
Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 3, 2007 2:51 pm (C:\Home\Interbase\8.0\UpdateGuide\IB8UpdateGuideTitle.fm)

Update Guide

Borland Software Corporation
100 Enterprise Way, Scotts Valley, CA 95066-3249

Borland®

InterBase
®

 2007

Copyright © 1998, Inprise Corporation. All rights reserved. INPRISE CONFIDENTIAL

July 3, 2007 2:51 pm (C:\Home\Interbase\8.0\UpdateGuide\IB8UpdateGuideTitle.fm)

Borland Software Corporation may have patents and/or pending patent applications covering subject
matter in this document. The furnishing of this document does not give you any license to these patents.

COPYRIGHT © 2006 Borland Software Corporation. All rights reserved. All Borland brand and product
names are trademarks or registered trademarks of Borland Software Corporation in the United States and
other countries. Other product names are trademarks or registered trademarks of their respective holders.

Printed in the U.S.A.

INT0080WW21000 1E0R0403
0304050607-9 8 7 6 5 4 3 2 1

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 10, 2007 2:35 pm (C:\Home\Interbase\8.0\UpdateGuide\IB8UpdateGuideTOC.fm)

Contents

Tables . vii

Figures . ix

Chapter 1

InterBase 2007 Updates

Chapter 2

License Changes
Comparison . 2-3

InterBase Product Installation 2-4

Registration . 2-4

Chapter 3

Service Pack 2 Updates
Server/Client Version Compatability 3-1

Tar Install for Linux and Solaris 3-1

Setup Instructions 3-2

Features and Updates 3-2

Chapter 4

Incremental Backups
Creating Incremental Backups 4-2

Over-writing Incremental Backups 4-3

Timestamp Changes 4-4

Page Appendix File 4-6

Incremental Backup Guidelines 4-6

Chapter 5

Journaling
The Journal Subsystem 5-7

Journal Archives 5-8

Enabling Journal Files 5-8

Creating Journal Files 5-8

Disabling Journal Files 5-10

Journal Archives5-10

Dropping a Journal Archive 5-11

Managing Journal Archives 5-12

Recovery . 5-12

Archiving and Recovery Commands. 5-12

Managing Archive Size 5-13

Archive Sequence Numbers and Archive Sweeping .

5-13

Tracking Archive State 5-14

Restrictions on Journals and Archives 5-15

Journal Preallocation 5-15

Journaling Tips and Best Practices 5-16

Chapter 6

Batch Updates
Using Batch Updates 6-23

Client APIs for Batch Updates 6-25

The isc_dsql_batch_execute_immed Function . .

6-25

New Error Conditions 6-26

The isc_dsql_batch_execute Function 6-26

Using the isc_dsql_batch_execute_immed Batch Update

API . 6-27

Using the isc_dsql_batch_execute API 6-29

ISQL Improvements 6-30

Chapter 7

Database Settings
Database Write Mode Default SYNC 7-33

Database File Preallocations 7-33

GSTAT. . 7-34

ISQL Extract PREALLOCATE 7-34

GBAK . 7-35

Switch -PR(EALLOCATE) 7-35

API DPB Parameter 7-36

isc_db_preallocate Database Parameter 7-36

Chapter 8

Using BLOBs With
VARCHAR Data
Text BLOBs and VARCHAR Data 8-37

Text BLOB SQL Syntax 8-38

Using Text BLOBs with VARCHAR Data . . . 8-38

Chapter 9

Internationalization Changes
Support for the UTF-8 Character Set 9-41

UNICODE_BE and UNICODE_LE Character Sets 9-42

Collations . 9-42

PT_BR Collation For Brazilian Portuguese 9-42
iii

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 10, 2007 2:35 pm (C:\Home\Interbase\8.0\UpdateGuide\IB8UpdateGuideTOC.fm)
Chapter 10

UDF Descriptors
Declaring a New UDF Using a Descriptor Parameter10-45

Defining the UDF: 10-46

System Table Changes 10-47

Chapter 11

Query Optimizer Improvements
Index Optimization of Correlated Subqueries in UPDATE statements11-49

Shortcut Boolean Expression Evaluation . . . 11-49

Redundant Index Usage in Query Disjuncts . . 11-50

Outer Join and Sort/Merge Optimization . . . 11-50

Invariant FALSE Restrictions in Queries . . . 11-50

Chapter 12

JDBC URL Parameters
JDBC URL Argument 12-51

Log Writer File Property 12-52

Chapter 13

IBX Changes
Changes to IBX in InterBase 2007 13-53

Chapter 14

IBConsole
Changes to IBConsole in InterBase 2007 14-57

Chapter 15

InterBase Features Per Release
New in InterBase 7.5 15-59

Multi-Instance 15-60

Automatic re-routing of databases 15-60

Manual routing of databases 15-60

Server side database alias 15-60

Embedded database user authentication 15-60

New ODS. 15-61

Global temporary tables 15-61

CASE, COALESCE, and NULLIF 15-61

Index optimization for NULL/non-NULL values15-61

Memory management allocation algorithms . . 15-62

Stored procedure and trigger cache management15-62

Sort buffer cache management 15-62

Greater SMP scalability 15-62

Database page buffer cache 15-62

Thread-private Latch Cache 15-63

Error reporting improved in interbase.log . . . 15-63
1-iv I n t e r B a s e 2 0 0 7 U p d a t e G u i d e

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 10, 2007 2:35 pm (C:\Home\Interbase\8.0\UpdateGuide\IB8UpdateGuideTOC.fm)
New in InterClient 4.7 15-63

Savepoints 15-63

ParameterMetaData 15-64

New in InterBase 7.1 15-65

New cross-platform installer 15-65

New registration 15-65

Precision of exact numerics 15-65

New drivers 15-65

New ODS. 15-66

Savepoints 15-66

Savepoints in SQL 15-66

Savepoints in the InterBase API 15-66

Savepoints in triggers and stored procedures15-67

A SAVEPOINT example 15-67

New keywords 15-67

Performance monitoring now accessible in IBConsole15-67

New character sets 15-67

Improved SMP support. 15-68

Hyper-threading support on Intel processors. . 15-69

Change in gbak functionality. 15-69

Hyper-threading support for Intel processors . 15-69

New SQL command: DROP GENERATOR . . . 15-69

Improved garbage collection/index handling . 15-70

IBConsole displays additional object dependencies15-70

Using the InterBase Install API 15-70

Documentation fixes and changes 15-71

UDF library documentation has been moved15-71

Declaring BLOB UDFs. 15-71

Calling convention for UDFs 15-71

Portable UDFs 15-72

Correction for YEARDAY range 15-72

New in InterClient 4.0 15-72

Data Source properties for InterBase 15-72

Standard properties 15-72

Extended properties. 15-73

InterClient connection pooling 15-74

InterClient scroll ability 15-75

The Connection class 15-75

The ResultSet class 15-76

New InterClient methods. 15-76

Methods for the Statement and PreparedStatement classes15-77

The BatchUpdateException class. 15-78

The DatabaseMetaData.supportsBatchUpdates function15-79

Additional functions 15-79

Code examples 15-80

InterClient and the Borland Enterprise Server . 15-81

Other InterClient Improvements 15-81

New in InterBase 7.0 15-81

Index 87
1-v

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 10, 2007 2:35 pm (C:\Home\Interbase\8.0\UpdateGuide\IB8UpdateGuideTOC.fm)
1-vi I n t e r B a s e 2 0 0 7 U p d a t e G u i d e

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 10, 2007 2:37 pm (C:\Home\Interbase\8.0\UpdateGuide\IB8UpdateGuideLOT.fm)

Tables

4.1 Database Parameter Blocks (DPBs) 4-5

5.1 CREATE JOURNAL Options. 5-9

5.2 CREATE JOURNAL Options - Default Values .

5-10

5.3 RDB$JOURNAL_ARCHIVES Table 5-14

6.1 isc_dsql_batch_execute_immed Parameters . 6-25

6.2 Batch Update Error Codes 6-26

6.3 isc_dsql_batch_execute Parameters 6-26

6.4 XSQLVAR_LENTGH Macro Parameters . . 6-27

8.1 Text BLOB Example Result 8-39

9.1 . 9-41

9.2 . 9-42

9.3 PT_BR Character/Collation Order. 9-43

15.1 Data Source standard properties 15-72

15.2 Data Source Extended properties 15-73

15.3 Methods for the Statement and PreparedStatement

classes 15-77

15.4 Methods and constructors for the new

BatchUpdateException class 15-78
vii

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 10, 2007 2:37 pm (C:\Home\Interbase\8.0\UpdateGuide\IB8UpdateGuideLOT.fm)
1-viii I n t e r B a s e 2 0 0 7 U p d a t e G u i d e

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 10, 2007 2:37 pm (C:\Home\Interbase\8.0\UpdateGuide\IB8UpdateGuideLOF.fm)

Figures

6.1 INSERT Without Batch Updates 6-24 6.2 INSERT With Batch Updates. 6-24
ix

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 10, 2007 2:37 pm (C:\Home\Interbase\8.0\UpdateGuide\IB8UpdateGuideLOF.fm)
1-x I n t e r B a s e 2 0 0 7 U p d a t e G u i d e

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 10, 2007 2:37 pm (C:\Home\Interbase\8.0\UpdateGuide\New2007.fm)
C h a p t e r

1
Chapter 1InterBase 2007 Updates

This Update Guide details the various features available in InterBase 2007.

InterBase 2007 introduces a new ODS version 12.0 for new InterBase databases.

Please read through the chapter “Service Pack 2 Updates” to review the latest

changes to InterBase 2007. Use the following links to jump to detailed information

on updates available in InterBase 2007:

• “Journal Preallocation”

• “JDBC URL Parameters”

• “Database Write Mode Default SYNC”

• “Database File Preallocations”

• “PT_BR Collation For Brazilian Portuguese”

• “Query Optimizer Improvements”

• “UDF Descriptors”
C h a p t e r 1 I n t e r B a s e 2 0 0 7 U p d a t e s 1-1

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 10, 2007 2:37 pm (C:\Home\Interbase\8.0\UpdateGuide\New2007.fm)
1-2 I n t e r B a s e 2 0 0 7 U p d a t e G u i d e

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 6, 2007 1:39 pm (C:\Home\Interbase\8.0\UpdateGuide\Licenses.fm)
C h a p t e r

2
Chapter 2License Changes

InterBase 2007 uses the same license manager as other Borland products, to

simplify the registration and licensing processes.

This chapter describes the new process for registering your InterBase license.

Comparison

The following list describes the differences between the previous and current

versions:

• You can no longer use the InterBase license file, ib_license.dat, from previous

releases. These have been replaced with a serial number for registration.

• IBConsole, iblicense and other applications that depended on the InterBase

License API (iblicense.dll) are obsolete for InterBase 2007 licensing. However,

IBConsole is still part of the product and supports licensing for previous
versions. Use the newly provided License Manager GUI tool

(LicenseManager.exe) for license administration with InterBase 2007. Note that

you must choose the File | Save command after you enter your serial number

into the License Manager. Otherwise, the 15-day grace period will not be

enabled. See the ‘IBConsole’ chapter of this guide for more information.

• The Sanctuary License Manager Client library is changing its name from

libborland_lm.{dll,so} to sanctuarylib.dll (Windows) and libsanctuary.so (Linux,

Solaris)

• When installing InterBase as a “Client Only” package, you do not need to install

ib_license.dat with remote client access capability. Client-side licensing is no

longer required.
C h a p t e r 2 L i c e n s e C h a n g e s 2-3

I n t e r B a s e P r o d u c t I n s t a l l a t i o n

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 6, 2007 1:39 pm (C:\Home\Interbase\8.0\UpdateGuide\Licenses.fm)
InterBase Product Installation

When you install InterBase 2007, a registration wizard will come up at the end of

the installation process and ask for a serial number and a license key.

Registration

After you’ve installed InterBase 2007, you will need to enter a Serial Number (S/N)

and key provided by Borland the first time you run the server. (The client does not

require a license key.)

You can register online through the Installer, or offline by running the standalone

client (LicenseManager.exe).

Once you have registered your copy of InterBase 2007, you will notice a
borland.lic file in your <interbase>/license directory (ILD). On startup, if valid

registration details are not found, the InterBase server will report an error

indicating this in the log file.

If you exit from the registration process, InterBase 2007 will function as a trial
version for 15 days. If you don’t complete the registration within that time, the
application will stop working.
2-4 I n t e r B a s e 2 0 0 7 U p d a t e G u i d e

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 10, 2007 2:37 pm (C:\Home\Interbase\8.0\UpdateGuide\SP2_New.fm)
C h a p t e r

3
Chapter 3Service Pack 2 Updates

Please note the following additions and updates in SP2.

Server/Client Version Compatability

2007SP2 client library fixes bugs with connecting to the older version of InterBase,

it is recommended that all IB 2007 clients be upgraded with the new IB 2007 SP2

client library. For local access it is required that the local InterBase client and the

InterBase server (on the same machine) be the same version. The new InterBase

client library allows connections to older version of the server however only

connections to the IB 2007 and IB 2007 SP2 are certified and supported. Please

use the appropriate InterBase client library to connect to an older version of

InterBase server, i.e. IB 7.5 client to connect to IB 7.5 server and so on. This does

not apply to remote or local loop back connections which are achieved using
TCP/IP.

Note The ability of IB clients to connect to older local Servers could be disallowed later
releases.This does not apply to TCP/IP connectivity.

Tar Install for Linux and Solaris

Use the following files to install InterBase 2007 SP2 on Linux:

• InterBaseC_LI-V2007.tar

• InterBaseSS_LI-V2007.tar

• setup

• License.txt

Use the following files to install InterBase 2007 SP2 on Solaris:
C h a p t e r 3 S e r v i c e P a c k 2 U p d a t e s 3-1

F e a t u r e s a n d U p d a t e s

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 10, 2007 2:37 pm (C:\Home\Interbase\8.0\UpdateGuide\SP2_New.fm)
• InterBaseC_SO-V2007.tar

• InterBaseSS_SO-V2007.tar

• setup

• License.txt

Setup Instructions

1 Execute the setup script.

2 Choose to install Server and Client or Install Client only.

3 Follow the prompts to configure:

• Installation directory

• Multi-instance option

• Instance name and port

• Run InterBase as a service

The script installs InterBase to the chosen location sets the correct variables to
allow InterBase to run remotely and link to InterBase libraries.

Note The installer must be run with “root” privileges.

Note command line registration is not available.

Features and Updates

The following updates/changes have been implemented as of this release. Click
the link for detailed descriptions:

• “Journal Preallocation”

• “JDBC URL Parameters”

• “Database Write Mode Default SYNC”

• “Database File Preallocations”

• “PT_BR Collation For Brazilian Portuguese”

• “Query Optimizer Improvements”

• “UDF Descriptors”
3-2 I n t e r B a s e 2 0 0 7 U p d a t e G u i d e

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 6, 2007 1:39 pm (C:\Home\Interbase\8.0\UpdateGuide\IncrementalBackups.fm)
C h a p t e r

4
Chapter 4Incremental Backups

The ability to create incremental backups (also called online dumps) provides you

with an efficient method to backup a database between large maintenance backup

sessions.

InterBase's GBAK feature (included in previous releases for full database backups

and restores) fetches all the rows of the database under transaction control and

writes them to backup files. Database restore reads those backup files and

reconstructs a new instance of the database. This database restoration provides

many useful side-effects such as rebalanced indices and packed data pages, as

well as resetting the database's next transaction ID.

However, backing up large databases can take a very long time, made even longer
when the database load is very heavy. During this time, GBAK's open transaction

causes long record version chains to form for update-intensive rows or deleted

stub rows to linger so that GBAK can read the version of the row before it was

deleted.

The Incremental Backup (online dump) feature is a physical backup mechanism. It

backs up the physical pages of the database to “dump” files. The incremental

backup feature ensures that the output dump files represent the on-disk state of

the database as of the instant the online dump was started, so transaction and

page consistency are maintained in the process.

You can use the incremental backup as a staging area from which a logical GBAK

can be performed, so that your production database is not adversely affected. To

do this, send the online dump to a remote machine and do the logical GBAK
backup on that remote machine. This will also allow you to run a database

validation because validation requires exclusive database access, which cannot

be obtained on a production database unless that database is shut down.

Additionally, this feature allows you to create incremental dumps that write only

those database pages to the dump files that have been modified since the last time

a full/incremental dump was successfully completed. It also provides a means for
C h a p t e r 4 I n c r e m e n t a l B a c k u p s 4-1

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 6, 2007 1:39 pm (C:\Home\Interbase\8.0\UpdateGuide\IncrementalBackups.fm)
you to move or copy a multi-file database to a different location. This was not

possible previously because there was no way to modify the encoded file names

stored on the primary and secondary header pages of the database files.

Note: This feature is only available for ODS 12 databases.

Creating Incremental Backups

Incremental Backup (online dump) support has been added to the GBAK utility

using database parameter blocks (DPB).

(These DPBs are documented in this chapter so that if you are a third-party tool

provider, you can add this same support for your tools.)

GBAK has two major options:

GBAK {-B} {options} - backup a database to a file(s)
GBAK {-C | -R} {options} - create or replace database from a file(s)

Incremental Backup (online dump) adds a third major option to GBAK:

GBAK {-D} {-OV} dbname file [size] add_file1 [size1] add_file2 [size2]
...

The first dump file in the list is similar to the first database file in a multi-file

database. It is the file that is used as a reference to an existing online dump. If

there are additional dump files listed on the GBAK command line, those files are

added to the set of files in the online dump.

[E:/tpc_c] gbak -d tpc_c.gdb tpc_c.gdmp tpc_c.gdmp.1
gbak: WARNING: Dumped 46270 pages of a total 46270 database pages
gbak: WARNING: Dumped 1 pages to page appendix file

[E:/tpc_c] gbak -d tpc_c.gdb tpc_c.gdmp tpc_c.gdmp.1
gbak: ERROR: I/O error for file "E:\TPC_C\TPC_C.GDMP.1"
gbak: ERROR: Error while trying to create file
gbak: ERROR: The file exists.

gbak: Exiting before completion due to errors

[E:/tpc_c] gbak -d tpc_c.gdb tpc_c.gdmp tpc_c.gdmp.2
gbak: WARNING: Dumped 2 pages of a total 46270 database pages
gbak: WARNING: Dumped 0 pages to page appendix file

In the example above, tpc_c.gdmp.1 was added in the course of a full database

dump.

Re-executing the command gives an error because it tries to add tpc_c.gdmp.1

again causing a file creation error. The last command adds a new file tpc_c.gdmp.2

successfully.

The online dump files can be on either a local or a remote file system that is

writable by the InterBase server. This implies that the database pages are never

retrieved by the GBAK utility; online dump is a server-side operation only. While
4-2 I n t e r B a s e 2 0 0 7 U p d a t e G u i d e

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 6, 2007 1:39 pm (C:\Home\Interbase\8.0\UpdateGuide\IncrementalBackups.fm)
the online dump files can be located on any mounted file system, the page

appendix file is always on the local file system. This file is written to by concurrent

server threads handling client requests when it is necessary to preserve the state

of page's image for the online dump. This is analogous to InterBase's

multigenerational architecture (MGA) where a previous version of a row is stored

when updating a row to preserve a transaction's snapshot. The page appendix file

helps to maintain the physical page snapshot of the online dump. It is a temporary

file and is deleted when the online dump completes.

The [size] parameter is optional and denotes the file's size in units of pages, using
the database's page size. If the [size] parameter is not provided then that dump

file's size will be determined by its file-sequenced counterpart in the database. If

the dump file's sequence is higher than the sequence of any database file then it

takes the size of its predecessor dump file.

If you run GBAK -D against an existing online dump, an incremental dump will be

created.

