components 148

adding 195

Query Parameters editor 201

Query property, update objects 248

R

ranges 185

RDBMS 136

viii

INTERBASE 6

ReadIdxCount property 165

read-only

database access 275

records 174

result sets 209

updating 254

tables 182

ReadOnly property, tables 182

Reads property 164

ReadSeqCount property 165

RecordCount property 34

records

adding 174

cached updates and 232

deleting 185

caution 185

fetching 232

finding 175, 182

getting subsets 185

moving through 175

read-only 174

sorting 183–185

with alternative indexes 184

synchronizing current 188

undeleting 238–239

updating

multiple datasets 234

queries and 209

RecoverGlobal, TTransactionGlobalAction 287

RecoverTwoPhaseGlobal,

TTransactionGlobalAction 287

referential integrity

See

 integrity constraints

RefreshSQL property 241

relational databases 135

remote applications

cached updates and 229

retrieving data 194

remote connections 23

remote connections, unauthorized access 159

remote database management systems 136

remote database servers

See

 remote servers

remote servers

accessing data 229

backing up databases 277

overview 136

unauthorized access 159

RemoveLicense method 294

Replace, TRestoreOption 281

RequestLive property 34

reserved words

See

 keywords

resolving limbo transactions 287

resorting fields 184

restoring deleted records 238

Result parameter 221

result sets 206, 208–??

cursors and 208

getting at runtime 206

read-only 254

updating 209, 254

retrieving

data 194, 207

limbo transaction data 286

return values

UDFs 79

RevertRecord method 178, 237, 238, 239

Rollback method 152

rolling back transactions 152

running queries 205–206

from text files 200

update objects 251

running stored procedures 215

S

scalability 141, 154

security 159

security database, listing users 291

SELECT

calling UDFs 87

select procedures 58

SELECT statements 206

server activation certificates

adding 293, 294

listing 293

server applications

retrieving data 194

server properties, displaying 295

servers

processes 25

services 269–298

service manager

ix

attaching to 271

detaching from 272

overview 270

services

backup 276

database 269–298

hierarchy 270

licensing 293–294

log 289

manager 270

restore 276

security 290, 293

server 269–298

statistical 288

validation 285

SetAsyncMode method 274

SetPageBuffers method 275

SetParams method 251

SetReadOnly method 275

SetReserveSpace method 276

SetSweepInterval method 274

shadow, activating database 276

shutdown option

DenyAttachment 273

DenyTransaction 273

shutdown options

database 273

forced 273

ShutdownDatabase method 273

single-tiered applications 140, 142

flat-file 153

soft commits 32

software activation certificates, administering

293–294

sort order, setting 183, 184

sorting data 183–185

with alternative indexes 184

SPX/IPX protocol 160

SQL

and stored procedure statements 58

CallableStatement class 54

DELETE string parameter 58

executeQuery method 54

ODBC and dialect use 74

pass-through mode 33

PreparedStatement object 53, 58, 60

SELECT statements 54

statement format 53

UPDATE string parameter 56, 57

SQL applications

deleting records 185

editing data 173

inserting records 174

monitoring 261

sorting data 184

SQL Builder 198

SQL Explorer 227

SQL Links 26

advantages 27

SQL property

changing 207

loading from file 200

setting at runtime 199

specifying 197

SQL queries

creating 195, 198

at runtime 199

defining statements 197–200

optimizing 205, 207–208

overview 195–197

parameter substitution 245, 251

preparing 207

result sets 206, 208–??