[E:/tpc_c] gbak -d tpc_c.gdb tpc_c.gdmp
gbak: WARNING: Dumped 46270 pages of a total 46270 database pages
gbak: WARNING: Dumped 23 pages to page appendix file

[E:/tpc_c] gbak -d tpc_c.gdb tpc_c.gdmp
gbak: WARNING: Dumped 2 pages of a total 46270 database pages

 gbak: WARNING: Dumped 0 pages to page appendix file

This updates the online dump with only those pages that have changed since the

last dump. An incremental dump can always be retried if it fails. If a full online
dump fails, InterBase will delete the online dump files that were written prior to the

failure. If InterBase cannot not access those files because of the failure, those

online dump files will have to be deleted manually.

Over-writing Incremental Backups
The -OV overwrite switch causes the current set of online dump files to be deleted,
and initiates a full database dump.

 [E:/tpc_c] gbak -d tpc_c.gdb tpc_c.gdmp
 gbak: WARNING: Dumped 2 pages of a total 46270 database pages
 gbak: WARNING: Dumped 1 pages to page appendix file

 [E:/tpc_c] gbak -d -ov tpc_c.gdb tpc_c.gdmp
 gbak: WARNING: Dumped 46270 pages of a total 46270 database pages
 gbak: WARNING: Dumped 7 pages to page appendix file

The online dump files are marked as a read-only InterBase database. This means

that it can be accessed by read-only database applications. It is undefined how
such database applications will behave if they access the online dump “database”

while the dump files are being incrementally updated. If an online dump is

converted to read-write, it ceases to be an online dump and becomes a standalone

database. Attempting to perform an online dump against it will fail.

[E:/tpc_c] gfix tpc_c.gdmp -mode read_write
C h a p t e r 4 I n c r e m e n t a l B a c k u p s 4-3

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 6, 2007 1:39 pm (C:\Home\Interbase\8.0\UpdateGuide\IncrementalBackups.fm)
[E:/tpc_c] gbak -d tpc_c.gdb tpc_c.gdmp
gbak: ERROR: online dump failure: dump file has no dump timestamp
gbak: Exiting before completion due to errors

[E:/tpc_c] gfix tpc_c.gdmp -mode read_only

[E:/tpc_c] gbak -d tpc_c.gdb tpc_c.gdmp
gbak: ERROR: online dump failure: dump file has no dump timestamp
gbak: Exiting before completion due to errors

There is no online dump restore operation, per se. The online dump can be

converted to a read-write database, as mentioned above, and used in place. If the

current location is not convenient for database processing then online dump can

be run against these dump files to copy them somewhere else local or remote.

This provides a general copy mechanism that allows multifile databases to be

copied and have their internal secondary file name links automatically updated for

the copy destination.

Database validation (GFIX -V) can be run against an online dump because it is a

database. An additional validation check is performed against an online dump,

which checks that no database page has a write timestamp greater than that of the

online dump timestamp. The online dump timestamp represents that last time a full

or incremental dump succeeded.

[E:/tpc_c] gfix -v -n tpc_c.gdmp
Summary of validation errors

 Number of database page errors : 1
 and in the InterBase log file:.
IBSMP (Server) Sat Jun 24 14:41:36 2006
 Database: E:\TPC_C\TPC_C.GDMP
 Page 155 has timestamp 1151170444 greater than dump timestamp 1151170438

Timestamp Changes
GSTAT -H has been modified to list the online dump timestamp after the database
creation date entry. Note that the database creation date is that of the source

database and not the online dump.

[E:/tpc_c] gstat -h tpc_c.gdmp

Database "tpc_c.gdmp"

Database header page information:

 Flags 0
 Checksum 12345
 Write timestamp Jun 28, 2006 19:57:41
 Page size 4096
 ODS version 12.0
 Oldest transaction 72
 Oldest active 73
 Oldest snapshot 73
 Next transaction 74
 Sequence number 0
 Next attachment ID 0
 Implementation ID 16
 Shadow count 0
 Page buffers 0
4-4 I n t e r B a s e 2 0 0 7 U p d a t e G u i d e

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 6, 2007 1:39 pm (C:\Home\Interbase\8.0\UpdateGuide\IncrementalBackups.fm)
 Next header page 0
 Clumplet End 102
 Database dialect 3
 Creation date Jun 25, 2006 13:22:10
 Online dump timestamp Jun 28, 2006 19:59:16
 Attributes read only

 Variable header data:

 Dump file length: 20000
 END

You can request an online dump by passing a string of database parameter blocks

to the isc_attach_database() API.

The following table lists the names and values of database parameter blocks

(DPB) used to access this feature. All general requirements and restrictions for

DPB construction as documented in the InterBase API Guide apply here.

A successful online dump returns a warning status vector to pass back dump

information status:

status [0] = isc_arg_gds
status [1] = isc_arg_success
status [2] = isc_arg_warning
status [3] = isc_old_dump_stats
status [4] = isc_arg_number
status [5] = <no. of dumped pages>
status [6] = isc_arg_number
status [7] = <total no. of DB pages>

Table 4.1 Database Parameter Blocks (DPBs)

Parameter Name Purpose Length Value

isc_dpb_online_dump Directive to initiate an online dump 1 0 or 1

isc_dpb_old_overwrite Indicates the current online

dump files should be deleted

and a full database dump

executed (optional)

1 0 or 1

isc_dpb_old_file_name String specifying the name of an online
dump file, up to 255 characters

No. of
bytes in
string

Dump
file
name
string

isc_dpb_old_file_size Number of pages for online

dump file (optional)

No. of
bytes for
length
indicator
(1, 2, or
4)

No. of
pages
for
dump
length
C h a p t e r 4 I n c r e m e n t a l B a c k u p s 4-5

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 6, 2007 1:39 pm (C:\Home\Interbase\8.0\UpdateGuide\IncrementalBackups.fm)
status [8] = isc_arg_gds
status [9] = isc_old_appendix_stats
status [10] = isc_arg_number
status [11] = <no. pages written to appendix>
status [12] = isc_arg_end

Page Appendix File

When an online dump is running, client worker threads never write to the online

dump files. Thus, their performance is not degraded by writing over the network to

a remote file system. However, to maintain physical and time consistency of the

dump, client worker threads may write pages to a local temporary file with a prefix

of “ib_dump_”. Any database page is guaranteed to be written at most one time to

this temporary file. This temporary file is known as the dump or page appendix file.

For very large databases with intensive update activity, the page appendix file
could also grow to a very large size. There must be adequate space in the temp

directories to handle this storage demand or the online dump will fail. The dump

information returned to GBAK about the number of pages written to the appendix

file can aid configuration of the temp file space.

Incremental Backup Guidelines

• Since an online dump is a physical backup technique, the online dump files are

not transportable to other hardware platforms. It would be necessary to use

GBAK's traditional logical backup on the online dump to transport it.

• Multiple online dumps of the same or distinct databases can be run concurrently

though this would not be recommended for performance reasons.

• Performing an incremental online dump still requires a full scan of the source

database.

• The performance improvement accrues from limiting the number of page writes

to the online dump files, especially if those files are located on a remote file

server.

• This feature is used internally by InterBase to create an online dump of the

database to a journal archive directory when CREATE JOURNAL ARCHIVE is

executed.

• An active online dump can be cancelled by the InterBase Performance Monitor

or killing the GBAK process.

• External tables are not backed up by an online dump.

• External tables may not be accessible if the online dump is attached as a

read-only database. If the external file pathnames can't be accessed from the

online dump's location, there is no way to modify the dump's metadata without

making the dump a read-write database. If it is made a read-write database, it

can no longer be a target for online dump again.
4-6 I n t e r B a s e 2 0 0 7 U p d a t e G u i d e

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 10, 2007 2:37 pm (C:\Home\Interbase\8.0\UpdateGuide\Journaling.fm)
C h a p t e r

5
Chapter 5Journaling

This chapter describes the journal subsystem and the DDL syntax used to create,

alter, and drop journal files and journal archives. Database journaling improves

VLDB management and facilitates disaster recovery.

Note that Journaling is only available on the Server Edition of InterBase 2007, and

not on the Desktop Edition.

The Journal Subsystem

The following criteria should be used to determine the optimal journaling

configuration:

• The I/O speed of the device on which the journal files are created.

• The speed of concurrent creation of new journal files.

• Hardware requirements and ease of setup.

To improve performance, it is recommended that database files and journal files be

created on different devices. The default behavior of CREATE JOURNAL creates the

journal files in the same location as the database file. While this is not a

recommended practice, it can be advantageous when the database files can be

cached in main memory. In this case there would be no database read operations

and only minimal database writes during journal checkpoints, which can be

configured to occur infrequently.

The CREATE JOURNAL statement causes all subsequent write operations on a

database to be done asynchronously. The journal file I/O is always synchronous

and cannot be altered. All transaction changes are safely recorded on durable

storage before the transaction is committed. This guarantees the ACID properties

of a transaction (the database industry standards for Atomicity, Consistency,
Isolation, and Durability).
C h a p t e r 5 J o u r n a l i n g 5-7

E n a b l i n g J o u r n a l F i l e s

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 10, 2007 2:37 pm (C:\Home\Interbase\8.0\UpdateGuide\Journaling.fm)
Using asynchronous I/O for database writes allows the operating system to

optimize file I/O, such as by writing consecutive pages together, or by using

scatter/gather techniques that write consecutive pages in discontiguous page

buffers. Journal file I/O is performed using InterBase's careful write strategy. This

implies that database pages can be written back to the database in any order after

their changes have been journaled.

During a database checkpoint, any database page writes that were buffered

asynchronously are flushed to disc before checkpoint completion is signaled. You

can re-enable synchronous writes for the database, which will remove the
requirement for a flush operation before a database checkpoint can be considered

done.

Journal Archives

A journal archive is the set of destination directories that will hold the current set of
journal files for a particular database. For disaster recovery purposes, a journal

archive should always be located on a server machine or file server remote from

the database server. At the current time, it is a requirement that all journal files

must be in the same directory.

There are four types of journal archives: Database Archive, Journal Archive,

Recovery (also known as Online Dump, or Point-in-Time Recovery) and Archive

Sweep.

It is not necessary for InterBase to be installed and running on the machine used

for journal archive storage. Since the journal archive appears as a remote file

server, dissimilar platforms can serve as a remote journal archive. For example, a

Linux database server could NFS mount a file system on a Solaris file server or

NetWare.

Enabling Journal Files

This section shows the DDL statements required to enable journaling for a

database.

Creating Journal Files

Creating a journal requires exclusive access to the database. The DDL syntax is:

CREATE JOURNAL [<journal-file-specification>] [LENGTH <number-of-pages>
[PAGES]]
 [CHECKPOINT LENGTH <number-of-pages> [PAGES]]

 [CHECKPOINT INTERVAL <number-of-seconds> [SECONDS]]

 [PAGE SIZE <number-of-bytes> [BYTES]]

 [PAGE CACHE <number-of-buffers> [BUFFERS]]

 [[NO] TIMESTAMP NAME];
5-8 I n t e r B a s e 2 0 0 7 U p d a t e G u i d e

E n a b l i n g J o u r n a l F i l e s

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 10, 2007 2:37 pm (C:\Home\Interbase\8.0\UpdateGuide\Journaling.fm)
The <journal-file-specification> is a quoted string containing the full path and base

file name of the journal file. The base journal file name is used as a template for

the actual journal file names as they are created. The form of the actual journal file

name is discussed in detail below.

The LENGTH clause specifies the number of pages that will be written to the journal

file before initiating a rollover to a new journal file. A single journal file is limited to

2GB in size.

Several options control the journaling configuration of a database. These options

are described in Table 5.1, “CREATE JOURNAL Options”.

All CREATE JOURNAL clauses are optional. The default values are shown in Table

5.2, “CREATE JOURNAL Options - Default Values”.

Table 5.1 CREATE JOURNAL Options

Option Description

CHECKPOINT

LENGTH

Determines the number of journal pages to be written
before initiating a database checkpoint.

CHECKPOINT

INTERVAL

Determines the number of seconds between database
checkpoints.

Note: If both CHECKPOINT LENGTH and CHECKPOINT

INTERVAL are specified, whichever event occurs first will
initiate a database checkpoint.

PAGE SIZE Determines the size of a journal page in bytes. A journal
page size must be at least twice the size of a database
page size. If a journal page size of less is specified, it will be
rounded up to twice the database page size and a warning
will be returned.

The journal page size need not be a power of 2.

PAGE CACHE Determines the number of journal buffers that will be
allocated. The size of each buffer is the same as the journal
page size.

[NO]

TIMESTAMP

NAME

Determines whether or not to append the file creation
timestamp to the base journal file name.

If this option is on, the base journal file name will be
appended with a timestamp of the form:

<YYYY>_<MM>_DD>T<hh>_<mm>_ss>Z.<sequence-number
>.journal
C h a p t e r 5 J o u r n a l i n g 5-9

J o u r n a l A r c h i v e s

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 10, 2007 2:37 pm (C:\Home\Interbase\8.0\UpdateGuide\Journaling.fm)
Disabling Journal Files

The DROP JOURNAL statement will discontinue the use of write ahead logging and

delete all journal files. This operation will not delete any journal files in the journal

archive but will discontinue maintenance of the journal archive. Dropping journal

files requires exclusive access to the database. The syntax of this statement is:

DROP JOURNAL

Journal Archives

The purpose of the Journal archive is to support long-term database recovery. This

feature provides for disaster recovery in the event a database becomes

unavailable due to hardware or software failures that may make the primary

database permanently inaccessible.

The journal archive does not automatically copy journal files or perform online

database dumps. There are no DDL clauses to declaratively specify when to
backup journals to the journal archive. It is similar to logical database backup,

GBAK, in that a separate utility must be run to effect the archiving of an archive.

A journal archive creation statement defines a target journal archive directory to

the database. Creating a journal archive does not require exclusive database

access. This is important because the side-effect of this statement is to create an

online dump of the database into the journal archive.

Table 5.2 CREATE JOURNAL Options - Default Values

Option Default Value

<journal-file-spec
>

The full database path and file name

LENGTH 4000 pages

CHECKPOINT

LENGTH

3500 pages

CHECKPOINT

INTERVAL

0 seconds

PAGE SIZE Twice the database page size

PAGE CACHE 100 buffers

TIMESTAMP

NAME

Enabled
5-10 I n t e r B a s e 2 0 0 7 U p d a t e G u i d e

J o u r n a l A r c h i v e s

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 10, 2007 2:37 pm (C:\Home\Interbase\8.0\UpdateGuide\Journaling.fm)
The online dump (OLD) is a physical copy of the database that is

transaction-consistent as of the start of the dump. The online dump copies the

database without holding a transaction open, which will prevent database

performance from suffering due to the buildup of record back versions.

Creating a Journal Archive

The DDL syntax for creating a journal archive is:

CREATE JOURNAL ARCHIVE [<journal archive directory>]

where <journal archive directory> ::= <directory specification>.

Note that the CREATE JOURNAL ARCHIVE DDL statement does not create the file

system directories. The statement will return an error if the directory does not exist

or is not accessible.

The journal archive directory-specification should be specified such that it is

accessible for a file copy operation. For example, if the archive directory is a UNIX

symbolic link, use the symbolic link and not the target path name. The directory

can be specified as a UNC path, as long as the underlying file APIs can open the

file using that specification.

If a journal archive directory specification is not given, the journal directories

themselves become a de-facto archive. Normally, when a database checkpoint

that writes to the database what has been recorded in the journal files, the current

journal files of the database are deleted. The following DDL statement:

CREATE JOURNAL ARCHIVE;

will mark all database journal files so that they will not be deleted when a

checkpoint occurs. This also means that no copying is required, since the files are

already where they belong for archiving purposes.

The number-of-pages parameter specifies the number of pages to be written before

an archive directory spill-over occurs. When a directory spill-over occurs, the next

archive directory will be used for copy operations.

Dropping a Journal Archive

The DROP JOURNAL ARCHIVE statement disables journal archiving for the

database. It causes all journal files and database file dumps to be deleted in all

journal archive directories. The file system directories themselves are not deleted.

Disabling journal archiving does not disable database journaling. The database will

continue to use the write-ahead protocol to commit database changes to the

journals. If the intent is to also disable short term journaling, then a separate

DROP JOURNAL statement must be executed. The DDL syntax is:

DROP JOURNAL ARCHIVE
C h a p t e r 5 J o u r n a l i n g 5-11

M a n a g i n g J o u r n a l A r c h i v e s

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 10, 2007 2:37 pm (C:\Home\Interbase\8.0\UpdateGuide\Journaling.fm)
Managing Journal Archives

Archived database dumps representing the starting point from which long-term
database recovery is initiated. A set of archive journal files will be applied to a copy
of the archive database in the same way that local journal files are applied to a
production database during short-term recovery. Optionally, an InterBase
timestamp can be specified (-until <timestamp>) to indicate a point-in-time until
which the journal files will be applied.

Recovery

When the archive is used to recover a database, the resulting database is not a
journaled database. This means that RDBLOG_FILES, RDBJOURNAL_FILES
and the log page of the database are empty. This is to prevent the database from
accidently using the journal and journal archive of an existing database.

Database recovery is usually used when the original database is corrupted or
unavailable due to hardware failures. However, it is possible to recover a database
on the same machine as the working, production database or on a different
machine where the journal and journal archive directories have no similarly-named
directories. Therefore, if you want to use journaling and/or journal archiving for a
recovered database, it is necessary to execute the appropriate DDL commands to
do so.

Archiving and Recovery Commands

Use the gbak command to archive databases and journal files to the archive, and
also to recover a database from the archive and load it back to a specified local
directory.

To archive a database:

gbak -archive_database <dbname>

To archive local journal files:

gbak -archive_journals <dbname>

To recover a database (optionally to a point-in-time):

gbak -archive_recover [-until <timestamp>] <archive_dbname> <local_dbname>

If you do not use the -until command line switch, the database recover program will
apply as many journal files as possible to recover a database to the most recent
point-in-time. You should put quotes around the words, ‘UNTIL timestamp’ if you invoke

the gbak command from a shell, so the date and time components are not passed in as
5-12 I n t e r B a s e 2 0 0 7 U p d a t e G u i d e

M a n a g i n g J o u r n a l A r c h i v e s

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 10, 2007 2:37 pm (C:\Home\Interbase\8.0\UpdateGuide\Journaling.fm)
separate arguments. Please refer to Embedded SQL Guide, Chapter 7: Working with Dates

and Times, Section: Formatting dates for input, for a description of how to specify these

timestamps. Note the use of special literals like “now” and “today”.

If possible, the database recovery program will attempt to “jump” from the archive
to the local journal directory to apply the journal files that were never copied to the
archive. In this way, a database may be recovered to the most recently committed
transaction of the original database.

Managing Archive Size

If you allow it, the archive will grow in storage size infinitely as the database and
the most current journal files are continually archived.

Use the gfix command to manage and garbage-collect archive items that are no
longer required As the number of journal files grows in the archive when you have
not created more recent archived database dumps, the time that you will need to
recover a database from the archive also grows. Therefore, it is a good practice to
periodically create additional database dumps in the archive. At some point, you
may decided that older database dumps, and the journal files on which they
depend, are no longer necessary, since the basis of recovery will be on more
recent database dumps and journal files.

Archive Sequence Numbers and Archive Sweeping

All archived items are denoted by an archive sequence number that corresponds
to the order in which the items were created in the archive.

To garbage-collect archive items less than an archive sequence number, use the
archive sweep option combined with the archive sequence number:

 gfix -archive_sweep [-force] <archive_sequence_no>

If an archived item cannot be swept (garbage-collected) for some reason, the
sweep will stop and return an error status. In some cases, this could stop the
command from ever succeeding. For example, if an archive is manually deleted
with a shell OS command, the sweep will always fail because it can't find the file to
drop. The -force option continues to delete as much as possible, regardless of
errors.

The -force switch will log errors to the InterBase error log instead of returning an
error status.

To specific how many database dumps to allow in the archive:

gfix -archive_dumps <number>
C h a p t e r 5 J o u r n a l i n g 5-13

M a n a g i n g J o u r n a l A r c h i v e s

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 10, 2007 2:37 pm (C:\Home\Interbase\8.0\UpdateGuide\Journaling.fm)
Once the number of database dumps in the archive exceeds the <number> given,
all lower sequenced archive items are deleted from the archive.