cursors and 208

getting at runtime 206

updating 209, 254

running 205–206, 251

from text files 200

setting parameters 200–205

at runtime 202

special characters and 197

submitting statements 207

update objects and 241, 243

whitespace characters and 197

SQL servers 136

StartTransaction method 151

statements

See also

 DSQL statements; SQL statements

statistics, databases 288

status array

See

 error status array

x

INTERBASE 6

status constants, cached updates 240

stored procedures 58, 148

adding 214

creating 215

parameters 221

Prepare method 215

preparing 215

running 215

StoreDefs property 187

StoredProc Parameters editor 214

activating 227

setting parameters 225

viewing parameters 224

StoredProcName property 214

String List editor 198

strings

See

 character strings

sweep interval, setting 274

SweepDB, TValidateOption 286

SweepInterval property 163

synchronizing data 188

SystemRelations, TStatOption 288

T

table components 148, 180

TableName property 181

tables 179

access rights 182

Active property 182

adding 180–182

Close method 182

closing 182

creating 180, 186

deleting 185

emptying 185

field and index definitions 187

master/detail relationships 189–191

naming 181

Open method 182

opening 182

read-only 182

removing records 185

caution 185

renaming 186

retrieving data 185

searching 182

sorting data 183–185

with alternative indexes 184

synchronizing 188

TIBTable 148

updating data with 253

TBackupOption 278

TCP/IP protocol 160

TDataSet 168

TDataSource 145

TDBChart 147

temporary database components 157

terminating connections 161

text files, running queries from 200

TIBBackupService 277

TIBCustomDataSet 177

TIBDatabase 157

temporary instances 158

TIBDatabaseInfo 162

TIBDataSet 148

queries 193

vs TIBQuery 195

TIBEvents 299

TIBLicensingService 293–294

TIBLogService 289

TIBQuery 148, 193

adding 195

vs. TIBDataSet 195

TIBRestoreService 280

TIBSecurityService 290, 293

TIBServerProperties 295

TIBSQL 148

TIBStatisticalService 288

TIBStoredProc 148, 214

TIBTable 148, 179

TIBUpdateSQL 209, 241

events 255–256

TIBValidationService 285–287

total_size 90

TQuery 33, 35

transactions

cached updates and 230, 233

database 150–152

duration 151

implicit 151

overview 137

xi

resolving limbo 287

Rollback method 152

rolling back 152

starting 151

StartTransaction method 151

using databases 151

TRestoreOption 281

triggers 34

TStatOption 288

TTable 33

TTransactionGlobalAction 287

TUpdateAction type 258

TUpdateKind type 257

TValidateOption 285

two-tiered applications 136, 140, 142

U

UDFs

allocating memory 80

Blob 79, 88–92

calling 87–88

calling with INSERT 88

calling with SELECT 87

calling with UPDATE 88

compiling and linking 82

creating 78, 79

declaring 83–86

libraries 83

modifying libraries 83

parameters 79

return values 79

the InterBase library 92

undeleting cached records 238–239

UniDirectional property 208

UnPrepare method 207

unpreparing queries 207

UPDATE

calling UDFs 88

update objects 241

applying 250

event handling 255–256

executing statements 251

preparing SQL statements 243

Update SQL editor 244

UPDATE statements 206, 241

UpdateCount property 165

UpdateObject property 178, 242

typecasting 249

UpdateRecordTypes property 178, 238

OnUpdateError event 239

UpdatesPending property 178, 232

UpdateStatus method 178, 240

updating records

multiple datasets 234

queries and 209

usDeleted constant 240

UseAllSpace, TRestoreOption 281

user interfaces 145–148

multi-record 146

single record 146

user-defined errors

See

 exceptions

user-defined functions

See

 UDFs

UserNames property 163

users

adding 290

administering 290, 293

listing 291

modifying 293

removing 292

usInserted constant 240

usModified constant 240

usUnmodified constant 240

V

ValidateDB, TValidateOption 286

ValidateFull, TValidateOption 286

validating databases 285–287

values

See also

 NULL values

variables, naming 198

Verbose property 277, 278, 281

Version property 163

versioning, databases 276

viewing

InterBase log file 289

security database 291

W

warnings

xii

INTERBASE 6

See also

 errors

WHERE clause

See

 SELECT

whitespace characters, running queries on 197

Writes property 164

	Table of Contents
	List of Tables
	List of Figures
	Using the InterBase Developer’s Guide
	Who should use this book
	Topics covered in this book

	Client/Server Concepts
	Definition of a client
	The InterBase client library
	Definition of a server
	Application development
	Borland client tools applications
	Embedded applications
	API applications
	Multi-database applications

	Programming Applications with Delphi�or�C++ Builder
	Optimizing the InterBase SQL Links driver
	Setting the driver flags
	Setting the SQL pass-through mode
	Setting the SQL query mode

	Working with TQuery
	Why not to use TTable
	Setting TQuery properties and methods

	Using generators

	Programming Applications with JBuilder
	Installing InterClient classes into JBuilder
	Database application basics
	Using JDBC URLs

	Installing and administering InterServer
	Starting InterServer on Windows NT and Windows 2000
	Shutting down InterServer
	Viewing InterServer information and properties