Sometimes all lower sequenced items cannot be deleted. For example, a database
dump may depend on a lower sequenced journal file with which to start recovery.
In that case, InterBase will automatically adjust the given sequence number to a
lower number, so that this dependency is not lost.

Tracking Archive State

To track that state of the archive, a new system table,
RDB$JOURNAL_ARCHIVES, has been added for ODS 12 (InterBase 2007)
databases. The gbak and gfix commands listed above use this system table to
decide which archive items are targets for the commands.

Table 5.3 RDB$JOURNAL_ARCHIVES Table

Column Name Data Type
Lengt
h Description

RDB$ARCHIVE_NAME VARCHAR 1024 The name of the archived item.

RDB$ARCHIVE_TYPE CHAR 1 The type of the archived item. 'D'
indicates a database dump. 'S'
indicates a secondary database file of
a database dump. 'J' indicates a
journal file.

RDB$ARCHIVE_LENGTH INT64 8 Length of the archived item as stored
in bytes.

RDB$ARCHIVE_SEQUENCE INTEGER 4 Sequence number of archived item.

RDB$ARCHIVE_TIMESTAMP TIMESTAMP 8 Timestamp when item was stored in
the archive.

RDB$DEPENDED_ON_SEQUENCE INTEGER 4 Sequence of archived item that this
item depends on. For 'S' archive types,
it would be the sequence no. of the 'D'
primary database dump file. For 'D'
archive types, it is the sequence no. of
the starting journal file for recovering
from the archive.

RDB$DEPENDED_ON_TIMESTAMP TIMESTAMP 8 As above, but the archive timestamp
for the archived item that this item
depends on.
5-14 I n t e r B a s e 2 0 0 7 U p d a t e G u i d e

J o u r n a l P r e a l l o c a t i o n

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 10, 2007 2:37 pm (C:\Home\Interbase\8.0\UpdateGuide\Journaling.fm)
Restrictions on Journals and Archives

1 The archive is platform-specific. An archive created with InterBase for Windows

cannot be directly used to recover on InterBase for Unix. Instead, an archived

database dump could be logically backed up in transportable format and then

logically restored on the other platform.

2 The journal and journal archive are restricted to a single directory. The number

of items allowed to be archived will be limited by the number of files that are

allowed in a directory for a given file system.

3 Only full database dumps are archived. In particular, it is not possible to archive

incremental database dumps.

4 Journaling must be enabled for a database before the database can be
configured for journal archiving.

Journal Preallocation

Use Journal Preallocation to statically preallocate space to assure the journal

subsystem will not fail at runtime due to lack of disk space. With Preallocation

determine journal file space requirements while simultaneously guaranteeing the

space is allocated in advance.

Note If several databases are using the same disk for journalling, it may not be obvious how much
total disk space is required by all databases.

Because journal files are written with synchronous I/O, each data write will cause

the file system metadata to be updated to insure data consistency. This action

seeks the disk heads away from the tail of the journal file and requires

repositioning of the disk heads on a subsequent write. A PREALLOCATE clause is

added to the syntax of the CREATE JOURNAL statement to facilitate this behavior:

Example

... [[NO] PREALLOCATE int [PAGES]]

The allocation unit is measured by journal file pages. Where each journal page has
a size equal to what was specified in the CREATE JOURNAL statement or the
default of twice the database page size. The default behavior if this clause is
omitted is to preallocate the journal files, according to the remaining journal file
specifications. In all cases, what is preallocated is what would have eventually
been allocated during database operation in the absence of explicitly requesting
journal file preallocation.
C h a p t e r 5 J o u r n a l i n g 5-15

J o u r n a l i n g T i p s a n d B e s t P r a c t i c e s

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 10, 2007 2:37 pm (C:\Home\Interbase\8.0\UpdateGuide\Journaling.fm)
Journaling Tips and Best Practices

The following example is included in this guide to help you set up your own ‘best
configuration’ for journaling. This example was designed for a minimal
configuration, which will minimize journal file rollover and reduce the probability of
journal buffer wait states. The default property values for the journal subsystem are
for a minimal configuration, designed not to overwhelm low-end machines. This is
very similar to InterBase's default page buffer cache of 2048.

We will start this example by setting the following parameters:

CREATE JOURNAL 'e:\database\test'

LENGTH 65000

CHECKPOINT LENGTH 10000

PAGE CACHE 2500;

Given a database that has an 8KB page size, the journal PAGE SIZE will
default to 16KB (2 x 8KB).

Therefore, the LENGTH parameter (65000) will cause rollover to a new
journal file every 1GB (65000 x 16KB). The built-in LENGTH default (500) means
that your system will roll over to a new journal file every 8MB, which will be
extremely frequent, and you may notice a performance drop during this process.
Using a larger LENGTH value will make this occur (65000/500 or 130 times) less
often.

The CHECKPOINT LENGTH parameter of 10000 means the database checkpoint
will occur every 160MB (10000 x 16KB). Assume the built-in CHECKPOINT
LENGTH is 500, which means your system will checkpoint the database every
8MB (500 x 16KB). CHECKPOINT LENGTH is a matter of individual taste. It
represents the maximum no. of bytes that will have to be applied to a
database from the journal files after a system crash. You can expect to
average between 1MB to 2MB/sec. applying the journal files during the recovery
process. So the 160MB checkpoint length suggested here would take a maximum
of about 2 minutes to recover depending on your machine. If your organization can
tolerate a longer recovery time in return for minimizing the online frequency of
database checkpoints, then raise the CHECKPOINT LENGTH accordingly.

The PAGE CACHE parameter can be raised to reduce the probability of incurring
journal buffer wait states. At any moment, the journal cache writer thread will be
syncing some number of journal buffers to the journal file on disk. During this
period, we want to insure that the worker threads have enough spare journal
buffers to write to when a database page's journal changes need to be moved to a
journal buffer.

For example, imagine that the journal cache writer is syncing 500 journal
buffers to disk. The 2500 journal buffer configuration will leave 2000
5-16 I n t e r B a s e 2 0 0 7 U p d a t e G u i d e

J o u r n a l i n g T i p s a n d B e s t P r a c t i c e s

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 10, 2007 2:37 pm (C:\Home\Interbase\8.0\UpdateGuide\Journaling.fm)
spare buffers for the worker threads to dump their journal changes. At the built-in
PAGE CACHE default of 100, your worker threads can stall due to a high rate of
journal buffer wait states.

Lastly, the use of a SAN mirrored cache will always make InterBase's journaling
sub-system result in lower performance than a non-journaled InterBase database.
This is because twice the amount of data is being written with the journaling
subsystem: once to the journal files and once to the database files, plus the
additional CPU cost of journal cache management in the InterBase server.

Even for direct-attached storage, it is necessary to pay attention to
on-disk write cache enablement. New computers sometimes arrive with on-disk
write cache enabled. This means that sync writes to a database or journal are not
really synchronized to disk oxide. Unless the write cache (SAN or direct) has been
disabled or has battery backup, it can't offer durability for database commits.

InterBase journaling should only result in a performance gain when disk I/O is
write-through, where every database write goes to disk oxide and not an on-disk
cache.

Hopefully, the CREATE JOURNAL statement above will minimize this cost.
Remember that the end goal is to provide point-in-time disaster recovery using the
CREATE JOURNAL ARCHIVE statement to archive time-consistent database
dumps and journal files.

You may want to have the JOURNAL and JOURNAL ARCHIVE colocated in the
same directory. So you can now issue:

CREATE JOURNAL ARCHIVE <same directory as specified in CREATE
JOURNAL>, or simply CREATE JOURNAL ARCHIVE.

Then,

GBAK -A(RCHIVE_DATABASE) <my_database> to create a time-consistent
database dump in the journal archive.

This also causes archival of existing non-archived journals in its wake. In this case,
these journal files are just marked as archived since a copy operation isn't needed
when the JOURNAL and JOURNAL ARCHIVE are colocated. A row for each
archived item is entered into RDB$JOURNAL_ARCHIVES.

With this method, you don’t have to worry that the copying can be halted by a
checkpoint or a gbak -a command. Copying the database to its archive uses the
online dump feature new to InterBase 2007. So, in the archive directory listing
below, the database dump, TPC_C.2006-08-21T15-48-17Z.1.DATABASE, has no
database changes made after 2006-08-21 15:48:17. It doesn't care what updates
are going to the main database while it is being dumped or after it is finished
C h a p t e r 5 J o u r n a l i n g 5-17

J o u r n a l i n g T i p s a n d B e s t P r a c t i c e s

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 10, 2007 2:37 pm (C:\Home\Interbase\8.0\UpdateGuide\Journaling.fm)
dumping. This includes the checkpoint process.

24 Aug 21 15:45 IB_JOURNAL

24 Aug 21 15:45 IB_JOURNAL_ARCHIVE

130399832 Aug 21 16:00 TPC_C.2006-08-21T15-45-11Z.1.JOURNAL

979562496 Aug 21 16:00 TPC_C.2006-08-21T15-48-17Z.1.DATABASE

130397262 Aug 21 16:00 TPC_C.2006-08-21T15-51-51Z.2.JOURNAL

130399932 Aug 22 18:13 TPC_C.2006-08-21T15-57-03Z.3.JOURNAL

130398336 Aug 22 18:13 TPC_C.2006-08-22T18-06-19Z.4.JOURNAL
130397418 Aug 22 18:14 TPC_C.2006-08-22T18-10-52Z.5.JOURNAL

35392721 Aug 23 00:27 TPC_C.2006-08-22T18-14-47Z.6.JOURNAL

A GSTAT -L TPC_C.2006-08-21T15-48-17Z.1.DATABASE shows the following:

Database log page information:

Creation date Aug 21, 2006 15:45:11

Log flags: 1

Recovery required

Next log page: 0

Clumplet End 907

Variable log data:

Control Point 1:

File name: E:\TPC_C_JOURNALS_AND_ARCHIVES\

TPC_C.2006-08-21T15-45-11Z.1.JOURNAL

Partition offset: 0 Seqno: 1 Offset: 5694

This is what the main database's log page looked like at precisely 2006-08-21
15:48:17. If you attempt to recover using this database dump
it will start with journal file, TPC_C.2006-08-21T15-45-11Z.1.JOURNAL, at offset
5694 and continue through the last journal file or whatever timestamp was
specified with an optional -UNTIL clause:

GBAK -ARCHIVE_R E:\TPC_C_JOURNALS_AND_ARCHIVES\

TPC_C.2006-08-21T15-48-17Z.1.DATABASE E:\TPC_C_RECOVER\TPC_C.GDB

-UNTIL "2006-08-21 18:08:15"

and in the INTERBASE.LOG:

IBSMP (Server) Tue Aug 22 22:49:08 2006

Database: E:\TPC_C_RECOVER\TPC_C.GDB

Long term recovery until "2006-08-21 18:08:15" begin

IBSMP (Server) Tue Aug 22 22:49:09 2006

Database: E:\TPC_C_RECOVER\TPC_C.GDB
Applying journal file:
5-18 I n t e r B a s e 2 0 0 7 U p d a t e G u i d e

J o u r n a l i n g T i p s a n d B e s t P r a c t i c e s

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 10, 2007 2:37 pm (C:\Home\Interbase\8.0\UpdateGuide\Journaling.fm)
E:\TPC_C_JOURNALS_AND_ARCHIVES\TPC_C.2006-08-21T15-45-11Z.1.JOURNA

L

IBSMP (Server) Tue Aug 22 22:51:38 2006

Database: E:\TPC_C_RECOVER\TPC_C.GDB

Applying journal file:

E:\TPC_C_JOURNALS_AND_ARCHIVES\TPC_C.2006-08-21T15-51-51Z.2.JOURNA

L

IBSMP (Server) Tue Aug 22 22:53:24 2006

Database: E:\TPC_C_RECOVER\TPC_C.GDB

Applying journal file:

E:\TPC_C_JOURNALS_AND_ARCHIVES\TPC_C.2006-08-21T15-57-03Z.3.JOURNA

L

IBSMP (Server) Tue Aug 22 22:55:44 2006

Database: E:\TPC_C_RECOVER\TPC_C.GDB

Applying journal file:

E:\TPC_C_JOURNALS_AND_ARCHIVES\TPC_C.2006-08-22T18-06-19Z.4.JOURNA

L

IBSMP (Server) Tue Aug 22 22:55:57 2006
Database: E:\TPC_C_RECOVER\TPC_C.GDB

Long term recovery end

GBAK -A (creating archive db dump) never locks anything. The only archive
management restriction is that archive operations are serialized. You can't do
multiple GBAK/GFIX operations against it at the same time. The important point
here is that the main database is fully accessible at all times.

GBAK -ARCHIVE_J(OURNALS) <my_database> causes non-archived journal
files to be copied to the archive (or marked as archived as above) when you don't
want to dump the whole database. Again, a row is entered into
RDB$JOURNAL_ARCHIVES for each archived journal file.

GBAK -ARCHIVE_S(WEEP) <sequence no.> <my_database> deletes all files in
RDB$JOURNAL_ARCHIVES with RDB$ARCHIVE_SEQUENCE less than the
requested sequence.

GBAK -ARCHIVE_DU(MPS) <number> <my_database> configures the maximum
number of database dumps allowed in the archive. After issuing GBAK
-ARCHIVE_DATABASE, archive management will automatically delete the oldest
archive database dump and all earlier journal files if the dump limit has been
exceeded by the addition of the new database dump.

GBAK -ARCHIVE_R(ECOVER) <archive_directory/archive_database>
<new_database> [-UNTIL <timestamp>] [-BUFFERS <number>], will recover a
C h a p t e r 5 J o u r n a l i n g 5-19

J o u r n a l i n g T i p s a n d B e s t P r a c t i c e s

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 10, 2007 2:37 pm (C:\Home\Interbase\8.0\UpdateGuide\Journaling.fm)
database from the archived journal files. Remember that <archive_directory> has
to be mounted for read access on the machine performing the recovery. Archive
directories can be located on InterBase servers or passive file servers and
appliances. The archived files are opened directly by clients and not through an
InterBase server. Archive database dumps are sealed so you can simultaneously
run database validation (usually requires exclusive), logical GBAK, and have
multiple, same-platform machines on the network attach the database for
read-only queries, which implies high levels of page I/O over the network.

If the most current, non-archived journal files are accessible from the machine
where the recover is being executed, then the recovery process will “jump” to
those journal files to recover the most recently committed transactions,
notwithstanding the optional -UNTIL clause. The recovered database is divorced
of any journal or journal archive so it is necessary to define them again if desired.

However, it is much more useful to leave the recovered database in a perpetual
state of long term recovery. That is, every time after the first GBAK
-ARCHIVE_RECOVER, subsequent GBAK -ARCHIVE_RECOVER apply the
incremental journal changes. This provides perfect symmetry with the online dump
feature:

GBAK -DUMP <main_database> <dump_database> -- Full online dump

GBAK -DUMP <main_database> <dump_database> -- Incremental dump
GBAK -DUMP <main_database> <dump_database> -- Incremental dump

...

GFIX -MODE READ_WRITE <dump_database> -- Divorce from main DB

GBAK -ARCHIVE_R <main_database> <recv_database> -- Full recover dump

GBAK -ARCHIVE_R <main_database> <recv_database> -- Incremental recover

GBAK -ARCHIVE_R <main_database> <recv_database> -- Incremental recover

...

GFIX -MODE READ_WRITE <recv_database> -- Divorce from main DB

This functional modification is much more efficient. Full archive recovery

can take hours depending on the volume of journal changes.

If you divorce from the database, you save 1 second in not having to type GFIX
-MODE READ_WRITE at the cost of having to create another full recovery if you

want a more recent copy (hour(s)). Now you have to run GFIX -MODE

READ_WRITE to divorce, but you gain hours of efficiency by being able to get the

incremental journal changes since the last GBAK -ARCHIVE_RECOVER.

This also means that the recovered database can be deployed more quickly if the

main database is lost. It also can function as a more up-to-date READ_ONLY

database for queries and reporting purposes.
5-20 I n t e r B a s e 2 0 0 7 U p d a t e G u i d e

J o u r n a l i n g T i p s a n d B e s t P r a c t i c e s

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 10, 2007 2:37 pm (C:\Home\Interbase\8.0\UpdateGuide\Journaling.fm)
Lastly, the journal archive is never implicitly dropped as a side-effect of DROP

DATABASE or DROP JOURNAL. It is necessary to explicitly issue a DROP

JOURNAL ARCHIVE statement before DROP DATABASE. The journal archive

potentially represents the last known source of the dropped database's contents so

it is intentionally difficult to delete.
C h a p t e r 5 J o u r n a l i n g 5-21

J o u r n a l i n g T i p s a n d B e s t P r a c t i c e s

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 10, 2007 2:37 pm (C:\Home\Interbase\8.0\UpdateGuide\Journaling.fm)
5-22 I n t e r B a s e 2 0 0 7 U p d a t e G u i d e

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 10, 2007 2:34 pm (C:\Home\Interbase\8.0\UpdateGuide\BatchUpdates.fm)
C h a p t e r

6
Chapter 6Batch Updates

Batch updates allow you to send a group of SQL statements to a server in a single

unit. Grouping SQL statements into batches reduces the amount of network traffic

between the client and the database server. This results in improved performance,

especially in LAN and WAN environments.

This chapter describes how to use batch updates with InterBase 2007.

Note Batch updates only work using the InterBase 2007 client library and InterClient JDBC driver.

Using Batch Updates

You can send multiple INSERT, UPDATE, and DELETE statements to the server using
batch updates. In response, the server returns an array of ULONG values that

reflect the number of affected rows per statement.

SQL query statements like SELECT are not supported in batch updates. SQL DDL

is supported, however, the CREATE DATABASE statement is not.

Batch updates decrease the amount of communication between client and server,

thereby improving performance in a LAN or WAN environment. Figure 6.1 shows

the flow of communication between client and server when completing a number of

INSERT statements using traditional InterBase client APIs. Note the flow of

communication shown in the figure also applies to UPDATE and DELETE

statements.
C h a p t e r 6 B a t c h U p d a t e s 6-23

U s i n g B a t c h U p d a t e s

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 10, 2007 2:34 pm (C:\Home\Interbase\8.0\UpdateGuide\BatchUpdates.fm)
Figure 6.1 INSERT Without Batch Updates

Figure 6.2 shows the flow of communication when using batch updates. Note the

reduction in network traffic, resulting in better performance.

Figure 6.2 INSERT With Batch Updates
6-24 I n t e r B a s e 2 0 0 7 U p d a t e G u i d e

U s i n g B a t c h U p d a t e s

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 10, 2007 2:34 pm (C:\Home\Interbase\8.0\UpdateGuide\BatchUpdates.fm)
Client APIs for Batch Updates

The InterBase client library now contains two additional functions to support batch

updates: One function is used for immediate batch execution. The second function

is used for execution of prepared SQL statements containing parameters.

With both prepared and non-prepared batch updates, the client application must

explicitly commit or rollback changes caused by the batched SQL statements.

Batch updates will not work if auto commit mode is on.

The isc_dsql_batch_execute_immed Function
The new isc_dsql_batch_execute_immed function is used to execute a group of

INSERT, UPDATE, DELETE or DDL commands. Its signature is:

ISC_STATUS isc_dsql_batch_execute_immed(ISC_STATUS *status_vector,
isc_db_handle *db_handle, isc_tr_handle *tr_handle, int dialect,

ULONG number_of_sql, char[] *sql, ULONG *rows_affected);

The meaning of each parameter is explained in Table 6.1.

Table 6.1 isc_dsql_batch_execute_immed Parameters

If a statement fails, the ISC_STATUS will be set, and the corresponding entry in the

rows_affected array will be set to -1, or 0xFFFFFFFF.

Argument Description

status_vector The address of an array of type ICS_STATUS.

The respective ISC_STATUS values for each SQL
statement in the batch will be returned in this array.

db_handle The address of the database handle.

tr_handle The address of the transaction handle.

dialect The SQL dialect to use for the statements in the batch
update.

number_of_sql The number of SQL statements included in the batch update.
This argument reflects the number of strings in the sql array.

sql An array of NULL-terminated strings. Each string is an SQL
statement to execute in the batch update.

The SQL statements do not need to be terminated with
semicolons. Instead, each SQL statement is terminated by a
C NULL character.

rows_affected A pre-allocated array of type ULONG, which will be used to
store the number of rows affected by the corresponding SQL
statement in the sql array.
C h a p t e r 6 B a t c h U p d a t e s 6-25

U s i n g B a t c h U p d a t e s

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 10, 2007 2:34 pm (C:\Home\Interbase\8.0\UpdateGuide\BatchUpdates.fm)
New Error Conditions

Table 6.2 shows the error codes are returned by the isc_dsql_batch_execute_immed
function.

Table 6.2 Batch Update Error Codes

The isc_dsql_batch_execute Function
The new isc_dsql_batch_execute function supports batch updates for prepared SQL

statements. This function allows you to batch the data used in a parameterized

SQL statement. The signature of the function is:

ISC_STATUS isc_dsql_batch_execute(ISC_STATUS *status_vector,
isc_db_handle *db_handle, isc_tr_handle *tr_handle,
isc_stmt_handle stmt_handle, int dialect, USHORT number_of_rows,

XSQLDA *insqlda, XSQLVAR[] *batch_vars, ULONT *rows_affected);

Table 6.3 shows the meaning of each argument.

Table 6.3 isc_dsql_batch_execute Parameters

Error code Description

isc_string_too_large Returned when the total length of all SQL statement strings
(including NULL characters) exceeds 65325.

isc_dsql_select_in_batch Returned when one of the SQL statements is found to be a
SELECT statement.

Note that all statements prior to the SELECT will be
executed.

The rows_affected argument for the SELECT statement will
be set to -1.

The changes made by statements prior to the SELECT are
not committed or rolled back. This needs to be done
specifically by the application or driver.

Argument Description

status_vector The address of an array of type ICS_STATUS.

The respective ISC_STATUS values for each SQL
statement will be returned in this array.

db_handle The address of the database handle.

tr_handle The address of the transaction handle.

stmt_handle Statement handle previously prepared by
isc_dsql_prepare().

dialect The SQL dialect to use for the statements in the batch
update.

number_of_row
s

The number of XSQLVARS for this batch update.
6-26 I n t e r B a s e 2 0 0 7 U p d a t e G u i d e

U s i n g t h e i s c _ d s q l _ b a t c h _ e x e c u t e _ i m m e d B a t c h U p d a t e A P I

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 10, 2007 2:34 pm (C:\Home\Interbase\8.0\UpdateGuide\BatchUpdates.fm)
If a statement fails, the ISC_STATUS will be set, and the corresponding entry in the

rows_affected array will be set to -1, or 0xFFFFFFFF.

To facilitate the allocation of the XSQLVAR array, a new macro is provided to

calculate the size of the array. The new macro, XSQLVAR_LENGTH is defined as

follows:

XSQLVAR_LENGTH(num_rows, num_vars_per_row)

Table 6.4 explains the meaning of each macro parameter.

Table 6.4 XSQLVAR_LENTGH Macro Parameters

Using the isc_dsql_batch_execute_immed Batch
Update API

The following examples demonstrate how to use the isc_dsql_batch_execute_immed

function. The code in Example 6.1 attaches to the employee.gdb database. Later,

the example shows how to send a batch of two SQL commands: One INSERT

statement, and one DELETE statement.

Example 6.1 Attaching to a database

isc_db_handle DB = NULL; /* Database handle */
isc_tr_handle trans = NULL /* Transaction handle */
long status[20]; /* Status vector */
char Db_name[128]; /* Database name */
char user_name[] = “example”;
char password[] = “3xample”;
char instance_name[256] = “gds_db1”;
char dpb_buffer[256], *dpb, *p;

/* Set up the data base connection parameters */
dpb = dpb_buffer;
*dpb++ = isc_dpb_version1;

insqlda The address of an XSQLDA data structure describing the
input parameters.

batch_vars An array of pointers to XSQLVAR structures that describe
each input parameter.

rows_affected A pre-allocated array of type ULONG, which will be used to
store the number of rows affected by the corresponding SQL
statement in the sql array.

Argument Description

num_rows The number of rows to be batched.

num_vars_per_ro
w

The number of input parameters to be set per row.

Argument Description
C h a p t e r 6 B a t c h U p d a t e s 6-27

U s i n g t h e i s c _ d s q l _ b a t c h _ e x e c u t e _ i m m e d B a t c h U p d a t e A P I

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 10, 2007 2:34 pm (C:\Home\Interbase\8.0\UpdateGuide\BatchUpdates.fm)
*dpb++ = isc_dpb_user_name;
*dpb++ = strlen(user_name);
for(p = user_name; *p;)

*dpb++ = *p++;

*dpb++ = isc_dpb_password;
*dpb++ = strlen(password);
for(p = password; *p;)

*dpb++ = *p++;

*dpb++ = isc_dpb_instance_name;
*dpb++ = strlen(instance_name);
for(p = instance_name; *p;)

*dpb++ = *p++;

if(isc_attach_database(status, 0, Db_name, &DB, dpb_length, dpb_buffer))

ERREXIT(status, 1);

Next, Example 6.2 demonstrates how to set up the buffers to hold the SQL

statements.

Example 6.2 Preparing Buffers for a Batch Update

char *sql1 = “INSERT INTO DEPARTMENT (dept_no, department, head_dept) values
(‘117’, ‘Field Office: Hong Kong’, ‘110’)”;

char *sql2 = “DELETE FROM DEPARTMENT WHERE dept_no = ‘117’”;

char *sql_statements[2];
ULONG rows[2] = {0, 0};

sql_statements[0] = sql1;
sql_statements[1] = sql2;

Example 6.3 shows how to execute the batch update.

Example 6.3 Executing a Batch Update

/* Start a transaction */
if(isc_start_transaction(status, &trans, 1, &DB, 0, NULL))

ERREXIT(status,1);

/* Submit the batch update */
if(isc_dsql_batch_execute_immed(status, &DB, &trans, 3, 2, sql_statements,
&rows))

ERREXIT(status, 1);

/* Print results and end the transaction */
printf(“Returned rows from the batch command: %d, %d”, rows[0], rows[1]);
printf(“Done with isc_dsql_execute_immed\n”);
if(isc_commit_transaction(status, &trans))

ERREXIT(status, 1);

The code above executes two statements in a batch update: One INSERT

statement, and one DELETE statement. Notice the individual statements do not

need to be terminated with a semicolon.

The number of rows affected by each statement is stored in the array called rows.

The array must contain one element for each SQL statement executed in the batch
update.
6-28 I n t e r B a s e 2 0 0 7 U p d a t e G u i d e

U s i n g t h e i s c _ d s q l _ b a t c h _ e x e c u t e A P I

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 10, 2007 2:34 pm (C:\Home\Interbase\8.0\UpdateGuide\BatchUpdates.fm)
Using the isc_dsql_batch_execute API

The next group of examples show how to use the isc_dsql_batch_execute API to

execute a parameterized INSERT statement. Whereas the

isc_dsql_batch_exec_immed function sends a group of SQL statements, the

isc_dsql_batch_execute function sends one parameterized statement with a group of

values to use for the parameters.

First, establish the connection to the database, as shown in Example 6.1,

“Attaching to a database”, above.

Example 6.4 demonstrates the declaration of variables in preparation for calling

the isc_dsql_batch_execute function. The code will call the function using the two

dept_no variables declared here.

Example 6.4 Declaring Variables for the isc_dsql_batch_execute Function

#define NUM_ROWS 2
#define NUM_VARS 2

//An UPDATE statement with 2 parameters..
char *sql1 = “UPDATE department SET budget = ? * budget + budget WHERE
dept_no = ?”;

short flag0 = 0, flag1 = 0;
char dept_no[4] = “117”, dept_no1[4] = “119”;
isc_stmt_handle stmt_handle = NULL;
double percent_inc = (double)0.0;
int i;
XSQLVAR *array_sqlvar;
XSQLDA ISC_FAR *sqlda;
ULONG rows_affected[NUM_ROWS];

The code in Example 6.5 starts a transaction and prepares the parameterized

UPDATE statement.

Example 6.5 Preparing the UPDATE statement

if(isc_start_transaction(status, &trans, 1, &DB, 0, NULL))
ERREXIT(status, 1);

if(isc_dsql_allocate_statement(status, &DB, &stmt_handle))
ERREXIT(status, 1);

sqlda = (XSQLDA ISC_FAR *)malloc(XSQLDA_LENGTH(2));
sqlda->sqln = 2;
sqlda->sqld = 2;
sqlda->version = SQLDA_CURRENT_VERSION;

if(isc_dsql_prepare(status, &trans, &stmt_handle, strlen(sql1), sql1, 3,
NULL))

ERREXIT(status, 1);

array_sqlvar = (XSQLVAR *)malloc(XSQLVAR_LENGTH(sqlda->sqld, NUM_ROWS));
if(array_sqlvar == NULL)

exit(-1);

// Prepare data for the parameters. The UPDATE statement takes two
parameters.
// This example batches two different values for the dept_no parameter.
array_sqlvar[0].sqldata = (char ISC_FAR *)&percent_inc;
C h a p t e r 6 B a t c h U p d a t e s 6-29

I S Q L I m p r o v e m e n t s

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 10, 2007 2:34 pm (C:\Home\Interbase\8.0\UpdateGuide\BatchUpdates.fm)
array_sqlvar[0].sqltype = SQL_DOUBLE + 1;
array_sqlvar[0].sqllen = sizeof(percent_inc);
array_sqlvar[0].sqlind = &flag0;
flag0 = 0;

array_sqlvar[1].sqldata = dept_no;
array_sqlvar[1].sqltype = SQL_TEXT + 1;
array_sqlvar[1].sqllen = 3;
array_sqlvar[1].sqlind = &flag1;
flag1 = 0;

array_sqlvar[2].sqldata = (char ISC_FAR *)&percent_inc;
array_sqlvar[2].sqltype = SQL_DOUBLE + 1;
array_sqlvar[2].sqllen = sizeof(percent_inc);
array_sqlvar[2].sqlind = &flag0;
flag0 = 0;

array_sqlvar[3].sqldata = dept_no1;
array_sqlvar[3].sqltype = SQL_TEXT + 1;
array_sqlvar[3].sqllen = 3;
array_sqlvar[3].sqlind = &flag1;

flag1 = 0;

Finally, Example 6.6 calls the isc_dsql_batch_execute function and the results are

printed.

Example 6.6 Execute the isc_dsql_batch_execute Function

if(isc_dsql_batch_execute(status, &trans, &stmt_handle, 3, sqlda, NUM_ROWS,
array_sqlvar, rows_affected))

ERREXIT(status, 1);

for(i = 0; i < NUM_ROWS; i++)
printf(“After batch return values %d”, rows_affected[i]);

free((void *)array_sqlvar);

if(isc_commit_transaction(status, &trans))
ERREXIT(status, 1);

if(isc_detach_database(status, &DB))
ERREXIT(status, 1);

free(sqlda);

ISQL Improvements

In ISQL, SQL statements to be executed in batch mode must be surrounded by the

new BATCH START and BATCH EXEXCUTE commands. For example:

BATCH START;
...

(DDL/DML statements)
...

BATCH EXECUTE;

The BATCH EXECUTE command sends the statements between BATCH START and

BATCH EXECUTE to the server. To begin another batch operation, you must issue

another BATCH START command.
6-30 I n t e r B a s e 2 0 0 7 U p d a t e G u i d e

I S Q L I m p r o v e m e n t s

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 10, 2007 2:34 pm (C:\Home\Interbase\8.0\UpdateGuide\BatchUpdates.fm)
The following demonstrates a specific example of using batch mode with ISQL.

BATCH START;

INSERT INTO t1(f1, f2) VALUES (0,1);
UPDATE t1 SET f1=1 WHERE f2=1;

BATCH EXECUTE;

The first SQL statement in the example inserts a new row into table t1. The second

statement updates the newly inserted row with a new value. Both of these

statements are executed in one API call.

The AUTOCOMMITDDL mode of ISQL must be turned off in order to use batch

updates.
C h a p t e r 6 B a t c h U p d a t e s 6-31

I S Q L I m p r o v e m e n t s

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 10, 2007 2:34 pm (C:\Home\Interbase\8.0\UpdateGuide\BatchUpdates.fm)
6-32 I n t e r B a s e 2 0 0 7 U p d a t e G u i d e

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 6, 2007 1:50 pm (C:\Home\Interbase\8.0\UpdateGuide\DBSetting.fm)
C h a p t e r

7
Chapter 7Database Settings

Database Write Mode Default SYNC

SYNC mode the default write mode for newly created databases in InterBase. This

is changed from ASYNC to SYNC write mode. The call to write ASYNC mode

buffers return immediately thus not guaranteeing that it has made to disk.

Journaling now provides better performance for SYNC write databases, than

ASYNC write mode. Use Journaling to get durability as well as performance,

where needed.

Database File Preallocations

The InterBase SQL statement CREATE DATABASE now includes a preallocation

clause to specify extra database space preallocated for the new database. The
space is actually allocated when the user detaches from the connection that was

established by the CREATE DATABASE statement. The database preallocation

feature supports secondary database files in that the preallocation will be spread

across all secondary files in accordance with their file size specifications.

Example

... [[NO] PREALLOCATE [=] int [PAGES]]

By default, creating a database does not preallocate additional database pages, so

it is as if NO PREALLOCATE had been specified. This syntax is provided so that a

DDL script can explicitly specify and document that preallocation has not been

specified. Database preallocation is always specified in units of database pages to

be consistent with other related features (i.e., length of secondary database files or

shadow sets).
C h a p t e r 7 D a t a b a s e S e t t i n g s 7-33

D a t a b a s e F i l e P r e a l l o c a t i o n s

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 6, 2007 1:50 pm (C:\Home\Interbase\8.0\UpdateGuide\DBSetting.fm)
Important If a preallocation exceeds available disk space, the The IB thread making the write

request when the device fills will timeout after 1 minute of waiting for the I/O to

complete. Thereafter, it makes 4 additional I/O attempts, waiting 1 minute during

each attempt, to complete the write (results written to the InterBase log). If space is

not freed to allow the preallocation operation to continue the preallocation space

requested will not be allocated.

Important

GSTAT

GSTAT display the database preallocation information, which is stored on the

database header page. Following is a snippet from a GSTAT -H command:

Example

Variable header data:
 Preallocate pages: 5000
 Sweep interval: 25000
 END

ISQL Extract PREALLOCATE

The CREATE DATABASE command now includes the ISQL -extract

PREALLOCATE clause to the formatted CREATE DATABASE statement if there is

a non-zero preallocation value for the database. The ISQL extract operation can

be invoked with the -a|-x options.

Example

/D/testbed>isql
Use CONNECT or CREATE DATABASE to specify a database
SQL> create database 'pr.ib' preallocate 500;
SQL> commit;
SQL> quit;
/D/testbed>ls -l pr.ib
-rwxrwxrwx 1 Administrators None 2048000 Jul 2 18:09
pr.ib /* It is 2MB size because each of the 500 database pages is
4KB in size */
/D/testbed>isql -a pr.ib

SET SQL DIALECT 3;

/* CREATE DATABASE 'pr.ib' PREALLOCATE 500
PAGE_SIZE 4096
*/

/* Grant permissions for this database */
/D/testbed>isql -x pr.ib

SET SQL DIALECT 3;

/* CREATE DATABASE 'pr.ib' PREALLOCATE 500 PAGE_SIZE 4096
*/
7-34 I n t e r B a s e 2 0 0 7 U p d a t e G u i d e

D a t a b a s e F i l e P r e a l l o c a t i o n s

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 6, 2007 1:50 pm (C:\Home\Interbase\8.0\UpdateGuide\DBSetting.fm)
/* Grant permissions for this database */
/D/testbed>

GBAK

GBAK backs up and restores database preallocation information. This

preallocation information will be silently ignored by earlier versions of the product

that are not aware of the feature. A new switch has been added to GBAK to alter

the stored preallocation in a database or backup file.

Switch -PR(EALLOCATE)
The switch -PR(EALLOCTE) takes an integer argument, which is the number of

preallocation pages. This switch is legal for both backup and restore command-line

options. For backup, the preallocation switch stores its argument in the backup file

instead of the value specified in the database that is being backed up. For restore,

the preallocation switch argument is used at the preallocation value in the restore

database, instead of the value stored in the backup file. A GBAK preallocate switch

value of 0 (zero) effectively disables database preallocation in the backup file or

restored database. In GBAK verbose mode, database preallocation is logged to

the console. The example below show a sample database backup in verbose

mode. A similar message is logged for database restore.

Example

gbak -v foo.gdb foo.gbk -pr 5000
 ...
 gbak: readied database foo.gdb for backup
 gbak: creating file foo.gbk
 gbak: starting transaction
 gbak: database foo.gdb has a page size of 4096 bytes.
 gbak: database preallocation 5000 pages

If a database restore reduces the page size, the number of pages for database

preallocation is automatically scaled upward to maintain a constant database

preallocation size in bytes. If the restored page size is increased, database

preallocation is reduced accordingly with a similar “Reducing” message written to
the console. If the GBAK -PREALLOCATE switch was given then the automatic

scaling of the database preallocation does not occur with changing page size. In

other words, the -PREALLOCATE switch takes precedence.

Example

gbak -v foo.gdb foo.gbk -page_size 2048
...
 Reducing the database page size from 4096 bytes to 2048 bytes
 Increasing database preallocation from 5000 pages to 10000 pages
 created database foo1.gdb, page_size 2048 bytes
 database preallocation 10000 pages
C h a p t e r 7 D a t a b a s e S e t t i n g s 7-35

D a t a b a s e F i l e P r e a l l o c a t i o n s

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 6, 2007 1:50 pm (C:\Home\Interbase\8.0\UpdateGuide\DBSetting.fm)
API DPB Parameter

At the InterBase API-level, there is a new DPB parameter, isc_dpb_preallocate,

that takes a 4-byte integer to specify database preallocation. It is only recognized

and processed by isc_create_database(). isc_attach_database() silently ignores

isc_dpb_preallocate.

With the InterBase service API, actions isc_action_svc_backup

(isc_action_svc_restore) take new parameters, isc_svc_bkp_preallocate

(isc_svc_rst_preallocate), respectively. Both parameters take a 4-byte argument to

specify the database preallocation in units of database pages. The new service

parameters have the same numeric value but two symbolic constants are provided

for source code clarity to show the proper intent.

isc_db_preallocate Database Parameter

Finally, there is an isc_info_db_preallocate database info parameter to request
database preallocate information stored on the database header page.
7-36 I n t e r B a s e 2 0 0 7 U p d a t e G u i d e

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 10, 2007 2:37 pm (C:\Home\Interbase\8.0\UpdateGuide\TextBLOBEnhancements.fm)
C h a p t e r

8
Chapter 8Using BLOBs With

Chapter 8VARCHAR Data

InterBase 2007 supports new SQL syntax that allows you to use BLOBs and

VARCHAR data interchangeably.

This chapter describes the new SQL syntax that supports this functionality.

Text BLOBs and VARCHAR Data

All BLOB sub-types can be used interchangeably with VARCHAR data. However,

with BLOB SUB_TYPE 1, the BLOB is considered to have a character type,

essentially making the BLOB a CLOB data type. For BLOB columns of SUB_TYPE

1, the server converts character data to the column’s character type before

inserting, updating or comparing the data.

For all other sub-types, the BLOB data type accepts character input and treats it

just as it would all other binary data. Hence, the BLOB data type treats all textual

data as an array of bytes. Text data used in ISQL has a character set associated

with it. This will most likely be the character encoding of the machine running ISQL

(or any other client).