	Programming with InterClient
	InterClient architecture
	InterClient communication

	Developing InterClient programs
	Using the JDBC interfaces
	About InterClient drivers
	Accessing InterClient extensions to the JDBC
	Opening a database connection
	Executing SQL statements
	Executing stored procedures

	Troubleshooting InterClient programs
	Handling installation problems
	Debugging your application

	Deploying InterClient programs
	Deploying InterClient programs as applets
	Deploying InterClient programs as applications

	InterClient/JDBC compliance specifications
	InterClient extensions to the JDBC API
	JDBC features not implemented in InterClient
	InterClient implementation of JDBC features
	InterBase features not available through InterClient or JDBC
	Java SQL datatype support
	SQL-to-Java type conversions
	Java-to-SQL type conversion
	InterClient class references

	Programming Applications with�ODBC
	Overview of ODBC
	Configuring an ODBC driver

	Programming with the ODBC driver
	Configuring and using ODBC data sources
	Configuring data sources
	Connecting from Delphi using the ODBC data source

	Working with UDFs and�Blob Filters
	About UDFs
	UDF overview
	Writing a function module
	Writing a UDF
	Thread-safe UDFs

	Compiling and linking a function module
	Creating a UDF library
	Modifying a UDF library

	Declaring a UDF to a database
	Declaring UDFs with FREE_IT
	UDF library placement

	Calling a UDF
	Calling a UDF with SELECT
	Calling a UDF with INSERT
	Calling a UDF with UPDATE
	Calling a UDF with DELETE

	Writing a Blob UDF
	Creating a Blob control structure
	Declaring a Blob UDF
	A Blob UDF example

	The InterBase UDF library
	Declaring Blob filters

	Using the Install and Licensing APIs
	About the InterBase Install API
	Files in the Install API
	What the Install API does
	The install handle
	Error handling
	Callback functions
	Datatypes defined for the Install API

	Writing an InterBase install
	Overview of the process
	A real-world example

	The Install API functions
	isc_install_clear_options()
	isc_install_execute()
	isc_install_get_info()
	isc_install_get_message()
	isc_install_load_external_text()
	isc_install_precheck()
	isc_install_set_option()
	isc_install_unset_option()
	isc_uninstall_execute(�)
	isc_uninstall_precheck()

	Using the License API
	Loading the License API
	Preparing the ib_license.dat file
	Adding server functionality
	isc_license_add()
	isc_license_check()
	isc_license_remove()
	isc_license_display()
	isc_license_get_msg()

	Pseudocode for a typical install

	Introduction to IBX
	The InterBase tab
	TIBTable
	TIBQuery
	TIBStoredProc
	TIBDatabase
	TIBTransaction
	TIBUpdateSQL
	TIBDataSet
	TIBSQL
	TIBDatabaseInfo
	TIBSQLMonitor
	TIBEvents

	The InterBase Admin tab
	TIBConfigService
	TIBBackupService
	TIBRestoreService
	TIBValidationService
	TIBStatisticalService
	TIBLogService
	TIBSecurityService
	TIBLicensingService
	TIBServerProperties
	TIBInstall
	TIBUnInstall

	Designing Database Applications
	Using InterBase databases
	Local databases
	Remote database servers
	Database security
	Transactions
	The Data Dictionary
	Referential integrity, stored procedures, and triggers

	Database architecture
	Planning for scalability
	Single-tiered database applications
	Two-tiered database applications
	Multi-tiered database applications

	Designing the user interface
	Displaying a single record
	Displaying multiple records
	Analyzing data
	Selecting what data to show

	Building One- and Two-Tiered Applications
	Understanding databases and datasets
	Using transactions
	Caching updates
	Creating and restructuring database tables
	Using the briefcase model

	Scaling up to a three-tiered application
	Creating multi-tiered applications

	Connecting to Databases
	Understanding persistent and temporary database components
	Using temporary database components
	Creating database components at design time

	Controlling connections
	Controlling server login
	Connecting to a database server
	Working with network protocols
	Using ODBC
	Disconnecting from a database server
	Iterating through a database component’s datasets

	Requesting information about an attachment
	Database characteristics
	Environmental characteristics
	Performance statistics
	Database operation counts
	Requesting database information