The server does not perform any character set conversion in these cases. Again,
C h a p t e r 8 U s i n g B L O B s Wi t h 8-37

T e x t B L O B S Q L S y n t a x

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 10, 2007 2:37 pm (C:\Home\Interbase\8.0\UpdateGuide\TextBLOBEnhancements.fm)
the server treats the data as an array of bytes. To convert or store the textual data

to a particular encoding (other than the system encoding), cast the character data

to the required character set.

Text BLOB SQL Syntax

The general syntax for the SQL SELECT statement with a BLOB data type is:

SELECT CAST (<blob-column-name> as CHAR[<n>]) FROM <table-name>;

However, this feature allows text blobs to be interchangeable with VARCHAR data.

So, it will improve InterBase SQL to allow new SQL syntax like ….

INSERT INTO <table-name> values (<text values>, ….);
UPDATE <table_name> set <blob column name> = <text value>;

And:

SELECT CAST (<blob column name> as CHAR[128]) from table;
SELECT * from <table name> where cast (<blob column> as VARCHAR[10]) =
“SMISTRY”;

Also in addition, store procedures which accept a BLOB will be able to accept a

text value as a parameter and implicitly be converted to a text blob.

For example:

CREATE PROCEDURE MYTEST (AINT INTEGER, INBLOB BLOB)
AS
Declare variable var_blob blob;
begin
insert
var_blob

This procedure can now be called using the following …

Execute procedure mytest (1, ‘hello world’);

Using Text BLOBs with VARCHAR Data

The SELECT CAST, UPDATE, and INSERT INTO statements can be used with

the InterBase Client APIs. In this case, the values are returned as C structures.

Specifically, the returned XSQLVARS would be of the type SQLVARYING, with the

length of the text followed by the text data.

Example 8.1, “Using Text BLOBs”demonstrates the use of the new SQL syntax

for text BLOBs.
8-38 I n t e r B a s e 2 0 0 7 U p d a t e G u i d e

T e x t B L O B S Q L S y n t a x

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 10, 2007 2:37 pm (C:\Home\Interbase\8.0\UpdateGuide\TextBLOBEnhancements.fm)
Example 8.1 Using Text BLOBs

/* Same syntax to create a table... */
/* Note all sub-types are supported; SUB_TYPE 1 forces conversion */
/* to the column’s character data type. */
CREATE TABLE BLOB_TEST (B_ID INT, BLOB_CL BLOB SUB_TYPE 1);
COMMIT;
/* New functionality for the INSERT statement... */
INSERT INTO BLOB_TEST VALUES (1, ‘Fellowship of the Ring’);
INSERT INTO BLOB_TEST VALUES (2, ‘The Two Towers’);
INSERT INTO BLOB_TEST VALUES (3, ‘Return of the Jedi’);
/* New syntax for UPDATE... */
UPDATE BLOB_TEST SET BLOB_CL=’Return of the King’ WHERE B_ID=3;
COMMIT;
/* New syntax for SELECT. The BLOB will be returned as a TEXT string. */
SELECT B_ID, CAST (BLOB_CL AS VARCHAR(25)) FROM BLOB_TEST;

The result of these statements in ISQL would be:

Table 8.1 Text BLOB Example Result

B_ID BLOB_CL

1 Fellowship of the Ring

2 The Two Towers

3 Return of the King
C h a p t e r 8 V A R C H A R D a t a 8-39

T e x t B L O B S Q L S y n t a x

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 10, 2007 2:37 pm (C:\Home\Interbase\8.0\UpdateGuide\TextBLOBEnhancements.fm)
8-40 I n t e r B a s e 2 0 0 7 U p d a t e G u i d e

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 6, 2007 1:39 pm (C:\Home\Interbase\8.0\UpdateGuide\Internaltionization.fm)
C h a p t e r

9
Chapter 9Internationalization Changes

Please note the following improvements in internationalization support for

InterBase SP2.

Support for the UTF-8 Character Set

The UTF-8 character set is an alternative coded representation form for all of the

characters of the ISO/IEC 10646 standard.

To use the UTF-8 character set, you would declare a database schema to use the

character set, in the CREATE DATABASE SQL statement, as shown below:

CREATE DATABASE <filespec> <...> DEFAULT CHARACTER SET UTF8;

Additionally, you may use the alias UTF_8.

The attributes for the UTF-8 character set are shown in Table 6.1.

Table 9.1

Character

Set

Character Set

ID

Max Char

Size

Min Char

Size Collation Orders

UTF8/UTF_8 59 1 4 N/A at this time
C h a p t e r 9 I n t e r n a t i o n a l i z a t i o n C h a n g e s 9-41

U N I C O D E _ B E a n d U N I C O D E _ L E C h a r a c t e r S e t s

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 6, 2007 1:39 pm (C:\Home\Interbase\8.0\UpdateGuide\Internaltionization.fm)
UNICODE_BE and UNICODE_LE Character Sets

InterBase now supports 16-bit UNICODE_BE and UNICODE_LE as server

character sets. These character sets cannot be used as client character sets. If

your client needs full UNICODE character support, please use UTF8 instead of

UNICODE_LE and UNICODE_BE for the client character set (a.k.a LC_CSET). A

client can use the UTF8 (or other native) client character set to connect with a

UNICODE database.

A database schema is declared to use the new character set in the CREATE

DATABASE statement, as follows:

CREATE DATABASE <filespec> <...> DEFAULT CHARACTER SET UNICODE;

Note that InterBase uses “big endian” ordering by default.

The attributes for the UNICODE_BE and UNICODE_LE character sets are shown

in Table 6.2.

Collations

InterBase 2007 does not support UNICODE collations in this release. The default

collation is binary sort order for UNICODE.

PT_BR Collation For Brazilian Portuguese

New collations are declared to a database schema via the normal CREATE TABLE
statement with the COLLATE clause:

Example

CREATE TABLE <table name> (<column name> <data type> COLLATE <COLLATION

NAME>);

Table 9.2

Character Set

Character

Set ID

Max Char

Size

Min Char

Size

Collation

Orders

UNICODE_BE
UCS2BE

8 2 2 N/A at this time

UNICODE_LE
UCS2LE

64 2 2 N/A
9-42 I n t e r B a s e 2 0 0 7 U p d a t e G u i d e

P T _ B R C o l l a t i o n F o r B r a z i l i a n P o r t u g u e s e

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 6, 2007 1:39 pm (C:\Home\Interbase\8.0\UpdateGuide\Internaltionization.fm)
Note This collation is case and accent insensitive.

Note For more information see The Operations Guide provided with this release.

Table 9.3 PT_BR Character/Collation Order

Character

Set Collation Order

ISO8859_1 CC_PTBRLAT1

ISO8859_15 CC_PTBRLAT9

WIN1252 CC_PTBRWIN
C h a p t e r 9 I n t e r n a t i o n a l i z a t i o n C h a n g e s 9-43

P T _ B R C o l l a t i o n F o r B r a z i l i a n P o r t u g u e s e

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 6, 2007 1:39 pm (C:\Home\Interbase\8.0\UpdateGuide\Internaltionization.fm)
9-44 I n t e r B a s e 2 0 0 7 U p d a t e G u i d e

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 10, 2007 2:34 pm (C:\Home\Interbase\8.0\UpdateGuide\UDF_Descript.fm)
C h a p t e r

10
Chapter 10UDF Descriptors

InterBase currently allows users to created User defined functions (UDFs), these

UDFs are actually code written in C/C++ or Delphi and compiled to into a DLL. The

UDFs are then defined with in the database using InterBase's DECLARE

EXTERNAL FUNCTION command.

InterBase currently requires that parameters for these user defined functions be

passed to the User defined function code from the database server as a value or

by reference. In this case the any additional information is lost when the particular

data type is converted to a native language supported data type like a “char *” or

“int” or “short”. New functionality allows a particular parameter to be passed as a

descriptor. When an argument is passed as a descriptor the InterBase server
ensures all the information it has about the particular data type is passed to the

function. In this way the structure can be probed to check if the values is a SQL

NULL.

Further information regarding the character set can be obtained for textual data.

Information regarding the precision and scale is available for numeric data.

Declaring a New UDF Using a Descriptor Parameter

The DECLARE EXTERNAL FUNCTION command has been improved to allow

parameters to be passed as descriptors, the text in bold has been added to this

existing command:

Example

 DECLARE EXTERNAL FUNCTION name [datatype ;
 | CSTRING (int) | DESCRIPTOR [, datatype | CSTRING (int) |
DESCRIPTOR]]
 RETURNS { datatype [BY VALUE] | CSTRING (int) | PARAMETER n } [FREE_IT]
 ENTRY_POINT 'entryname ' MODULE_NAME 'modulename ';
For Example the following declares a new UDF...
 DECLARE EXTERNAL FUNCTION DESC_ABS
 DESCRIPTOR
C h a p t e r 1 0 U D F D e s c r i p t o r s 10-45

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 10, 2007 2:34 pm (C:\Home\Interbase\8.0\UpdateGuide\UDF_Descript.fm)
 RETURNS DOUBLE PRECISION BY VALUE
 ENTRY_POINT 'IB_UDF_abs' MODULE_NAME 'smistry_udf';

Note A parameter being passed as a descriptor cannot be used as a return type. This action will
throw a error.

Defining the UDF:

The functions are defined in C/C++ or Delphi code. For C the developer needs to

accept the descriptor parameter using the ISC_DSC structure. This structure is

defined in the include file “ibase.h”. The above mentioned DESC_ABS function

can be defined as follows in a C program file.

Example

double IB_UDF_abs (ISC_DSC *d)
 {
 double double_var ;
 /* function body */
 return double_var ;
 }

The ISC_DSC structure is defined as follows for C/C++ programs:

Example

 /*********************************/
 /* Descriptor control structure */
 /*********************************/
 typedef struct isc_dsc {
 unsigned char dsc_version; /* should be set to DSC_CURRENT_VERSION or
2 */
 unsigned char dsc_dtype; /* the InterBase data type of this
particular parameter */
 char dsc_scale; /* scale of the parameter for numeric data
types */
 char dsc_precision; /* precision of the numeric data type */
 unsigned short dsc_length; /* size in bytes of the parameter */
 short dsc_sub_type; /* for textual data types will have
information about character set and collation sequence,
 see DSC_GET_CHARSET and DSC_GET_COLLATE
macros for more information */
 unsigned short dsc_flags; /* will be set to indicate null to
DSC_null or to DSC_no_subtype to indicate that
 the sub type is not set, this is a bit
map so multiple bits might be set,
 use binary operations to test, see
table below for explanation */
 unsigned char *dsc_address; /* pointer to the actual value of the
datatype */
 } ISC_DSC;

Some related macros follow:

 #define DSC_VERSION2 2
 #define DSC_CURRENT_VERSION DSC_VERSION2
 #define DSC_null 1
 #define DSC_no_subtype 2
 #define DSC_nullable 4
 #define dsc_ttype dsc_sub_type
 #define DSC_GET_CHARSET(dsc) (((dsc)->dsc_ttype) & 0x00FF)
 #define DSC_GET_COLLATE(dsc) (((dsc)->dsc_ttype) >> 8)
10-46 I n t e r B a s e 2 0 0 7 U p d a t e G u i d e

S y s t e m T a b l e C h a n g e s

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 10, 2007 2:34 pm (C:\Home\Interbase\8.0\UpdateGuide\UDF_Descript.fm)
System Table Changes

The field RDB$MECHANISM in RDB$FUNCTION_ARGUMENTS system table
has a value of “2” to indicate if the UDF argument is used as a Descriptor.
C h a p t e r 1 0 U D F D e s c r i p t o r s 10-47

S y s t e m T a b l e C h a n g e s

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 10, 2007 2:34 pm (C:\Home\Interbase\8.0\UpdateGuide\UDF_Descript.fm)
10-48 I n t e r B a s e 2 0 0 7 U p d a t e G u i d e

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 10, 2007 2:32 pm (C:\Home\Interbase\8.0\UpdateGuide\OptimizerUpdate.fm)
C h a p t e r

11
Chapter 11Query Optimizer

Improvements

The optimizer analyzes the tables and columns used in a given query and chooses

indexes that speed up the searching, sorting, or joining operations.

Index Optimization of Correlated Subqueries in
UPDATE statements

An indexed retrieval is now used to fetch rows from the correlated subquery in the

UPDATE statement if there is an appropriate index defined. Utilize an indexed

access path for correlated subqueries in UPDATE statements as in the following

code example:

Example

 UPDATE A SET A.C1 = (SELECT B.C1 FROM B WHERE B.C2 = A.C2)

Where index is B.C2, InterBase will use index to retrieve the matching row in
table B where B.C2 = A.C2, since the row in the outer table A has already been

fetched.

Shortcut Boolean Expression Evaluation

All general Boolean expressions involving AND/OR will be shortcut as soon as

possible.

Note Re-ordering does note optimize the expressions.
C h a p t e r 1 1 Q u e r y O p t i m i z e r I m p r o v e m e n t s 11-49

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 10, 2007 2:32 pm (C:\Home\Interbase\8.0\UpdateGuide\OptimizerUpdate.fm)
Redundant Index Usage in Query Disjuncts

To avoid redundant indexes for disjuncts (OR conditions), query optimizer

redundant indexes, not used to optimize conjuncts (AND conditions), now select

one index that matches the most Boolean terms in the query. This greatly reduces

the amount of index retrievals constructed.

Outer Join and Sort/Merge Optimization

The Sort/Merge for outer joins algorithm has been modified to recognize outer and

inner streams of an outer join and match an outer row with a null-valued inner row

when there is no matching row in the inner stream.

For full outer joins, the outer and inner streams are swapped after producing

matching and null-matched rows for the first stream. The first stream becomes the

inner stream and what was the second stream becomes the outer stream. These

rows are then left outer joined and only those rows in which the outer stream is

matched with nulls are produced. The matching rows on the join terms are filtered
out because they were produced before the two streams were swapped during the

first pass.

Invariant FALSE Restrictions in Queries

Query optimizer now looks for Booleans of the form “literal <relop> literal” that

evaluate to FALSE and returns a false Boolean inversion node to short circuit data

retrieval.
11-50 I n t e r B a s e 2 0 0 7 U p d a t e G u i d e

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 6, 2007 1:48 pm (C:\Home\Interbase\8.0\UpdateGuide\JDBCUrlParam.fm)
C h a p t e r

12
Chapter 12JDBC URL Parameters

The feature enables a JDBC application to send in connection, data source and

driver properties via the URL. Third party applications can now include run time

parameters to the InterBase JDBC driver and the InterBase server, by appending

them to the database URL property.

JDBC URL Argument

Use the JDBC URL argument for passing additional parameters as in the following

example:

Example

String url =
"jdbc:interbase://localhost:3050/c:/dbs/books.ib?logWriterFile=logfile.txt"
;

Multiple properties can also be passed as:

Example

String url =
"jdbc:interbase://localhost:3050/c:/dbs/books.ib?logWriterFile=logfile.txt;
createDatabase=true”;
C h a p t e r 1 2 J D B C U R L P a r a m e t e r s 12-51

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 6, 2007 1:48 pm (C:\Home\Interbase\8.0\UpdateGuide\JDBCUrlParam.fm)
Legacy methods provide for by the Datasource and the DriverManager class are

still retained and work as before, however note that the new functionality takes

precedence over the Datasource and Drivermanager methods. Consider the

following java code as an example:

Example

 {
 String url =
"jdbc:interbase://localhost:3050/c:/dbs/books.ib?logWriterFile=logfile.txt;
createDatabase=true”;

 dataSource.setServerName ("localhost");
 dataSource.setDatabaseName (url);
 dataSource.setCreateDatabase (false);
 }

In this case the create database flag in the URL will have precedence.

Log Writer File Property

A new property has been created which is only available via the database URL

called logWriterFile, the usage is similar to other properties usage on the URL.

Example

?logWriterFile=c:/smistry/interclient.log

The setLogWriter call actually takes a defined PrintWriter, while the new

logWriterFile takes a actual filename to be used as a logWriter.
12-52 I n t e r B a s e 2 0 0 7 U p d a t e G u i d e

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 6, 2007 1:48 pm (C:\Home\Interbase\8.0\UpdateGuide\IBX.fm)
C h a p t e r

13
Chapter 13IBX Changes

InterBase Express (IBX) is a set of data access components that provide a means

of building applications with the Borland Developer System (IDE for Delphi, C#,

and C++) that can access, administer, monitor, and run the InterBase Services on

InterBase databases.

This chapter describes changes to the InterBase Exchange software.

See the ‘IBX’ chapter of the Developer’s Guide for more information about

InterBase Express components.

See the Release Notes for information about using the IBX Update Kit.

Changes to IBX in InterBase 2007

The following elements of IBX have changed in InterBase 2007:

IBDatabase.pas - Added support for the IBDatabase param
'instance_name'. Use instance_name when you need to set a port to
something other than the normal 3050.

IBDatabase.pas - Added support for the new
Incremental Backup feature of InterBase 2007.

It takes two arrays as parameters. The first array is an array of file names.
The second is an array of sizes. They should match up with each other. For
instance, file array element one should match size element one. Only the
final file is allowed to not have a size associated with it.
C h a p t e r 1 3 I B X C h a n g e s 13-53

C h a n g e s t o I B X i n I n t e r B a s e 2 0 0 7

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 6, 2007 1:48 pm (C:\Home\Interbase\8.0\UpdateGuide\IBX.fm)
The final two parameters are Full and Overwrite. Passing in true for Full
does a full backup, false creates an incremental backup (since the last
dump).

Passing in true for Overwrite will overwrite existing files, while false will
raise an error if the files exist.

IBQuery, IBTable, IBDataset, IBStoredProc - Added
PSSetCommandText where WideStrings are passed.

IBScript - Added support for commit retaining and rollback retaining.

IBScript - Added support for the InterBase 2007 batch script APIs. Such
as, in ISQL calling 'Batch start' starts a batch update and calling 'Batch
Execute' will execute the batch statements. Only insert, update and delete
statements are supported by this API.

Services - Added support for the instance_name parameter.

IBConfigService - Added two properties for database and transaction.

For the features added since 7.5, some of the properties are straight SQL
DDL. In versions previous to InterBase 2007, IBConfigService would just
create an INDatabase and INTransaction as needed.

InterBase will still create these as needed, but if you supply a database and
transaction it will use those parameters first. This is needed for some
features like the new journaling that requires exclusive access to the
database.

TIBJournalInformation - New class for displaying and setting Journal
settings on a database. This class is used to access the IBConfigService
component properties:

HasJournal - Boolean, true if journaling is turned on.

HasArchive - Boolean, true if archiving has been turned on

CheckPointInterval - Integer

CheckPointLength - Integer

PageCache - integer

PageLength - Integer
13-54 I n t e r B a s e 2 0 0 7 U p d a t e G u i d e

C h a n g e s t o I B X i n I n t e r B a s e 2 0 0 7

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 6, 2007 1:48 pm (C:\Home\Interbase\8.0\UpdateGuide\IBX.fm)
PageSize - Integer

TimestampName - Boolean

Directory - String

IBConfigService - New property JournalInformation. Read and write to this

property to manipulate journaling information on a database. Call

GetJournalInformation to retrieve the Journaling information for a database.

a) CreateJournal - creates a journal based on the JournalInformation.
b) AlterJournal - alters a pre-existing journal system. Not all properties
can be altered. See the Journaling chapter for limitations.
c) DropJournal - drops a journal system.
d) CreateJournalArchive - creates an archive. Takes an optional directory
parameter.
e) DropJournalArchive - drops an archive.
f) GetJournalInformation - retrieves journaling information for this
database and stores it in the JournalInformation property.
g) JournalInformation (property) - gives you access to the underlying
IBJournalInformation field.

IBSecurityService - Fixed bug where modifying a users was actually trying to

create a user.

IBVersionInfo - fixed a bug in the IsMinimumVersion function.

IBConfigService - Design time component editor now has a

GetJournalInformation menu option. This service is only registered if you have

InterClient 8.0 installed.
C h a p t e r 1 3 I B X C h a n g e s 13-55

C h a n g e s t o I B X i n I n t e r B a s e 2 0 0 7

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 6, 2007 1:48 pm (C:\Home\Interbase\8.0\UpdateGuide\IBX.fm)
13-56 I n t e r B a s e 2 0 0 7 U p d a t e G u i d e

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 6, 2007 1:48 pm (C:\Home\Interbase\8.0\UpdateGuide\IBConsole.fm)
C h a p t e r

14
Chapter 14IBConsole

InterBase provides an intuitive graphical user interface, called IBConsole, with

which you can perform every task necessary to configure and maintain an

InterBase server, to create and administer databases on the server, and to execute

interactive SQL (ISQL).

This chapter describes changes to the Console for the InterBase 2007 server.

For more information about IBConsole, see the ‘IBConsole’ chapter of the

Operations Guide.

Changes to IBConsole in InterBase 2007

Changes to IBConsole in InterBase 2007 include:

• You no longer have to login to use the Performance Monitor.

• The Tools menu now includes a ‘Launch Licensing Manager’ command that you

can use to register a server.

Note If you are adding the very first certificate from IBConsole to an older database, the Add
Certificate pop-up menu is shown. This will add an old style certificate. However, as of
InterBase 2007, certificate information is not displayed, so it will be hidden, after the server
version is determined.
C h a p t e r 1 4 I B C o n s o l e 14-57

C h a n g e s t o I B C o n s o l e i n I n t e r B a s e 2 0 0 7

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 6, 2007 1:48 pm (C:\Home\Interbase\8.0\UpdateGuide\IBConsole.fm)
14-58 I n t e r B a s e 2 0 0 7 U p d a t e G u i d e

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 10, 2007 2:37 pm (C:\Home\Interbase\8.0\UpdateGuide\PrevFeatures.fm)
C h a p t e r

15
Chapter 15InterBase Features Per

Release

This chapter reviews features introduced in InterBase 7.5, InterBase 7.1 and

InterBase 7.0.

New in InterBase 7.5

InterBase 7.5 includes the following improvments:

New in InterBase 7.5

Multi-Instance

Automatic re-routing of databases

Manual routing of databases

Server side database alias

Embedded database user authentication

New ODS

Global temporary tables

CASE, COALESCE, and NULLIF

Memory management allocation algorithms

Index optimization for NULL/non-NULL values

Stored procedure and trigger cache management

Sort buffer cache management

Greater SMP scalability

Database page buffer cache

Thread-private Latch Cache

Error reporting improved in interbase.log

New in InterClient 4.7

New in InterBase 7.1

New in InterClient 4.0

New in InterBase 7.0
C h a p t e r 1 5 I n t e r B a s e F e a t u r e s P e r R e l e a s e 15-59

N e w i n I n t e r B a s e 7 . 5

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 10, 2007 2:37 pm (C:\Home\Interbase\8.0\UpdateGuide\PrevFeatures.fm)
Multi-Instance

InterBase 7.5 now allows multiple instances of InterBase servers to run

simultaneously. In the past multiple versions of the InterBase server could not be

run on the same machine. Previously when an application that utilized one version

of InterBase, another application that utilized another version of InterBase could

not be run. Now with InterBase 7.5 Borland has added the ability run multiple

instances of InterBase on the same machine.

With InterBase 7.5 one previous version (major release) of InterBase, i.e.

InterBase 7.1, or InterBase 6.x, etc. will be able to be run simultaneously. Multiple

instances of InterBase 7.5 can be run simultaneously.

Note Separate licensing is required for all instances of InterBase.

Automatic re-routing of databases

Now that InterBase 7.5 allows multiple instances of InterBase to run on the same

machine this feature will allow configurations where some database connections

can be rerouted to a different InterBase server instance on the same machine. See

the Operations Guide for implementation details.

Manual routing of databases

This solution allows application developers to explicitly specify a unique

INTERBASE environmental variable for a local connection, or a unique TCP/IP

protocol name for remote connections. This feature is useful if application

developers want to isolate their application from other versions of InterBase

installed on the same machine. See the Multi-Instance section in the Operations

Guide for implementation details.

Server side database alias

Database alias renames a database file within the context of the server. This

beneficial feature enables clients to connect to databases regardless of the

knowledge of its exact location. See the Operations Guide for implementation

details.

Embedded database user authentication

This is a security improvement new in InterBase 7.5. Now that InterBase 7.5 can

manage multiple databases for unrelated applications the embedded database

user authentication feature allows custom user account management that is not
shared with other InterBase applications. See the Operations Guide for

implementation details.

Note There is no embedded SQL support for DDL for embedded database user authentication.
15-60 I n t e r B a s e 2 0 0 7 U p d a t e G u i d e

N e w i n I n t e r B a s e 7 . 5

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 10, 2007 2:37 pm (C:\Home\Interbase\8.0\UpdateGuide\PrevFeatures.fm)
New ODS

InterBase 7.5 uses ODS (On Disk Structure) 11.2. This new ODS is required to

accommodate new system tables, changes to existing system tables, and

embedded database user authentication. InterBase 7.0 ODS 11.0 databases and

InterBase 7.1 ODS 11.1 databases are automatically upgraded to ODS 11.2 when

an InterBase 7.5 server attaches to these databases. To migrate databases with

an ODS less that 11.0 or 11.1, backup these database versions with the older

version of InterBase and restore them using InterBase 7.5 IBConsole or gbak.

Note Since InterBase 7.5 automatically upgrades ODS 11.0 and 11.1 databases to ODS 11.2 it is
recommended that you retain a copy of your database in an earlier ODS if you plan on using
databases with InterBase 7.0 or 7.1.

Global temporary tables

This feature implements the functionality of SQL global temporary tables in

InterBase 7.5. Previously InterBase developers simulated temporary tables with

permanent base tables. The developer was responsible for the application

dropping those tables and performing any housekeeping to empty those tables if

the application or database server abnormally terminated. With this new SQL
temporary table feature in InterBase 7.5 all of the namespace and life cycle issues

are transparently managed once the temporary table is declared to the database

schema, thus making application development much easier. See the Language

Reference for implementation details.

Note There is no embedded SQL support for DDL on temporary tables.

CASE, COALESCE, and NULLIF

New language features have been added in InterBase 7.5; CASE, COALESCE,

and NULLIF. SQL dialect 1-3 applications should be able to use this functionality

except if the evaluation of a value expression yields a value of a data type only

supported by SQL dialect 3. An InterBase server should raise an SQL dialect

exception in this case. For syntax of these new language implementations, please

refer to the Language Reference.

Note There is no embedded SQL support for CASE, COALESCE and NULLIF.

Index optimization for NULL/non-NULL values

Nulls are sorted high in indices, meaning that they are located at the end of the

index. When a query with greater than is matched to that index, previous versions

of InterBase would unnecessarily go out and retrieve all the null-valued record

versions from the index even though there is no way the nulls will satisfy the query.

This will optimize such queries by not involving the NULL key values where they

are not required. This will improve the overall performance of the InterBase server,

and give a better response to many SQL queries. Having NULL values in index
C h a p t e r 1 5 I n t e r B a s e F e a t u r e s P e r R e l e a s e 15-61

N e w i n I n t e r B a s e 7 . 5

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 10, 2007 2:37 pm (C:\Home\Interbase\8.0\UpdateGuide\PrevFeatures.fm)
keys is quite common (more so in composite keys), and hence this will have a

wider impact on all InterBase customers who will see better performance from the

product.

Memory management allocation algorithms

In InterBase 7.5 the memory management allocation algorithms have been

improved. In previous versions of InterBase the memory management allocation

algorithms were designed for the Classic single process architecture. Those

outdated algorithms constrained memory resources in the Super Server

architecture; the best-fit search algorithm for heap memory allocation will be

changed to a first-fit algorithm. Additionally, separate memory heaps will be

managed for ad-hoc memory allocation and block-based demands from the SQL

and relational engine components to prevent memory fragmentation. This will also

enable a degree of SMP parallelization by allowing simultaneous memory
allocations. The first-fit algorithm will minimize search latency due to soft/hard

page faulting resulting from searching the entire server address space for free

memory.

Stored procedure and trigger cache management

The cache management for stored procedures and triggers in InterBase 7.5 has

been refined to prevent the server from locking large amounts of memory to

maintain the residency of triggers and stored procedures. The cache management

will operate on two levels: 1) Deallocate individual clones not in use, and 2)

deallocate the primary requests which are not used.

Sort buffer cache management

This feature in InterBase 7.5 improves the page faulting that occurs when 1MB sort

buffers are immediately released. This phenomenon can be observed in rapidly

executing statements or procedures which perform operations requiring a sort

buffer, or during the index build phase of database restoration.

Greater SMP scalability

This feature in InterBase 7.5 improves performance for higher numbers of CPU

both physical and logical. Through the use of spin locks and thread-private latch

caches the InterBase ATOM synchronization architecture reduces the number and

frequency of synchronization points.

Database page buffer cache

In InterBase 7.5 the largest page size has been increased from 8,192 to 16, 384

bytes. The largest buffer cache has been increased from 65,000 to 131,000 pages.
15-62 I n t e r B a s e 2 0 0 7 U p d a t e G u i d e

N e w i n I n t e r C l i e n t 4 . 7

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 10, 2007 2:37 pm (C:\Home\Interbase\8.0\UpdateGuide\PrevFeatures.fm)
Thread-private Latch Cache

The Thread-private Latch Cache (TLC) reduces the number and frequency of

atom synchronization locks needed to safely address and pin down resident pages

in the database page buffer cache. In doing so, performance is improved because

of a shorter code path and the avoidance of thread context-switching due to

contention over atom synchronization variables.

TLC improves InterBase performance on SMP servers and single CPU servers

when the IBCONFIG parameter MAX_THREADS is not equal to 1. That is, when

multiple threads are allowed to execute concurrently inside the InterBase engine. If

MAX_THREADS is equal to 1 then atom synchronization and TLC are both

disabled.

Error reporting improved in interbase.log

With improved error reporting in interbase.log database names are no longer

reported in the 8.3 format. Index names instead of numbers are now reported
when verifying a database, and index errors are reported. Also, improved errors

are reported when errors are found in ib_license.dat and the InterBase server is

started.

New in InterClient 4.7

InterClient 4.7 includes the following updates:

Savepoints

Savepoints were introduced to InterBase 7.1, InterClient 4.7 now surfaces this as a

JDBC standard implementation with the class IBSavepoint

The following example shows how to use IBSavepoint:

package bo_blob;
import java.sql.*;

public class testSavepoints
{
 public static void main(String[] args)
 {
 try
 {
 System.out.println("InterClient version: " +

interbase.interclient.Driver.getInterClientVersionInfo());

 String url = "jdbc:interbase://localhost/c:\\smistry\\foo.ib";
 Connection con;
 Class.forName("interbase.interclient.Driver");
 con = DriverManager.getConnection(url, "sysdba", "masterkey");

 con.setAutoCommit(false);
 Statement stmt = con.createStatement();
C h a p t e r 1 5 I n t e r B a s e F e a t u r e s P e r R e l e a s e 15-63

N e w i n I n t e r C l i e n t 4 . 7

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 10, 2007 2:37 pm (C:\Home\Interbase\8.0\UpdateGuide\PrevFeatures.fm)
 try
 {
 stmt.executeUpdate("create table test (a int)");
 }
 catch (SQLException se)
 {
 System.out.println(se.getMessage());
 }
 con.commit();
 Savepoint savepoint = con.setSavepoint("sean");
 Savepoint savepoint = con.setSavepoint();
 PreparedStatement pstmt = con.prepareStatement("insert into test
values (?)");
 stmt.executeUpdate("insert into test values (1)");
 ResultSet rs = stmt.executeQuery("Select a from test");
 while (rs.next())
 {
 System.out.println("a = " + rs.getInt("a"));
 }
 con.rollback(savepoint);
 rs = stmt.executeQuery("Select a from test");
 while (rs.next())
 {
 System.out.println("a = " + rs.getInt("a"));
 }
 con.commit();
 stmt.executeUpdate("drop table test");
 }
 catch (Exception se)
 {
 se.printStackTrace();
 }
 }
 public testSavepoints()
 {
 }
}

ParameterMetaData

InterClient had always implemented a version of ParameterMetaData, as it was

not specified by JDBC, it was a InterClient extension to the specification. With JDK

1.4 this is now a part of JDBC 3.0 specification and InterClient surfaces this as a

JDBC call. In order to use this new JDBC specified class users will need to use

java.sql.ParameterMetaData, the previous class

interbase.interclient.ParameterMetaData is the older implementation and is now

deprecated.

Note The usability of these 2 new classes is based on the JDBC 3.0 specification and visiting Sun’s
JDBC 3.0 web site for detailed information on what these new interfaces include is
recommended.
15-64 I n t e r B a s e 2 0 0 7 U p d a t e G u i d e

N e w i n I n t e r B a s e 7 . 1

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 10, 2007 2:37 pm (C:\Home\Interbase\8.0\UpdateGuide\PrevFeatures.fm)
New in InterBase 7.1

InterBase 7.1 includes the following updates:

New cross-platform installer

InterBase 7.1 has a new all-Java installer that is available for all InterBase

platforms. For information about installation, please see the IBsetup.html file

located at the root of your InterBase CD-ROM or download file. This file is also

accessible from the main screen of the installer.

New registration

InterBase now joins other Borland products in requiring product registration. As

part of the install process, you are asked to register and will be given four options

for doing this, discussed below.

Preparing for the install and registration If you have already completed the

InterBase installation and registration, you can skip this section. Before you begin

the installation process have the following handy:

• The Serial Number and Key that are provided on the jacket of your InterBase
CD-ROM.

• Your Borland Developer Network membership information. You can supply

either your BDN user name or the E-mail address that you used to sign up plus

the password. If you have ever registered a Borland product, you are a member

of the BDN network. In addition, you might have signed up for membership on

one of the Borland web sites. If you are not a member of the Borland Developer

Network, you have an opportunity to join during the registration process.

IBsetup.html provides detailed information about the installation and registration

process.

Precision of exact numerics

InterBase now returns the precision of exact numeric data types back to the client

using the XSQLDA structure.

New drivers

For Windows platforms, InterBase 7.1 includes a Borland Data Provider (BDP) for

ADO.NET programming.

Old drivers The IBX drivers for Delphi 5, Delphi 6, and C++Builder 5 are still

available on your InterBase 7.1 CD-ROM, but they are no longer listed on the

driver install menu.
C h a p t e r 1 5 I n t e r B a s e F e a t u r e s P e r R e l e a s e 15-65

N e w i n I n t e r B a s e 7 . 1

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 10, 2007 2:37 pm (C:\Home\Interbase\8.0\UpdateGuide\PrevFeatures.fm)
New ODS

InterBase 7.1 uses ODS 11.1 rather than the ODS 11.0 used by InterBase 7.0.

This new ODS is required to accommodate reporting the precision of exact

numerics. To migrate databases, back them up with the older version of InterBase

and restore them using InterBase 7.1 IBConsole or gbak.

Savepoints

InterBase 7.1 implements savepoints as defined in the SQL 1999 standard.

Savepoints in SQL
In DSQL and ESQL the following SQL statements are available:

1 To create a savepoint:

SAVEPOINT <savepoint_name>

A savepoint name can be any valid SQL identifier. Savepoint names must be unique

within their atomic execution context. If you assign a name that is already in use, the

existing savepoint is released and the name is applied to the current savepoint. An

application, for example, is an execution context, as is each trigger and stored

procedure. Thus, if you have an application with several triggers, you can have a

savepoint named SV1 within the application and also within each trigger and stored

procedure.

2 To release a savepoint:

RELEASE SAVEPOINT <savepoint_name>

Releasing a savepoint destroys that savepoint without affecting any work that has been

performed subsequent to its creation.

3 To roll back to a savepoint:

ROLLBACK [WORK] [TO SAVEPOINT <savepoint_name>]

Issuing a ROLLBACK TO SAVEPOINT command rolls back all work performed since the

creation of the named savepoint. If other savepoints were created after the named

savepoint, those later savepoints are also rolled back.

Savepoints in the InterBase API
The InterBase API supports savepoints with the following functions:

1 To create a savepoint:

ISC_STATUS isc_start_savepoint(
ISC_STATUS *status_vector,
isc_tr_handle *trans_handle,

char *savepoint_name);

2 To release a savepoint:

ISC_STATUS isc_release_savepoint(
15-66 I n t e r B a s e 2 0 0 7 U p d a t e G u i d e

N e w i n I n t e r B a s e 7 . 1

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 10, 2007 2:37 pm (C:\Home\Interbase\8.0\UpdateGuide\PrevFeatures.fm)
ISC_STATUS *status_vector,
isc_tr_handle *trans_handle,

char *savepoint_name);

3 To roll back to a savepoint:

ISC_STATUS isc_rollback_savepoint(
ISC_STATUS *status_vector,
isc_tr_handle *trans_handle,
char *savepoint_name

short option);

The option parameter is reserved for future use. Pass a value of zero for this parameter.

Savepoints in triggers and stored procedures
Savepoints are implemented in stored procedures and triggers.

A SAVEPOINT example
The following code snippet is a simple example of how to use savepoints:

CREATE PROCEDURE add_emp_proj2 (emp_no SMALLINT, emp_name VARCHAR(20),
proj_id CHAR(5)) AS
BEGIN
 BEGIN
 SAVEPOINT EMP_PROJ_INSERT;
 INSERT INTO employee_project (emp_no, proj_id) VALUES
(:emp_no,:proj_id);
 WHEN SQLCODE -530 DO
 BEGIN
 ROLLBACK TO SAVEPOINT EMP_PROJ_INSERT;
 EXCEPTION unknown_emp_id;
 END
 END
SUSPEND;
END;

New keywords

The savepoint functionality adds the following new keywords:

SAVEPOINT RELEASE

Performance monitoring now accessible in
IBConsole

You can now access the performance monitoring features that were introduced in

InterBase 7.0 through IBConsole, the graphical Windows interface for InterBase.

New character sets

InterBase 7.1 implements several new character sets and collation orders.
C h a p t e r 1 5 I n t e r B a s e F e a t u r e s P e r R e l e a s e 15-67

N e w i n I n t e r B a s e 7 . 1

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 10, 2007 2:37 pm (C:\Home\Interbase\8.0\UpdateGuide\PrevFeatures.fm)
For the Latin 2 character set, InterBase implements Polish and Czech. More

languages will be implemented in the future. A longish list of languages is

implemented for Latin 9, listed in the table below. Finally, Russian is implemented

for the KOI8-R character set.

These new character sets are defined as follows:

Note Databases can optionally have a default character set defined for them. Character sets can
also optionally be defined for specific table columns. If you are connecting to a database from
a platform whose default code page is different from that of the database you are connecting
to, you must specify the default code page of the client platform when making the connection
to the database. To do this from IBConsole, select the database from the Tree Pane and
choose Connect As from the Connect menu or the mouse context menu. The resulting
Database Connect dialog box contains a Character Set field where you can specify the client
platform character set from the pull-down list.

Improved SMP support

Support for multiprocessor machines has been improved. Among other changes,

the MAX_THREADS parameter in the ibconfig configuration file now defaults to

1,000,000 when two or more CPUs are present and licensed. This means that

there are never threads waiting to execute and improves the speed with which

they release any resources that they hold. When only one CPU is licensed or if

only one CPU is present, MAX_THREADS defaults to 1. For the purpose of

Character

set

Char.

set ID

Max.

char. size

Min.

char. size Collation orders

ISO8859_2 (Latin2) 22 1 byte 1 byte ISO8859_2

CS_CZ

PL_PL

ISO8859_15 (Latin9) 39 1 byte 1 byte ISO8859_15
DA_DA9

DE_DE9
DU_NL9

EN_UK9

EN_US9
ES_ES9

FI_FI9
FR_CA9

FR_FR9

IS_IS9
IT_IT9

NO_NO9
PT_PT9

SV_SV9

KOI8-R 58 1 byte 1 byte RU_RU
15-68 I n t e r B a s e 2 0 0 7 U p d a t e G u i d e

N e w i n I n t e r B a s e 7 . 1

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 10, 2007 2:37 pm (C:\Home\Interbase\8.0\UpdateGuide\PrevFeatures.fm)
determining this default value, InterBase counts a hyper-threaded processor as a

single CPU. You can change the number of simultaneous active server threads by

editing the MAX_THREADS entry in the ibconfig configuration file.