	Understanding Datasets
	What is TDataSet?
	Opening and closing datasets
	Determining and setting dataset states
	Deactivating a dataset
	Browsing a dataset
	Enabling dataset editing
	Enabling insertion of new records
	Calculating fields
	Updating records

	Navigating datasets
	Searching datasets
	Modifying data
	Using dataset events
	Aborting a method
	Using OnCalcFields

	Using cached updates

	Working with Tables
	Using table components
	Setting up a table component
	Specifying a table name
	Opening and closing a table

	Controlling read/write access to a table
	Searching for records
	Sorting records
	Retrieving a list of available indexes with GetIndexNames
	Specifying an alternative index with IndexName
	Specifying sort order for SQL tables

	Specifying fields with IndexFieldNames
	Examining the field list for an index

	Working with a subset of data
	Deleting all records in a table
	Deleting a table
	Renaming a table
	Creating a table
	Synchronizing tables linked to the same database table
	Creating master/detail forms
	Building an example master/detail form

	Working with Queries
	Queries for desktop developers
	Queries for server developers
	When to use TIBDataSet, TIBQuery, and TIBSQL
	Using a query component: an overview
	Specifying the SQL statement to execute
	Specifying the SQL property at design time
	Specifying an SQL statement at runtime

	Setting parameters
	Supplying parameters at design time
	Supplying parameters at runtime
	Using a data source to bind parameters

	Executing a query
	Executing a query at design time
	Executing a query at runtime

	Preparing a query
	Unpreparing a query to release resources
	Improving query performance
	Disabling bi-directional cursors

	Working with result sets
	Updating a read-only result set

	Working with Stored Procedures
	When should you use stored procedures?
	Using a stored procedure
	Creating a stored procedure component
	Creating a stored procedure
	Preparing and executing a stored procedure
	Using stored procedures that return result sets
	Using stored procedures that return data using parameters
	Using stored procedures that perform actions on data

	Understanding stored procedure parameters
	Using input parameters
	Using output parameters
	Using input/output parameters
	Using the result parameter
	Accessing parameters at design time
	Setting parameter information at design time
	Creating parameters at runtime

	Viewing parameter information at design time

	Working with Cached Updates
	Deciding when to use cached updates
	Using cached updates
	Enabling and disabling cached updates
	Fetching records
	Applying cached updates
	Canceling pending cached updates
	Undeleting cached records
	Specifying visible records in the cache
	Checking update status

	Using update objects to update a dataset
	Specifying the UpdateObject property for a dataset
	Creating SQL statements for update components
	Executing update statements
	Using dataset components to update a dataset

	Updating a read-only result set
	Controlling the update process
	Determining if you need to control the updating process
	Creating an OnUpdateRecord event handler

	Handling cached update errors
	Referencing the dataset to which to apply updates
	Indicating the type of update that generated an error
	Specifying the action to take

	Debugging with SQL Monitor
	Building a simple monitoring application

	Importing and Exporting Data
	Exporting and importing raw data
	Exporting raw data
	Importing raw data

	Exporting and importing delimited data
	Exporting delimited data
	Importing delimited data

	Working with InterBase Services
	Overview of the InterBase service components
	About the services manager
	Service component hierarchy
	Attaching to a service manager
	Detaching from a service manager

	Setting database properties
	Bringing a database online
	Shutting down a database
	Setting the sweep interval
	Setting the async mode
	Setting the page buffers
	Setting the access mode
	Setting the database reserve space
	Activating the database shadow

	Backing up and restoring databases
	Setting common backup and restore properties
	Backing up databases
	Restoring databases

	Performing database maintenance
	Validating a database
	Displaying limbo transaction information
	Resolving limbo transactions

	Requesting database and server status reports
	Requesting database statistics

	Using the log service
	Configuring users
	Adding a user to the security database
	Listing users in the security database
	Removing a user from the security database
	Modifying a user in the security database

	Administering software activation certificates
	Listing software activation certificates
	Adding a software activation certificate
	Removing a software activation certificate

	Displaying server properties
	Displaying the database information
	Displaying license information
	Displaying license mask information
	Displaying InterBase configuration parameters
	Displaying the server version

	Programming with Database Events
	Setting up event alerts
	Writing an event handler

	Writing Installation Wizards
	Installing
	Defining the installation component

	Defining the uninstall component

	InterBase Document Conventions
	The InterBase documentation set
	Printing conventions
	Syntax conventions

	Index