Hyper-threading support on Intel processors

InterBase can support hyper-threading on Intel processors that support logical

processors using Intel’s hyper-threading technology. To enable this support in the

InterBase server, you must make a setting in the InterBase configuration file,

ibconfig. If you are running the InterBase server on a machine with hyper-threaded

processors, edit the ENABLE_HYPERTHREADING parameter in the configuration file.

By default, this parameter is set to zero. Set the value to 1 to allow the InterBase

server to use hyperthreaded processors.

Change in gbak functionality

When restoring a database, gbak no longer automatically performs constraint

checking the database during the restore process. This improves the speed of

database restores and ensures that users can always restore their databases from

backup files even when the backup files contain data that violates constraints such
as NOT NULL, CHECK, PRIMARY and UNIQUE indexes, or REFERENTIAL constraints.

InterBase 7.1 provides now switches and parameters to provide the former

capability of validating a database when restoring it.

Hyper-threading support for Intel processors

InterBase now recognizes and responds to hyperthreading technology in Intel

processors. In InterBase 7.0, there was no way to exploit hyperthreading without

purchasing additional SMP licenses. InterBase 7.1 now unlocks the additional

processing power of hyperthreading transparently, without requiring additional

SMP licenses. These same changes also insure that an SMP license is applied to

a physical processor and not a logical processor, for maximum price/performance

benefit.

New SQL command: DROP GENERATOR

InterBase now supports a DROP GENERATOR SQL statement:

Command line There is a new command-line switch: -VA[LIDATE]. For example:

gbak -r -user joe -pass blurf@ C:\archive\foo.ibk jupiter:/foo.ib -validate

InterBase Services API There is a new parameter that enables validation during a restore: isc_spb_res_validate.

DPB There is a new DPB parameter, isc_dpb_gbak_validate that instructs the server to include
validation checks during a database restore.
C h a p t e r 1 5 I n t e r B a s e F e a t u r e s P e r R e l e a s e 15-69

N e w i n I n t e r B a s e 7 . 1

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 10, 2007 2:37 pm (C:\Home\Interbase\8.0\UpdateGuide\PrevFeatures.fm)
DROP GENERATOR generator_name

The statement fails if generator_name is not the name of a generator defined on

the database. This command checks for any existing dependencies on the

generator—for instance in triggers or UDFs—and fails if such dependencies exist.

An application that tries to call a deleted generator returns runtime errors.

DROP GENERATOR is implemented for DSQL and isql.

In previous versions of InterBase that lacked the DROP GENERATOR command,

users were told to issue a SQL statement to delete the generator from the
appropriate system table. This approach is strongly discouraged now that the

DROP GENERATOR command is available, since modifying system tables always

carries with it the possibility of rendering the entire database unusable as a result

of even a slight error or miscalculation.

Improved garbage collection/index handling

Users will see significant performance improvement as a result of InterBase 7.1’s

more efficient garbage collection of duplicate index nodes. New algorithms have

been added that minimize computational overhead and memory consumption

during garbage collection.

IBConsole displays additional object dependencies

IBConsole now displays object dependencies on generators and UDFs in addition

to all the dependencies it formerly displayed.

Using the InterBase Install API

Certain components of the InterBase Install API point to an InterBase file structure

that is no longer in use. If you are writing or updating an install application using

this API, you need to have the current InterBase files arranged in the file structure

required by the InterBase Install API. To facilitate this, InterBase supplies a file,

silent_install.zip, that contains all the current files arranged in the structure

required by the API.

If you are writing an install application, extract silent_install.zip, and place your

compiled install application at the root of the resulting file structure.

If you have an existing install application that does not bundle InterBase files within
the binary, you can update it by just extracting silent_install.zip, and copying the

resulting files over the InterBase file structure that you previously used.

If your existing install application includes changed InterBase files within the

binary, you need to refresh the file structure with the files in silent_install.zip, and

then recompile the application.
15-70 I n t e r B a s e 2 0 0 7 U p d a t e G u i d e

N e w i n I n t e r B a s e 7 . 1

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 10, 2007 2:37 pm (C:\Home\Interbase\8.0\UpdateGuide\PrevFeatures.fm)
Licensing: VARs are now provided with an additional file, which must be included

with their InterBase installs in order to provide valid product registration. If you are

embedding or reselling InterBase, you should have received instructions about

how to manage this file. If you need more information, contact your Borland

InterBase representative.

Documentation fixes and changes

Some errors have been corrected in the documentation for InterBase 7.1. These

changes are included in the PDF documents that ship with InterBase 7.1. They are

not yet included in the printed documents.

UDF library documentation has been moved
In order to make all UDF information available in one place, the UDF chapter has

been removed from the Language Reference and folded into the “Working with

UDFs and Blob Filters” chapter of the Developer’s Guide.

Declaring BLOB UDFs
The documentation now contains a more complete description of how to declare a

UDF that returns a Blob.

To specify that a UDF should return a BLOB, use the RETURNS PARAMETER n

statement to specify which input Blob is to be returned. For example, if the BLOB

to be returned is the third input parameter, specify RETURNS PARAMETER 3. The

Blob_PLUS_Blob UDF concatenates two BLOB and returns the concatenation in a

third BLOB. The following statement declares this UDF to a database, specifying

that the third input parameter is the one that should be returned:

DECLARE EXTERNAL FUNCTION Blob_PLUS_Blob
Blob,
Blob,
Blob
RETURNS PARAMETER 3
ENTRY_POINT 'blob_concatenate' MODULE_NAME 'ib_udf';

COMMIT;

For more information about UDFs and Blobs, see the chapter “Working with UDFs

and Blob Filters” in the Developer’s Guide.

Calling convention for UDFs
Previous versions of InterBase documentation said that UDFs should be called
using _stdcall. This is not correct. InterBase uses the CDECL calling convention, so

all UDFs must be declared using the CDECL calling convention.
C h a p t e r 1 5 I n t e r B a s e F e a t u r e s P e r R e l e a s e 15-71

N e w i n I n t e r C l i e n t 4 . 0

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 10, 2007 2:37 pm (C:\Home\Interbase\8.0\UpdateGuide\PrevFeatures.fm)

se
Portable UDFs
It has always been the case that UDFs could be written for Unix and Linux
platforms as well as for Windows. However, the documentation did not make this

clear. This has now been corrected. In addition, examples of declaring UDFs now

show the portable form, in which the extension of the module name is not included.

For example:

DECLARE EXTERNAL FUNCTION LOWERS VARCHAR(256)
RETURNS CSTRING(256) FREE_IT
ENTRY POINT 'fn_lower' MODULE_NAME 'udflib';

Correction for YEARDAY range
In the Language Reference, the range for EXTRACT(YEARDAY) should be 0–365.
This will be corrected in the next version of the InterBase document set. It is

incorrect in the set that ships with InterBase 7.1.

New in InterClient 4.0

Data Source properties for InterBase

Standard properties

Table 15.1 Data Source standard properties

Name Type Description
Default
Value

databaseName String The name of the database to connect to null

serverName String The InterBase server name localhost

user String The InterBase user who is connecting null

password String The InterBase user password null

networkProtocol String The InterBase network protocol; this can only be jdbc:interbase:
for InterClient.

jdbc:interba

port Number int The InterBase port number 3050

roleName String The InterBase role null

dataSourceName String The logical name for the underlying XADataSource or
Connection Pool; used only when pooling connections for
InterBase (XA is not supported)

null

description String A description of this data source null
15-72 I n t e r B a s e 2 0 0 7 U p d a t e G u i d e

N e w i n I n t e r C l i e n t 4 . 0

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 10, 2007 2:37 pm (C:\Home\Interbase\8.0\UpdateGuide\PrevFeatures.fm)

lt

ault
Extended properties

Table 15.2 Data Source Extended properties

Name Type Description
Defau
Value

charSet String Specifies the character encoding for the connection; used for sending
all SQL and character input data to the database and for all output
data and InterBase messages retrieved from the database.

The encoding specified by charSet must match one of the supported
IANA character-encoding names detailed in the CharacterEncodings
class.

If charSet is set to NONE, InterClient uses the default system
encoding obtained by the System.getProperty(“file.encoding”)
method if that default encoding is supported by InterBase. If the
default system encoding is not supported by InterBase, it is
recommended that you use the charSet property to set the InterClient
charSet to one of the InterBase-supported encodings.

InterClient messages do not utilize charSet, but derive from the
resource bundle in use, which is based on the locale-specific
encoding of the client.

 No def
value

sqlDialect int The client SQL dialect. If the value is set to 0 then the database's
dialect is used for the client dialect.

0

createDatabase Boolean If set, the database is created if it does not exist. false

serverManagerHost String Ignored. null

sweepOnConnect boolean If set, forces garbage collection of outdated record versions
immediately upon connection

See the InterBase Operations Guide for more details. Sweep does not
require exclusive access, but there is some data and transaction state
information that can be updated only where there are no active
transactions on the database.

false
C h a p t e r 1 5 I n t e r B a s e F e a t u r e s P e r R e l e a s e 15-73

N e w i n I n t e r C l i e n t 4 . 0

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 10, 2007 2:37 pm (C:\Home\Interbase\8.0\UpdateGuide\PrevFeatures.fm)

lt
InterClient connection pooling

InterClient now works with Container Managed Persistence (CMP) 2.0, which is

supplied with the Borland Enterprise Server. This enables JDBC DataSource 2.x

connectivity to InterBase databases. The following jndi-definition.xml file shows

how it can be used through an application server:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE jndi-definitions PUBLIC "-//Borland Corporation//DTD
JndiDefinitions//EN"
"http://www.borland.com/devsupport/appserver/dtds/jndi-definitions.dtd">
<jndi-definitions>
 <visitransact-datasource>
 <jndi-name>serial://datasources/DataSource</jndi-name>

<driver-datasource-jndiname>serial://datasources/driverDataSource</driver-d
atasource-jndiname>
 <property>
 <prop-name>connectionType</prop-name>
 <prop-type>Enumerated</prop-type>

suggestedCachePages int The suggested number of cache page buffers to use for this
connection

This is a transient property of the connection and is overridden by the
database-wide default set by
ServerManager.setDatabaseCachePages(database, pages). It takes
precedence over the server-wide default set by
DATABASE_CACHE_PAGES in the InterBase ibconfig startup file or
by ServerManager.startInterBase(defaultCachePages,
defaultPageSize).

On SuperServer, if a database cache already exists due to another
attachment to the database, then the cache size can be increased but
not decreased. So, although this is a transient property, once the
cache size is increased, it stays that way as long as there are active
connections. Once all connections to the database are closed, then
subsequent connections use the database-wide or server-wide
defaults.

Note: Using this connection property can jeopardize the performance
of the server because an arbitrary user can connect and reserve
200MB for foo.ib while corporate.ib is forced to accept less.

InterBase code sets an absolute limitation on MAX_PAGE_BUFFERS

of 65,535 pages. So the cache memory size for a database cannot go
beyond a maximum of MAX_PAGE_BUFFERS*PageSize bytes,
which is 512MB for an 8K page size. 8K is the maximum database
page size currently allowed. If this property is zero or unspecified
and there is no server-wide or database-wide default set, the default
pages used is 2048 cache pages.

Also see DatabaseMetaData.getPersistentDatabaseCachePages(),
and DatabaseMetaData.getActualCachePagesInUse().

0

Table 15.2 Data Source Extended properties (continued)

Name Type Description
Defau
Value
15-74 I n t e r B a s e 2 0 0 7 U p d a t e G u i d e

N e w i n I n t e r C l i e n t 4 . 0

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 10, 2007 2:37 pm (C:\Home\Interbase\8.0\UpdateGuide\PrevFeatures.fm)
 <prop-value>Direct</prop-value>
 </property>
 <property>
 <prop-name>dialect</prop-name>
 <prop-type>Enumerated</prop-type>
 <prop-value>interbase</prop-value>
 </property>
 </visitransact-datasource>
 <driver-datasource>
 <jndi-name>serial://datasources/driverDataSource</jndi-name>

<datasource-class-name>interbase.interclient.JdbcConnectionFactory</datasou
rce-class-name>
 <property>
 <prop-name>user</prop-name>
 <prop-type>String</prop-type>
 <prop-value>SYSDBA</prop-value>
 </property>
 <property>
 <prop-name>password</prop-name>
 <prop-type>String</prop-type>
 <prop-value>masterkey</prop-value>
 </property>
 <property>
 <prop-name>serverName</prop-name>
 <prop-type>String</prop-type>
 <prop-value>agni</prop-value>
 </property>
 <property>
 <prop-name>databaseName</prop-name>
 <prop-type>String</prop-type>
 <prop-value>c:/admin.ib</prop-value>
 </property>

<property>
 <prop-name>sqlDialect</prop-name>
 <prop-type>int</prop-type>
 <prop-value>3</prop-value>
 </property>
 <property>
 <prop-name>createDatabase</prop-name>
 <prop-type>boolean</prop-type>
 <prop-value>true</prop-value>
 </property>

 </driver-datasource>

</jndi-definitions>

InterClient scroll ability

The Connection class

To achieve JDBC 2.0 core compliance, InterClient now allows a value of

TYPE_SCROLL_INSENSITIVE for the resultSetType argument for the following

Connection methods:

public java.sql.Statement createStatement (int resultSetType, int resultSetConcurrency)

public java.sql.CallableStatement prepareCall (String sql, int resultSetType, int
resultSetConcurrency)

public java.sql.PreparedStatement prepareStatement (String sql, int resultSetType, int
resultSetConcurrency)
C h a p t e r 1 5 I n t e r B a s e F e a t u r e s P e r R e l e a s e 15-75

N e w i n I n t e r C l i e n t 4 . 0

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 10, 2007 2:37 pm (C:\Home\Interbase\8.0\UpdateGuide\PrevFeatures.fm)
Previously, the only allowable value for resultSetType was

TYPE_FORWARD_ONLY. Currently, the only type not allowed is the

TYPE_SCROLL_SENSITIVE

The ResultSet class

 The resultSetType property of the ResultSet class can now have a value of

TYPE_SCROLL_INSENSITIVE Previously, the only allowable value for

resultSetType was TYPE_FORWARD_ONLY. Currently, the only type not allowed

is the TYPE_SCROLL_SENSITIVE.

The following methods now return a valid value when the resultSets that are of the

new resultSetType.TYPE_SCROLL_INSENSITIVE:

public boolean isBeforeFirst()

public boolean isAfterLast()

public boolean isFirst()

public isLast()

public void beforeFirst()

public void afterLast()

public boolean first()

public boolean last()

public int getRow()

public boolean absolute(int row)

public boolean relative(int rows)

public boolean previous()

New InterClient methods

InterClient is InterBase’s JDBC driver. In InterBase 7.0, we introduced a new type

4 JDBC driver. For InterBase 7.1, we have added a large collection of methods to

this driver to bring it into compliance with the JDBC 2.0 standard.
15-76 I n t e r B a s e 2 0 0 7 U p d a t e G u i d e

N e w i n I n t e r C l i e n t 4 . 0

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 10, 2007 2:37 pm (C:\Home\Interbase\8.0\UpdateGuide\PrevFeatures.fm)

.

e

the

nt

Methods for the Statement and PreparedStatement classes
The following methods have been added to both the Statement and the
PreparedStatement classes. The methods listed below now work according to the

JDBC specifications.

Table 15.3 Methods for the Statement and PreparedStatement classes

Method Functionality

void Statement.addBatch(String

sql)
Adds sql to the current list of commands.

void Statement.clearBatch() Empties the list of commands for the current statement object

int[] Statement.executeBatch()

throws BatchUpdateException

Submits the list of commands for this statement’s objects to th

database for execution as a unit. The returned integer array

contains the update counts for each of the SQL commands in

list.

void
PreparedStatement.addBatch()

Adds a set of parameters to the list of commands for the curre

PreparedStatement object's list of commands to be sent to the
database for execution.
C h a p t e r 1 5 I n t e r B a s e F e a t u r e s P e r R e l e a s e 15-77

N e w i n I n t e r C l i e n t 4 . 0

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 10, 2007 2:37 pm (C:\Home\Interbase\8.0\UpdateGuide\PrevFeatures.fm)

 error

ATE

eption

r code

ATE

eption

ATE

eption

Code is

is set to

ch

ATE

eption

et to

p code
The BatchUpdateException class
A new BatchUpdateException class has been implemented in order to support
JDBC Batch update functionality. Here is the list of methods and constructors in

the new class:

Table 15.4 Methods and constructors for the new BatchUpdateException class

Method/Constructor Functionality

public BatchUpdateException(

String reason,

String SQLState,

int vendorCode,

int [] updateCounts)

Constructs a BatchUpdateException object where:

• reason is a string describing the exception,

• SQLState is an object containing Open Group code

identification,

• vendorCode identifies the vendor-specific database

code

• updateCounts contains an array of INTs where each

element indicates the row count for each SQL UPD

command that executed successfully before the exc

was thrown.

public BatchUpdateException(

String reason,

String SQLState,

int [] updateCounts)

Constructs a BatchUpdateException object where:

• reason is a string describing the exception,

• SQLState is an object containing the InterBase erro

• updateCounts contains an array of INTs where each
element indicates the row count for each SQL UPD

command that executed successfully before the exc

was thrown.

• The vendor code is implicitly set to zero.

public BatchUpdateException(
String reason,

int [] updateCounts)

Constructs a BatchUpdateException object where:
• reason is a string describing the exception,

• updateCounts contains an array of INTs where each

element indicates the row count for each SQL UPD

command that executed successfully before the exc
was thrown.

• The following values are implicitly set: the vendor

set to zero and the Open Group code identification

null.

public BatchUpdateException(int []
updateCounts)

• Constructs a BatchUpdateException object where
updateCounts contains an array of INTs in which ea

element indicates the row count for each SQL UPD

command that executed successfully before the exc

was thrown.

• The following values are implicitly set: reason is s

null, vendorCode is set to zero, and the Open Grou

identification is set to null.
15-78 I n t e r B a s e 2 0 0 7 U p d a t e G u i d e

N e w i n I n t e r C l i e n t 4 . 0

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 10, 2007 2:37 pm (C:\Home\Interbase\8.0\UpdateGuide\PrevFeatures.fm)

dicates

at

thrown.

rows

e

ase.
The DatabaseMetaData.supportsBatchUpdates function
The DatabaseMetaData.supportsBatchUpdates function has changed as follows:

Additional functions
Additional functions that implement the JDBC 2.x API functionality are listed below.

public BatchUpdateException() The following values are implicitly set:

• updateCounts is set to a zero-length integer array,

• reason is set to null,

• vendorCode is set to zero,

• the Open Group code identification is set to null.

public int [] getUpdateCounts() Retrieves an array of INTs where each element in

the row count for each SQL UPDATE command th

executed successfully before the exception was

Table 15.4 Methods and constructors for the new BatchUpdateException class (continued)

Method/Constructor Functionality

Function Functionality

boolean

DatabaseMetaData.supportsBatchUpdates()

Can now return TRUE.

Function Functionality

int Statement.getResultSetType() Returns the type if resultSet is open, otherwise th

an exception

int Statement. getResultSetConcurreny() Returns the concurrency if resultSet is open.

int Statement. getFetchDirection() Returns the fetch direction if resultSet is open, th

return value is always FETCH_FORWARD for InterB

int ResultSet. getFetchDirection() Returns FETCH_FORWARD in all cases
C h a p t e r 1 5 I n t e r B a s e F e a t u r e s P e r R e l e a s e 15-79

N e w i n I n t e r C l i e n t 4 . 0

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 10, 2007 2:37 pm (C:\Home\Interbase\8.0\UpdateGuide\PrevFeatures.fm)

et.

d the

t

pe
Code examples
Code example for the batch update functions:

Statement Class
con.setAutoCommit(false);
Statement stmt = con.createStatement();
stmt.addBatch("INSERT INTO foo VALUES (1, 10));
stmt.addBatch("INSERT INTO foo VALUES (2, 21));
int[] updateCounts = pstmt.executeBatch();

con.commit();

Code example for the PreparedStatement class:

PreparedStatement pstmt = con.prepareStatement ("UPDATE employee set emp_id
= ? where emp_id = ?")
pstmt.setInt(1, newEmpId1);
pstmt.setInt(2, oldEmpId1);
pstmt.addBatch();
pstmt.setInt(1, newEmpId2);
pstmt.setInt(2, oldEmpId2);
pstmt.addBatch();

int[] updateCounts = pstmt.executeBatch();

Code example for the BatchUpdateException class and getUpdateCounts()

method

try
{

int[] updateCounts = pstmt.executeBatch();
}
catch (BatchUpdateException b)
{

int [] updates = b.getUpdateCounts();
for (int i = 0; i < updates.length; i++)
{

System.err.println ("Update Count " + updates[i]);
}

}

int ResultSet. getFetchSize() Returns the fetch size for the statement’s result s

int ResultSet. setFetchSize() Allows you to set the fetch size of the resultset an

statement.

int ResultSet. setFetchDirection() Throws an exception; it can only work with
TYPE_SCROLL_SENSITIVE and

TYPE_SCROLL_INSENSITIVE. Neither of these are

supported by InterBase, since InterBase does no

support scrollable cursors. The only ResultSet ty

allowed by InterClient/InterBase is

TYPE_FORWARD_ONLY.

Function Functionality
15-80 I n t e r B a s e 2 0 0 7 U p d a t e G u i d e

N e w i n I n t e r B a s e 7 . 0

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 10, 2007 2:37 pm (C:\Home\Interbase\8.0\UpdateGuide\PrevFeatures.fm)
InterClient and the Borland Enterprise Server

InterClient 4 now works with Container Managed Persistence (CMP) 2.0, which is

provided with Borland Enterprise Server (BES) 5.x.

Other InterClient Improvements

• The JDBC Timestamp data type now matches the InterBase SQL TIMESTAMP

data type and allows fractions of seconds.

• The Resources_ru.class has been removed from the interclient.jar file to

improve code page flexibility on non-Windows machines in Russian character

sets.

New in InterBase 7.0

As a reminder, or for those of you who may have missed the InterBase 7.0 release,

the following is a list of features that were new in InterBase 7.0, with a brief

description of each.

• Database naming

InterBase no longer recommends using “.gdb” as the extension for database files, since
on Windows ME and Windows XP, any file that has this extension is automatically

backed up by the System Restore facility.InterBase now recommends using “.ib” as the

extension for database names.

Our security database, formerly named isc4.gdb is now named admin.ib. For the

present, the InterBase example databases may still have the “.gdb” name. In the future

we will phase out that name and use new names.

• ODS11

InterBase 7.0 introduces ODS11. This new On-Disk Structure is required by the

presence of the new BOOLEAN data type and 68-byte meta-data names. To upgrade your

databases, back them up with an ODS10 gbak and then restore them with the ODS11

gbak that comes with the InterBase 7.

• New name for the security database

In InterBase 7, InterBase’s security database is named admin.ib on all platforms.

InterBase’s internal tools have all been updated to use this name. If you wish to continue

using your existing security database, you must back it up and restore it using the latest

gbak. To change the name, specify admin.ib as the new name during the restore. If you

have existing clients that expect to find isc4.gdb, you must update them to use the new

name.

You can specify a name of your choice for the security database by setting the

ADMIN_DB parameter in the InterBase configuration file, ibconfig.
C h a p t e r 1 5 I n t e r B a s e F e a t u r e s P e r R e l e a s e 15-81

N e w i n I n t e r B a s e 7 . 0

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 10, 2007 2:37 pm (C:\Home\Interbase\8.0\UpdateGuide\PrevFeatures.fm)
• New name for Unix configuration file

On Linux and Solaris platforms, the InterBase configuration file was previously called

isc_config. It is now called ibconfig.

• New keywords

InterBase 7.0 adds the following new keywords:

The following keywords were added to InterBase 6.5:

• New data type: BOOLEAN

InterBase now supports a BOOLEAN audiotape, implemented to the SQL 99 standard.

Examples:

CREATE TABLE AWARDS_1 (isEligible BOOLEAN, name VARCHAR(20));
INSERT INTO AWARDS_1 VALUES(TRUE, 'Jim Smith');

INSERT INTO AWARDS_1 VALUES(FALSE, 'John Butler');

SELECT * FROM AWARDS_1 WHERE isEligible = TRUE;

ISQL and IBConsole return TRUE, FALSE, and UNKNOWN. Queries created with APIs

return 1, 0, and NULL, respectively. For ESQL and DSQL programmers, we define the

following type in ibase.h:

define SQL_BOOLEAN 590

Note BOOLEAN is not supported in GPRE.

• No more SET TERM

When you write SQL, there is no longer any need to use SET TERM to define a

temporary terminator when defining stored procedures and triggers. InterBase now

parses these statements correctly without the use of SET TERM.

The document set states that IBConsole and IBX still require the use of SET TERM.

InterBase believes that this was corrected after the document set was written and that

SET TERM is no longer required in isql, IBConsole, or IBX. The old SET TERM

functionality remains available in isql, IBConsole, and IBX, so that old scripts can still

function.

• 68-byte meta-data names and XSQLDA

Metadata names can now be 68 bytes long (67 bytes plus a null terminator). These

names are available through all InterBase clients and are implemented in the new type 4
InterClient. They are being implemented in DBX and IBX and may be available by the

time you read this.

BOOLEAN TRUE FALSE UNKNOWN

ROWS TIES PERCENT
15-82 I n t e r B a s e 2 0 0 7 U p d a t e G u i d e

N e w i n I n t e r B a s e 7 . 0

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 10, 2007 2:37 pm (C:\Home\Interbase\8.0\UpdateGuide\PrevFeatures.fm)
The XSQLDA structure has been updated to support these long metadata names. Set the

version field of this structure to SQLDA_CURRENT_VERSION to access long metadata

names.

• New APIs for BLOBs and arrays

Ten API calls that relate to blobs and arrays have been updated to support these longer

metadata names. In these new APIs, the desc field points to an updated descriptor

structure that accommodates long metadata names.

The new API calls are:

The associated structure for arrays is ISC_ARRAY_DESC_V2. For blobs it is

ISC_BLOB_DESC_V2. The associated defines are:

#define BLB_DESC_VERSION2 2

#define BLB_DESC_CURRENT_VERSION BLB_DESC_VERSION2

#define ARR_DESC_VERSION2 2

#define ARR_DESC_CURRENT_VERSION ARR_DESC_VERSION2

These new API calls and their structs are documented in the API Guide. See Chapter 7,

Chapter 8, and the new API calls in the API Reference chapter.

• Client version detection

Some clients—notably drivers, but others as well—need to query the InterBase client

library for the version numbers. Three new APIs provide this capability:

isc_get_client_version(), isc_get_client_major_version(), and

isc_get_client_minor_version(). They are described in detail in the API Function

Reference chapter of the API Guide.

• New type 4 InterClient

InterBase 7.0 introduces InterClient 3.0, This new version of InterClient is a type 4

JDBC driver, which means that it can communicate directly with the InterBase server.

InterServer is no longer needed in environments where all the clients have been

upgraded to this new type 4 InterClient.

isc_array_gen_sdl2() isc_array_get_slice2()

isc_array_lookup_bounds2() isc_array_lookup_desc2()

isc_array_set_desc2() isc_array_put_slice2()

isc_blob_default_desc2() isc_blob_gen_bpb2()

isc_blob_lookup_desc2() isc_blob_set_desc2()
C h a p t e r 1 5 I n t e r B a s e F e a t u r e s P e r R e l e a s e 15-83

N e w i n I n t e r B a s e 7 . 0

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 10, 2007 2:37 pm (C:\Home\Interbase\8.0\UpdateGuide\PrevFeatures.fm)
To upgrade a client, place the new interclient.jar file on each client machine and ensure

that it is the first instance on the CLASSPATH. Note that although the filename is the

same as it was in earlier versions, the file being distributed with InterBase 7 is very

different. It is a type 4 JDBC driver. Earlier versions were type 3. Be sure that you are

installing the latest driver on your client machines.

Legacy InterServer: If you are not able to upgrade all of your clients immediately, install

InterServer on the InterBase Server platform. InterServer will do no harm, and its

presence allows a mixture of type 3 and type 4 clients to attach to the InterBase server.

The interserver.exe file that distributes with InterBase 7.0 has not changed from
previous versions.

• SMP support

InterBase now provides symmetric multiprocessor (SMP) support for both clients and

servers. Previous versions of InterBase ran on SMP systems safely by allowing only a

single processor at a time to execute within the InterBase components. This release

exploits SMP hardware by running InterBase threads on all processors simultaneously

for increased throughput and performance.

When you purchase a single server license, you acquire the right to use a single

processor. You must purchase an additional license for each additional processor that

you wish to use.

• Server configuration parameter: MAX_THREADS

Setting the MAX_THREADS parameter in the ibconfig configuration file controls the

maximum number of threads that can be active at one time within the InterBase engine.
The default setting is 100:

The ideal setting for this number depends partly on the nature of the work being

performed by your clients. If you have many clients performing very similar tasks, you

may want to lower the MAX_THREADS setting to reduce contention. On the other hand,

if simultaneous activity is highly diverse, setting this to a higher value may increase

throughput. This setting does not affect the maximum possible threads that can be

created by the InterBase server but only the number that can be active in the engine at

one time.

• Expanded processor control: CPU_AFFINITY

On Windows multiprocessor platforms, you can specify which processors InterBase

should use by adding the CPU_AFFINITY parameter to the ibconfig file. This setting is

useful whenever the number of licensed processors is less than the number of actual
processors present. When you purchase a single server license, you acquire the right to

use a single processor. You must purchase one additional license for each additional

processor that you wish to use.

CPU_AFFINITY is discussed in the “Server Configuration” chapter of the Operations

Guide.

• Increased security for external tables
15-84 I n t e r B a s e 2 0 0 7 U p d a t e G u i d e

N e w i n I n t e r B a s e 7 . 0

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 10, 2007 2:37 pm (C:\Home\Interbase\8.0\UpdateGuide\PrevFeatures.fm)
Under some conditions, external tables could pose a security hazard. To counter this,

InterBase has added the new requirements for external tables. External tables must meet

one of the following conditions:

• The table is located in <ib_home>/ext. InterBase can always find external files that

you place here.

• The location of the table is specified in the ibconfig configuration file by setting the

EXTERNAL_FILE_DIRECTORY parameter to the location of the external file.

• New HTML reference docs

InterBase now includes two references in HTML form. Both of these can be accessed

from the Help menu of IBConsole or directly from the <ib_home>/HtmlRef directory.

• The SQL Reference The SqlRef.html file replaces the older SqlRef.hlp file. It

contains all the SQL statement information from the “SQL Statement and Function

Reference” chapter of the Language Reference.

• The API Function Reference The APIFunctionRef.html file is an HTML version of

the “API Function Reference” chapter of the API Guide.

• Monitoring database attachments with system temporary tables

The InterBase Server has always kept a lot of statistics about what was going on, but it

has not been easy, or in some cases possible, to surface that information. InterBase now

captures that information and makes it available in a set of global system temporary

tables. These tables describe the runtime behavior of a database. They also provide a

level of control. The temporary table metadata is listed in the Language Reference.

It is also possible to exercise a certain amount of control over the state of a database by
performing updates to these tables.

Table name Description

TMP$ATTACHMENTS One row for each connection to a database

TMP$DATABASE One row for each database you are attached to

TMP$POOL_BLOCKS One row for each block of memory in each pool

TMP$POOLS One row for each current memory pool

TMP$PROCEDURES One row for each procedure executed since the current
connection began

TMP$RELATIONS One row for each relation referenced since the current connection
began

TMP$STATEMENTS One row for each statement currently executing for any current
connection

TMP$TRANSACTIONS One row for each transaction that is active or in limbo
C h a p t e r 1 5 I n t e r B a s e F e a t u r e s P e r R e l e a s e 15-85

N e w i n I n t e r B a s e 7 . 0

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 10, 2007 2:37 pm (C:\Home\Interbase\8.0\UpdateGuide\PrevFeatures.fm)
Querying system temporary tables Clients can query these tables using SELECT

statements, just as they would query any other table. For frequent monitoring, the best

transaction control is to start the transaction as READ_COMMITTED, READ_ONLY. Then

commit it with COMMIT_RETAINING. This has the least impact on the system.

Updating system temporary tables By updating the TMP$STATE column of certain

temporary tables, you can roll back an active or limbo transaction, commit a limbo

transaction, cancel an attachment’s executing operation, shut down the current

attachment, or make an executing statement stop running.

System temporary table metadata The “System Tables” chapter of the Language
Reference lists the metadata for each of the system temporary tables.

• Thread-safe processing of database handles

InterBase 7.0 provides improved handling of InterBase database handles on behalf of

client applications. Handle types include attachment, blob, BLR request, SQL

statement, service and transaction objects. The client library manages the integrity of

InterBase database handles in the face of concurrent application thread activity.
15-86 I n t e r B a s e 2 0 0 7 U p d a t e G u i d e

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 10, 2007 2:37 pm (C:\Home\Interbase\8.0\UpdateGuide\IB8UpdateGuideIX.fm)

Index
Numerics

1st-level Bullet 6-25

A

Altering a Journal Archive 5-11
AlterJournal 13-55
Archive Sequence Numbers 5-13
Archive Sweeping 5-13
Archiving and Recovery Commands 5-12

B

bullets
first level 6-25

C

Changes to licensing 2-3
Checkpoint Interval 5-9
Checkpoint Length 5-9
CreateJournal 13-55
CreateJournalArchive 13-55
Creating Incremental Backups 4-2
Creating Journal Files 5-8

D

Disabling Journal Files 5-10
DropJournal 13-55
DropJournalArchive 13-55
Dropping a Journal Archive 5-11

E

Enabling Journal Files 5-8

G

GetJournalInformation 13-55

I

IBConfigService 13-54, 13-55
IBConsole changes 14-57
IBDatabase.pas 13-53
IBScript 13-54
IBSecurityService 13-55
IBVersionInfo 13-55
IBX changes 13-53
incremental backup parameters 13-53
Installation 2-4

instance_name 13-53, 13-54
InterBase 7.5 features 15-59

J

Journal Archives 5-8, 5-10
JournalInformation 13-55
Journaling Best Practices 5-16
Journaling configuration 5-7, 14-57

L

License changes 2-3

M

Managing Archive Size 5-13
Managing Journal Archives 5-12
Multi-Instance 15-60

P

Page Cache 5-9
Page Size 5-9
PSSetCommandText 13-54

R

RBD$ARCHIVE_NAMW 4-5, 5-14
RDB$ARCHIVE_LENGTH 5-14
RDB$ARCHIVE_SEQUENCE 5-14
RDB$ARCHIVE_TIMESTAMP 5-14
RDB$ARCHIVE_TYPE 5-14
RDB$DEPENDED_ON_SEQUENCE 5-14
RDB$DEPENDED_ON_TIMESTAMP 5-14
Recovery 5-12
Registration 2-4
Restrictions on Journals and Archives 5-15

S

stored procedures
powerful SQL extensions 6-25

T

TIBJournalInformation 13-54
Timestamp Name 5-9
Tracking Archive State 5-14

U

UNICODE (UCS-2) 9-41
87

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND

CONFIDENTIAL

July 10, 2007 2:37 pm (C:\Home\Interbase\8.0\UpdateGuide\IB8UpdateGuideIX.fm)
16-88 I n t e r B a s e 2 0 0 7 U p d a t e G u i d e

	InterBase 2007 Updates
	License Changes
	Comparison
	InterBase Product Installation
	Registration

	Service Pack 2 Updates
	Server/Client Version Compatability
	Tar Install for Linux and Solaris
	Setup Instructions

	Features and Updates

	Incremental Backups
	Creating Incremental Backups
	Page Appendix File
	Incremental Backup Guidelines

	Journaling
	The Journal Subsystem
	Journal Archives

	Enabling Journal Files
	Creating Journal Files
	Disabling Journal Files

	Journal Archives
	Dropping a Journal Archive

	Managing Journal Archives
	Recovery
	Archiving and Recovery Commands
	Managing Archive Size
	Archive Sequence Numbers and Archive Sweeping
	Tracking Archive State
	Restrictions on Journals and Archives

	Journal Preallocation
	Journaling Tips and Best Practices

	Batch Updates
	Using Batch Updates
	Client APIs for Batch Updates

	Using the isc_dsql_batch_execute_immed Batch Update API
	Using the isc_dsql_batch_execute API
	ISQL Improvements

	Database Settings
	Database Write Mode Default SYNC
	Database File Preallocations
	GSTAT
	ISQL Extract PREALLOCATE
	GBAK
	API DPB Parameter
	isc_db_preallocate Database Parameter

	Using BLOBs With
	VARCHAR Data
	Text BLOBs and VARCHAR Data
	Text BLOB SQL Syntax
	Using Text BLOBs with VARCHAR Data

	Internationalization Changes
	Support for the UTF-8 Character Set
	UNICODE_BE and UNICODE_LE Character Sets
	Collations

	PT_BR Collation For Brazilian Portuguese

	UDF Descriptors
	Declaring a New UDF Using a Descriptor Parameter
	Defining the UDF:
	System Table Changes

	Query Optimizer Improvements
	Index Optimization of Correlated Subqueries in UPDATE statements
	Shortcut Boolean Expression Evaluation
	Redundant Index Usage in Query Disjuncts
	Outer Join and Sort/Merge Optimization
	Invariant FALSE Restrictions in Queries

	JDBC URL Parameters
	JDBC URL Argument
	Log Writer File Property

	IBX Changes
	Changes to IBX in InterBase 2007

	IBConsole
	Changes to IBConsole in InterBase 2007

	InterBase Features Per Release
	New in InterBase 7.5
	Multi-Instance
	Automatic re-routing of databases
	Manual routing of databases
	Server side database alias
	Embedded database user authentication
	New ODS
	Global temporary tables
	CASE, COALESCE, and NULLIF
	Index optimization for NULL/non-NULL values
	Memory management allocation algorithms
	Stored procedure and trigger cache management
	Sort buffer cache management
	Greater SMP scalability
	Database page buffer cache
	Thread-private Latch Cache
	Error reporting improved in interbase.log

	New in InterClient 4.7
	Savepoints
	ParameterMetaData

	New in InterBase 7.1
	New cross-platform installer
	New registration
	Precision of exact numerics
	New drivers
	New ODS
	Savepoints
	New keywords
	Performance monitoring now accessible in IBConsole
	New character sets
	Improved SMP support
	Hyper-threading support on Intel processors
	Change in gbak functionality
	Hyper-threading support for Intel processors
	New SQL command: DROP GENERATOR
	Improved garbage collection/index handling
	IBConsole displays additional object dependencies
	Using the InterBase Install API
	Documentation fixes and changes

	New in InterClient 4.0
	Data Source properties for InterBase
	InterClient connection pooling
	InterClient scroll ability
	New InterClient methods
	InterClient and the Borland Enterprise Server
	Other InterClient Improvements

	New in InterBase 7.0

	Index
	Numerics
	A
	B
	C
	D
	E
	G
	I
	J
	L
	M
	P
	R
	S
	T
	U

